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Abstract 
 
 
Primary infection with human cytomegalovirus (HCMV) results in a lifelong infection due 
to its ability to establish latent infection, one characterized viral reservoir being 
hematopoietic cells. Although reactivation from latency causes serious disease in 
immunocompromised individuals, our molecular understanding of latency is limited.  
Here, we delineate viral gene expression during natural HCMV persistent infection by 
analyzing the massive RNA-seq atlas generated by the Genotype-Tissue Expression 
(GTEx) project. This systematic analysis reveals that HCMV persistence in-vivo is 
prevalent in diverse tissues. Unexpectedly, we find only viral transcripts that resemble 
gene expression during stages of lytic infection with no evidence of any highly restricted 
latency-associated viral gene expression program. To further define the transcriptional 
landscape during HCMV latent infection, we also used single cell RNA-seq and a 
tractable experimental latency model. In contrast to current views on latency, we also 
find no evidence for a specific restricted latency-associated viral gene expression 
program. Instead, we reveal that latency-associated gene expression largely mirrors a 
late lytic viral program albeit at much lower levels of expression. Overall, our work has 
the potential to revolutionize our understanding of HCMV persistence and suggests that 
latency is governed mainly by quantitative changes, with a limited number of qualitative 
changes, in viral gene expression. 
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Introduction 
 
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that, like all herpes viruses, 
can establish latent infection that persists for the lifetime of the host. In healthy 
individuals infection rarely causes any significant clinical symptoms due to a robust 
immune response (1, 2). In contrast, primary infection or reactivation from latency can 
result in serious and often life-threatening disease in immunocompromised individuals 
(3–5). Latent infection is, therefore, a key part of viral persistence and latently infected 
cells are a clear threat when the immune system is suppressed. Despite this, our 
molecular understanding of HCMV latency state is still limited. 

HCMV is tightly restricted to humans, however in its host it has extremely  wide cell 
tropism (6), and many kinds of cells can be productively infected, including fibroblasts, 
epithelial cells and smooth muscle cells (7). In contrast, latent infection was so far 
characterized only in cells of the early myeloid lineage, including CD34+ hematopoietic 
progenitor cells (HPCs) and CD14+ monocytes (8). It was further established that 
terminal differentiation of HPCs and CD14+ monocytes to dendritic cells or 
macrophages triggers virus reactivation from latency (9–13). This differentiation-
dependent reactivation of latent virus is thought to be mediated by changes in post-
translational modification of histones around the viral major immediate-early promoter 
(MIEP). These modifications drive the viral major immediate-early (IE) gene expression, 
resulting in reactivation of the full viral lytic gene program cascade and the production 
of infectious virions (11). Thus, the cellular environment is a key factor in determining 
the outcome of HCMV infection. 

During productive lytic infection, HCMV expresses hundreds of transcripts and viral gene 
expression is divided into three waves of expression IE, early, and late (6, 14, 15). In 
contrast, the maintenance of viral genome in latently infected cells, is thought to be 
associated with expression of a relatively small number of latency-associated viral genes 
(16–21) in the general absence of IE gene expression. Due to their therapeutic potential, 
significant attention has been drawn to these few latency- associated viral gene 
products, but the full transcriptional program during latency remains unclear. 

The earliest studies that looked for latency-associated gene expression identified a 
number of transcripts arising from the MIEP region of HCMV but no function was 
assigned to them (22–24). More systematic mapping of latency-associated transcripts 
was conducted with the emergence of microarray technology. Two studies detected a 
number of viral transcripts in experimentally latently infected myeloid progenitor cells 
(25, 26). The latent transcripts reported by these studies were not entirely overlapping, 
yet these findings were used as a guideline for targeted efforts to identify latent gene 
products. Interrogating the viral transcriptome in natural persistent infection is highly 
challenging since viral genomes are maintained in extremely few cells, at very low copy 
numbers, and viral genes are expected to be expressed in low levels. Nevertheless,  
subsequent work detected a number of these transcripts during natural latency (17, 18, 
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21), mainly using high sensitivity approaches such as nested PCR, building a short list of 
viral genes that is generally accepted to represent a distinct transcriptional profile 
during latent infection. These genes include UL138, UL81-82ast (LUNA), US28, as well as 
a splice variant of UL111A, which encodes a viral interleukin 10 (27–33). 

More recently, RNA-seq was applied to map latency associated viral transcripts (34). 
This study revealed a wider viral gene expression profile that included two long non-
coding RNAs (lncRNAs), RNA4.9 and RNA2.7 as well as the mRNAs encoding replication 
factors UL84 and UL44 (34). 

Such genome-wide analyses are highly informative as they measure the expression of all 
transcripts in an unbiased manner. However, a major limitation is that they portray a 
mean expression in cell population, without reflecting intra-population heterogeneity. In 
the case of latent HCMV infection models this can be highly misleading since it is hard to 
exclude the possibility that a small, undesired population of cells, is undergoing lytic 
replication and thus can easily introduce “lytic noise”. This effect can be especially 
significant for viral genes that are highly expressed during lytic infection such as lncRNAs 
(15). Finally, the low frequency of natural latent cells is a major hurdle for global 
quantitative analysis of naturally latently infected cells.  

To overcome the problem of scarcity of natural latent cells, we took advantage of the 
massive human RNA-seq atlas generated by the Genotype-Tissue Expression (GTEx) 
consortium (35). Through analysis of 435 billion RNA reads, we did not find any evidence 
for a restricted latency associated viral gene program. Instead, in several tissues we 
captured low-level expression of viral genes that resemble gene expression at late 
stages of lytic infection. Next, to directly explore viral gene expression in a controlled 
latently infected cell population we turned to the established myeloid lineage 
experimental systems. By using single cell RNA-seq (scRNA-seq) we unbiasedly 
characterize the HCMV latency program of both experimentally latently infected CD14+ 
monocytes and CD34+ HPCs, overcoming the impediment of cell population variability. 
Surprisingly, in contrast to the existing view in the field, we find no evidence for a 
specific latency associated viral gene expression program of only a few viral genes. 
Instead, we reveal that in HCMV latency models, whilst there is little detectable IE 
expression, there is low-level expression of viral genes that strongly resembles the late 
lytic stage viral gene expression profile. Our analyses thus redefine HCMV latent gene 
expression program and suggest quantitative rather than qualitative changes that 
determine latency. Our work illustrates how new genomic technologies can be 
leveraged to reevaluate complex host-pathogen interactions. 
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Results 

No evidence for a restricted latency-associated viral gene expression program in natural 
HCMV infection 
 
We set out to characterize the full extent of viral transcription during latency in natural 
settings. The proportion of infected mononuclear cells in seropositive individuals was 
estimated at 1:10,000 to 1:25,000 with a copy number of 2-13 genomes per infected cell 
(36). Given that transcription of viral genes is expected to be low in these cells, immense 
amount of sequencing data is required to capture viral transcripts. We thus took 
advantage of the Genotype-Tissue Expression (GTEx) database, a comprehensive atlas 
containing massive RNA-seq data across human tissues that were obtained postmortem, 
from otherwise healthy individuals (35).  We analyzed 9,416 RNA-seq samples from 549 
individuals covering 31 tissues and containing more than 433 billion reads. This data-set 
(Fig. S1A) was aligned to the HCMV genome using strict criteria (material and methods). 
In 101 samples from 59 individuals we were able to recover HCMV reads (Fig. S1B).  

When manually inspecting the reads that aligned to the HCMV genome we noticed that 
from 40 samples we obtained only reads that align to a well-defined, 229 bp region in 
the viral immediate early promoter (Fig. S1C). Although this region was previously 
associated with latency (22–24),  we suspected these reads might originate from HCMV 
promoter-containing plasmid contamination. Indeed, when we analyzed HCMV 
genomes sequenced directly from clinical samples (37), we observed that in the majority 
of clinical samples, positions 175,493 and 175,494 in the genome (that fall in the MIEP 
region) contain cytosine or thymine in the first position and cytosine in the second 
position, whereas all the reads we identified in the GTEx samples matched the sequence 
of the HCMV promoter used in vectors which has adenosine and thymine in these 
positions (Fig. S1D). We therefore concluded that these reads may originate from a 
contamination and excluded them from further analysis.  
 
For 51.7% of samples we had information about the CMV serostatus. Reassuringly, the 
number of samples that contained HCMV sequences and the number of HCMV reads 
were significantly higher in samples originating from seropositive individuals (Fig. 1A, 
Pval=0.0467 and Pval < 10-55 respectively, hypergeometric test). This is not due to 
differences in sequencing coverage as the read depth in samples from seronegative and 
seropositive individuals is similar. Further examination revealed that HCMV reads are 
found in 6 out of 2,210 seronegative samples, however all of them contained only one 
viral read per sample. Therefore this was used as a threshold and viral reads from 
samples containing less than two viral reads were filtered out in further analysis (data 
from all samples is summarized in Table S1). 
 
Hematopoietic cells have been a primary focus of HCMV latency studies and HCMV 
genomes have been detected in HPCs and in additional cells throughout the myeloid 
lineage (38, 39).  Consequently, the blood and the hematopoietic system are a major 
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focus in research of HCMV persistence. The analysis of the GTEx database provides an 
exceptional opportunity to unbiasedly assess HCMV prevalence in various tissues. 
Interestingly analysis of the abundance of HCMV reads in different tissues revealed that 
ovaries, blood, adipose tissue and lung had the highest percentage of samples 
containing viral reads (Fig. S1E). The abundance of HCMV transcripts in these tissues 
was also the highest when analyzing the number of viral reads relative to the total reads 
that were sequenced from each of them (Fig. 1B). Since the GTEx database did not 
contain RNA-seq data from bone marrow where HPCs (which are the most established 
HCMV reservoir) reside, we performed RNA-seq on two HPC samples from HCMV 
positive individuals and surveyed additional 25 RNA-seq samples of HPCs from healthy 
individuals (Table S2). Although we analyzed over 1.5 billion aligned RNA-seq reads we 
did not detect any viral reads in these samples (Fig. 1B). 
 
Next, we analyzed the viral gene expression as reflected by the HCMV reads we 
identified in natural samples, including in this analysis only samples that contained more 
than 4 HCMV reads. Hierarchical clustering revealed that the samples could be 
subdivided into two groups based on the pattern of viral gene expression (Fig. 1C).  
The first group (group I) was composed of samples that were dominated by transcripts 
that are the most highly expressed during late stage of lytic infection, e.g. RNA2.7, 
RNA4.9, RNA1.2 and UL22A (Fig. 1C and 1D). Indeed, when we compared the viral gene 
expression of these samples to RNA-seq data we collected along lytic infection of 
fibroblasts, we obtained high correlation to late stages of infection (R=0.97, Fig. 1E and 
Fig. S2A). This correlation suggests these viral reads that were identified in natural 
settings are similar to late stage lytic gene expression program.  
The second group (group II) is composed of samples that express bona fide immediate 
early genes, e.g. UL123, US3 and UL36 as well as US33A which is the most highly 
expressed transcript early in infection (14), but had limited expression of transcripts that 
are abundant at late stage of lytic infection (Fig. 1C and 1D). Therefore, it is possible that 
these samples reflect the onset of viral reactivation, a state in which IE genes are 
transcribed but the full viral gene program is still suppressed. Supporting this notion, 
viral gene expression of these samples correlated best with lytically infected fibroblasts 
at 5 hours post infection (hpi) (R=0.55) (Fig. 1E and Fig. S2B). This IE expression positive 
state likely represent cells exiting from latency, consistent with the view that 
reactivation goes through a stage of IE gene activation. Since the tissues we analyzed 
were obtained postmortem, it is possible that postmortem-related physiological events 
led to HCMV reactivation and IE gene expression.  To assess this hypothesis we 
inspected the time postmortem at which the tissue was collected (data is provided by 
GTEx (35)). Samples in group II were not enriched for long waiting time before tissue 
collection (Fig. S2C). In addition, there were no differences in the time interval of tissue 
collection between samples that contained HCMV reads and those that did not (Fig. 
S2D). These results suggest that the HCMV gene expression pattern we captured is 
largely independent of the trauma that occurred after death.  
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Unexpectedly, given the current view on cellular HCMV latency, we were not able to 
identify tissue samples that provide evidence for a restricted latency-associated viral 
gene expression program that differs from lytic viral gene expression. 
 
Single cell transcriptomic analysis of latently infected CD14+ monocytes  
 
Although in natural samples we detected only low level viral gene expression pattern 
that resembles the lytic gene expression program, the cellular heterogeneity in these 
samples does not allow us to distinguish whether we are analyzing latently infected 
cells, or rare cells in which productive infection is taking place. Consequently, we next 
moved to characterize the viral transcriptome in experimental models of HCMV latency. 
Since these models rely on primary hematopoietic cells that may vary in their 
differentiation state and may also contain heterogeneous populations, we took 
advantage of the emergence of single cell RNA-seq (scRNA-seq) technologies (40, 41). 
This high-resolution profiling of single cell transcriptomes allowed us to delineate the 
nature of HCMV latency program in the best studied latent reservoir, hematopoietic 
cells. 
 
Freshly isolated CD14+ human monocytes were infected with an HCMV TB40E strain 
containing an SV40 promoter driven GFP (TB40E-GFP) (42). This strain allows short-term 
detection of GFP-tagged latently infected cells, as in these cells GFP expression is 
efficiently detected at 2 dpi and then GFP signal gradually declines. Despite GFP levels in 
monocytes being much lower compared to those in lytic infection, the GFP expression 
allowed us to confirm that the majority of cells were indeed infected (Fig. S3A). To 
validate latent infection in our experimental settings, we analyzed by quantitative real-
time PCR (qRT-PCR) the gene expression pattern of the well-studied latency associated 
gene, UL138 and of the immediate early gene, IE1 at 4 days post infection (dpi). Infected 
monocytes expressed relatively high level of UL138 while showing only trace level of IE1 
transcript (Fig. 2A), thus manifesting the hallmark of latent infection (25, 27, 28, 33, 43, 
44). Our latently infected monocytes release only trace amount of infectious virus, while 
differentiation of these infected monocytes into dendritic cells resulted in detectable IE 
expression as well as production of infectious virions (Fig. 2B and Fig. 2C). Thus we 
concluded that our CD14+ cells are latently infected.  
 
Next, HCMV infected CD14+ cells were single cell sorted without further selection at 3,4, 
5, 6, 7 and 14 dpi and their transcript levels were measured using massively parallel 3’ 
scRNA-seq (MARS-seq) (45). Analysis of the entire transcriptome was performed on 
3,655 CD14+ infected cells in which we could detect 15,812 genes out of which 171 
were HCMV transcription units (see material and methods and Fig. S3B for distribution 
of reads and genes over the cell population).  Projection of the cells using t-distributed 
stochastic neighbor embedding (t-SNE) analysis revealed that most of the cells 
constitute a large heterogeneous but continuous population and only a small group 
forms a distinct population (Fig. 3A). When we calculated the percentage of reads that 
align to the HCMV genome in each of the cells, it became evident that the small distinct 
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population likely represents cells undergoing lytic infection as >10% of the reads in 
these cells originate from viral transcripts (Fig. 3A). Reassuringly, when performing the t-
SNE analysis by using only cellular gene expression, we obtained the same structure, 
confirming we are looking at two different cell states (Fig. S4A).  The small population 
represents a lytic cell population and the rest of the monocytes, which are the vast 
majority, exhibit very low to undetectable, diverse viral gene expression levels, 
indicating that they likely represent latently infected cells. This distribution, showing a 
clear separation between two groups of cells exhibiting very different levels of viral gene 
expression, confirms the purity of the single-cell isolation and the dominance of latent 
cells in the population of CD14+ infected cells (Fig. 3A). 
 

HCMV latency associated gene expression in CD14+ monocytes and CD34+ HPCs 
resembles late lytic gene expression program 

To assess the heterogeneity in HCMV latently infected monocytes, we combined the 
data from all 3,655 cells and clustered them on the basis of their host and viral gene 
expression profiles into 6 clusters (clustering method was previously described (46)) 
(Fig. 3B). Notably, also in this approach, the cells exhibiting high viral expression levels, 
presumably undergoing lytic infection, were clustered together and the most 
differential genes that were highly expressed in this cluster were almost exclusively viral 
genes (cluster 1, Fig. 3B, top panel). On the other hand, the rest of the cells exhibited 
very low levels of viral gene expression in varying degrees and the highly expressed 
differential genes in these five clusters were all cellular genes (Fig. 3B, lower panel and 
Table S3). 

These clusters were consistent with the t-SNE analysis, with cluster 1 overlapping with 
the distinct population representing lytic cells (Fig. S4B). Indeed, by comparing the viral 
gene expression pattern of cells from this cluster to lytically infected monocyte-derived 
macrophages or fibroblasts we could confirm that they exhibit similar programs (Fig. 
S4C).  Unexpectedly, although the lytic and latent cells represent two very separable cell 
states (Fig. S4A), latent cells from all clusters, show viral gene expression profile that is 
similar to the lytic cells (cluster 1), with the difference being in the level of viral gene 
expression but not in the identity of the viral genes (Fig. 4A). The only viral genes that 
their deviation from this correlation was statistically significant, and were relatively 
higher in latent cells, were the exogenous GFP (False discovery Rate (FDR)=7.10-19) 
which is driven by the strong SV40 promoter, the lncRNA, RNA2.7 (FDR<10-100), which is 
the most abundant transcript, and a transcript encoding for UL30 (FDR =6.10-8), a poorly 
characterized coding gene (15) (Table S4).  

We also examined whether viral gene expression program varies between the different 
populations of latently infected cells defined by the different clusters, by assessing the 
correlation between lytic cells (cluster 1) and each of the five other clusters. We found 
that viral gene expression profiles of all clusters were correlated with the lytic cells (Fig. 
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S4D), with the correlation co-efficiency declining with the reduction in number of viral 
reads but only few viral genes were significantly higher in latent cells composing these 
clusters (table S5).  

Importantly, by calculating the background noise in the single cell data (materials and 
methods), we confirmed that the results are not skewed by possible cross 
contamination in the single-cell data from the few lytic cells we have in our experiments 
(Fig. S5). 

Overall, this analysis indicates that to large extent the viral gene expression program 
during experimental latency mirrors the viral gene expression program in late stage of 
lytic infection albeit expressed at much lower levels.  

It is noteworthy that these unexpected results do not contradict previous analyses of 
latent cells, as we observe latent infection to be associated with overall low levels of 
viral gene expression and with high levels of UL138 relative to IE1. Importantly, this high 
UL138/IE1 ratio is also evident at late stages but not at early stages of lytic infection (Fig. 
4B). 

It was previously demonstrated that HCMV virions contain virus-encoded mRNAs (47, 
48). To exclude the possibility that the transcripts we capture originate from input 
mRNAs that are carried in by virions, we infected CD14+ monocytes with untreated or 
UV-inactivated viruses and evaluated the levels of RNA2.7 and RNA4.9 at 5 dpi. The 
expression of both transcripts was over 30-fold lower in the cells infected with UV- 
inactivated virus compared to cells infected with untreated virus (Fig. 4C). In addition, 
viral transcripts levels at 5 hpi were much lower than at 5dpi (Fig. 4D), illustrating that 
the viral transcripts that we capture during latency result from de novo expression and 
are not the result of input mRNAs.  

We next examined viral gene expression in experimentally infected CD34+ HPCs, which 
are another well-characterized site of latent HCMV infection (39, 49). CD34+ cells were 
infected with TB40E-GFP virus in the same manner as CD14+ monocytes, and used for 
generation of scRNA-libraries at 4 dpi. We initially used MARS-seq (45) to measure the 
transcriptome of infected HPCs, however out of 424 cells we sequenced, viral transcripts 
could be detected in only 12 cells (Table S6). We therefore moved to 10X genomics 
drop-seq platform that allows simultaneous analysis of thousands of cells. We analyzed 
the transcriptome of 7,634 experimentally infected HPCs in 366 of which we identified 
viral transcripts (see material and methods and Fig. S3C for distribution of reads and 
genes over the cell population). Projection of cells using t-SNE analysis revealed 
heterogeneous populations and cells that expressed viral transcripts were distributed 
throughout these populations (Fig. 5A). Analysis of the 366 cells that expressed viral 
transcripts revealed low expression levels and, as in CD14+ monocytes, viral gene 
expression in these cells resembled the expression pattern of late stage of lytic infection 
(Fig. 5B). Also here, there were only few transcripts that their deviation from this 
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correlation was statistically significant, including RNA2.7 and UL30 (Table S7). Over all, 
our results show that during experimental latent infection there is no well-defined 
latency associated viral gene expression program, but rather these cells are 
characterized by low level expression of a program strongly resembling late lytic 
infection stages. 
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Discussion 

Despite the clinical importance of HCMV latency, the mechanisms involved in viral 
genome maintenance and reactivation are poorly understood. An important step in 
deciphering these mechanisms is to characterize viral transcripts that are expressed 
during latent infection in an unambiguous manner.  To address this challenge we 
examined HCMV infection by comprehensive analysis of RNA-seq data from diverse 
human tissues and further used scRNA-seq to analyze gene expression of latently 
infected CD14+ monocytes and CD34+ HPCs. Surprisingly, our measurements 
demonstrate that in both natural HCMV infection and in experimental latency models 
there is no evidence of a unique latency-associated gene expression program but 
instead we describe viral gene expression pattern that is similar to late stage of lytic 
infection at exceedingly low levels. Although these results are surprising given the 
prevalent notion that HCMV latency involves a specific gene expression program, 
evidence for broader viral gene expression was indicated in several previous genome-
wide studies (25, 26, 34).  
 
Examination of HCMV infection by analyzing viral gene expression in diverse human 
tissues did not reveal any restricted latency-associated viral gene expression program in 
the natural context. Instead we uncovered two patterns of gene expression; the first is 
composed of samples that contain viral transcripts that are abundant at late stage of 
lytic infection and the second is composed of samples with a restrictive gene expression 
pattern that includes mainly IE transcripts.  The samples that contain late viral 
transcripts could reflect low-level expression that originates from few latent cells or the 
existence of scarce lytic cells in these tissues. The absence of IE gene expression implies 
that these reads may reflect a steady state rather than an ongoing lytic infection. 
Nevertheless, since cells expressing viral transcript are very rare, it is currently 
impossible to distinguish between these two scenarios.  
 
The samples that contained mainly IE transcripts are fascinating as they may reflect a 
unique snap shot of viral gene expression during reactivation in-vivo, in natural human 
samples. Although we did not observe any difference in the time interval from death 
until these samples were collected, we cannot preclude the possibility that this 
restricted IE gene expression occurred postmortem or due to the associated trauma 
(50). Regardless of the conditions that initiated this restrictive IE gene expression, this 
state strongly suggests that in-vivo exit from latency goes through a phase in which IE 
genes are activated. The IE expression pattern we find was seen mostly in blood samples 
but not solely, suggesting that reactivation may occur in additional tissues, and at least 
in some stage is restricted to IE gene expression. The restrictive IE gene expression in 
these cells suggests that there is a threshold that needs to be crossed (perhaps the 
accumulation of enough IE proteins) before temporally controlled viral gene expression 
program can start. Indeed, this is entirely consistent with differentiation of CD34+ cells 
ex-vivo to immature DCs resulting in cells permissive for IE1 expression but not virus 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/208603doi: bioRxiv preprint 

https://doi.org/10.1101/208603


production (11) and with the detection of IE1 expression without infectious virus 
production in immature DCs isolated from healthy seropositive carriers (51).  

 
Interestingly, our analysis of natural samples also suggest that HCMV persistence is 
widespread throughout the body, as we found viral gene expression in diverse human 
tissues. Previous studies have shown the presence of viral genomes in tissues outside 
the blood and hematopoietic system (Hendrix et al., 1997; Chen and Hudnall, 2006; 
Harkins et al., 2010; Gordon et al., 2017). Our data provide unbiased evidence for viral 
gene expression in various tissues and broader prevalence than was described before. 
The tissue that had the highest levels of viral transcripts was the lung which is consistent 
with recent results showing that HCMV DNA could be identified in the lung (Gordon et 
al., 2017), and in alveolar macrophages (9) and that HCMV reactivation is often 
manifested clinically as pneumonitis (57, 58). The cellular heterogeneity in tissue 
samples precludes any conclusion about the cellular sites of HCMV infection in these 
natural samples.  
 
Our inability to detect a restricted latency-associated gene expression program in this 
systematic survey of natural samples, motivated us to examine the viral gene expression 
in the best studied latency experimental systems using single cell analysis. Notably, our 
results challenge the view of latency as being a specific viral-mediated program, and 
highlight rather a quantitative aspect of viral gene expression that is likely governed by 
the host cell. At the present sampling depth and coverage efficiency, our analysis of 
CD14+ cells can detect subpopulations of 0.3% (11–12 cells) or more. Therefore, 
although we cannot exclude the possibility that a small population of cells are in a 
different state and will harbor a different, more restricted, viral gene expression 
program, if such cells exist they would be rare.  
 
The significant advantage of scRNA-seq, especially in the case of viral infection, is that 
we can exclude the possibility that the expression profile is skewed by a small group of 
cells. Importantly, in our work, the clustering approach allows us to validate that the 
viral gene expression profile is not related to viral expression levels as we see similar 
expression profiles even in the clusters that had significantly lower viral gene 
expression.  Our analyses reveal differences in cellular gene expression that are 
associated with differences in the levels of viral gene expression. These differences 
could stem from variation in cell maturation state that restricts viral gene expression or 
alternatively they could reflect virally-induced changes in the host environment. Future 
work will help to distinguish between these two options.  
 
The results we obtained for both CD14+ and CD34+ progenitors were qualitatively 
similar, however the relative levels of viral transcripts in CD34+ progenitors were 
significantly lower, suggesting that these cells are by nature more repressive. These 
results are in line with previous studies showing that MIEP is more repressed in CD34+ 
cells (59). Likewise, in natural latency we were unable to detect any viral transcripts by 
examining more than 1.5 billion RNA-seq reads from CD34+ cells. In contrast, by 
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examining 3 billion RNA-seq reads from the blood we identified 378 viral reads from 18 
samples. These results strongly suggest that viral gene expression is more restricted in 
CD34+ progenitors both in natural and in experimental settings and further illustrate 
that the host cell environment plays a major role in dictating the latency state. 

 
An essential step in understanding HCMV latency is deciphering the importance of viral 
transcripts and proteins to latency maintenance and to the ability of the virus to 
reactivate. Based on the view that only a limited number of genes are expressed during 
HCMV latency, only several candidates for viral functions that may control HCMV 
latency have been studied. These include UL138 (27, 28), astUL81-82/LUNA (30, 44), 
UL111A/LAcmvIL-10 (29, 31) and US28 (32, 33). Despite the lack of a restricted latency 
expression program, our results do not undermine the importance of these factors to 
HCMV latency, rather add many additional candidate genes. Two appealing candidates 
are RNA2.7 and UL30. RNA2.7 is the most abundant transcript in both lytic and latent 
cells, but in our measurements RNA2.7 relative expression in latent cells was constantly 
higher than expected when comparing to the lytic profile.  RNA2.7 was demonstrated to 
protect infected cells from mitochondria-induced cell death (60), but its role in latency 
was never tested. UL30 transcript was suggested to encode for UL30A, which is 
conserved among primate cytomegaloviruses, and expressed from a nonconventional 
initiation codon (ACG) (14, 15) but its functional role was never studied. Future work will 
have to delineate the importance of the different transcripts we detected to regulating 
latency. 
 
Overall, our experiments and analyses challenge the dogma that all herpesviruses 
express a restricted latency-associated program and suggest that HCMV latency is 
characterized by a quantitative shift instead of qualitative change in gene expression. 
Although the relevance of these transcripts to latency should be further studied, these 
findings provide a new context for deciphering virus-host interactions underlying HCMV 
lifelong persistence. 
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Supplementary tables: 
 
Table S1: Summary of HCMV reads in GTEx samples 
 
Columns indicate: Sample ID, subject ID, HCMV Sero Status, number of reads (in 
millions), number of aligned reads (in millions), number of HCMV reads, number of 
HCMV reads not including UL126. Columns I to end indicate the number of reds for each 
indicated gene. 
 
Table S2: analysis of publicly available CD34+ RNA-seq datasets 

Columns indicate: Data set ID, Sample file ID, Cell type, number of reads in indicated 
sample, number of aligned reads. 
 
Table S3: Differential genes in latently infected monocytes 
 
Columns indicate: Gene annotation, the cluster with the highest expression of the 
indicated gene, expression level of the indicated gene in the cluster where it is most 
highly expressed (relative to the expression of all other genes in the same cluster), 
number of reads for the indicated gene in clusters 1-6, total number of reads for the 
indicated gene across all clusters. 
 
Table S4: Transcripts enriched in latent CD14+ monocytes 

Columns indicate: gene annotation, number of reads in lytic cells (cluster 1), number of 
viral reads in latent cells (cells in which less than 0.5% of the reads originated from the 
virus), mean and SD of the number of reads for an indicated gene in the latent cells 
according to bootstrap analysis (see material and methods), Z-score, false discovery rate 
(FDR). 
 
Table S5: Transcripts enriched in latent cells from clusters 2-6 compared to lytic cells  

Columns indicate: gene annotation, number of reads in cluster 1, number of reads in the 
indicated cluster, mean and SD of the number of reads for each specified gene in the 
indicated cluster according to bootstrap analysis (see material and methods), Z-score, 
false discovery rate (FDR). 
  
 
Table S6: Viral genes detected in latently infected CD34+ HPCs by MARS-seq analysis 

The number of reads identified for each of the detected viral genes, in each of the cells. 
Cell sum- indicates the total number of viral reads per cell. Gene Sum- indicates the total 
number of reads detected for each viral gene. 
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Table S7: Transcripts enriched in latent CD34+ HPCs 

Columns indicate: gene annotation, number of reads in lytic cells (cluster 1 in CD14+ 
analysis), number of viral reads in infected HPCs, mean and SD of the number of reads 
for an indicated gene in latent CD34+ HPCs according to bootstrap analysis (see material 
and methods), Z-score, false discovery rate (FDR). 
 
Materials and Methods 

Cells and virus stocks 

Primary CD14+ monocytes were isolated from fresh venous blood, obtained from 
healthy donors, using Lymphoprep (Stemcell Technologies) density gradient followed by 
magnetic activated cell sorting with CD14+ magnetic beads (Miltenyi Biotec).  
Cryopreserved Bone Marrow CD34+ Cells were obtained from Lonza. Alternatively, fresh 
CD34+ cells were purified from umbilical cord blood of healthy donors. Isolation was 
done using Lymphoprep (Stemcell Technologies) density gradient followed by magnetic 
activated cell sorting with CD34+ magnetic beads (Miltenyi Biotec).  CD34+ and CD14+ 
cells were cultured in X-Vivo15 media (Lonza) supplemented with 2.25mM L-glutamine 
at 37⁰C in 5% CO2 (61). 
Human foreskin fibroblasts (HFF) (ATCC CRL-1634) and retinal pigmented epithelial cells 
(RPE-1) (ATCC CRL-4000) were maintained in DMEM with 10% fetal bovine serum (FBS), 
2mM L-glutamine, and 100 units/ml penicillin and streptomycin (Beit-Haemek, Israel). 
 
The bacterial artificial chromosome (BAC)-containing the clinical strain TB40E with an 
SV40-GFP tag (TB40E-GFP) was described previously (62, 63). This strain lacks the US2-
US6 region, and therefore these genes were not included in our analysis. Virus was 
propagated by electroporation of infectious BAC DNA into HFF cells using the Amaxa P2 
4D-Nucleofector kit (Lonza) according to the manufacturer’s instructions.  Viral stocks 
were concentrated by ultracentrifugation at 70000xg, 4⁰C for 40 minutes. Infectious 
virus yields were assayed on RPE-1 cells.  

Infection and reactivation procedures 

For experimental latent infection models, CD14+ monocytes and CD34+ HPCs were 
infected with HCMV strain TB40E-GFP at MOI of 5.  Cells were incubated with the virus 
for 3 hours, washed and supplemented with fresh media. To assess infection efficiency, 
a sample of the infected cell population was FACS analyzed for GFP expression at 2 dpi. 
For single cell experiments cells were isolated without further selection; CD14+ cells 
were harvested at 3, 4, 5, 6, 7 and 14 dpi and CD34+ HPCs were harvested at 4 dpi.  
Lytic infection was carried out on primary fibroblasts and monocyte-derived 
macrophages obtained by growing CD14+ monocytes in 50ng/ml PMA containing media 
for 2 days.  For reactivation assays, infected monocytes were differentiated into 
dendritic cells (DCs) at 3 dpi by incubation with granulocyte-macrophage CSF and 
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interleukin-4 (Peprotech) at 1,000 U/ml for 5 days, followed by stimulation with 
500 ng/ml of LPS (Sigma) for 48 hours (as previously described in (64)).  Release of 
infectious virions was assayed by co-culturing of 100,000 differentiated and non- 
differentiated infected monocytes at the end of the differentiation procedure with HFF 
cells for 10 days and quantification of GFP positive plaques. Cell number and viability 
were measured by Trypan blue staining prior to plating.  
For UV inactivation, the virus was irradiated in a Stratalinker 1800 (Stratagene) with 200 
mjoules.  

Immunofluorescence 

Cells were fixed in 4% paraformaldehyde for 10 minutes, permeabilized with 0.1% Triton 
X-100 in PBS for 10 minutes and blocked in 10% normal goat serum in PBS. Detection of 
IE-1 was performed by immunostaining with anti-IE1 antibodies (1:100, Abcam 
ab53495), followed by goat anti-mouse antibody (1:200, AlexaFluor647, Invitrogen 
A21235) and Hoechst nuclear stain. Cells were visualized in a Zeiss Axioobserver 
fluorescent microscope. 

qRT-PCR 

Total RNA was extracted using Tri-Reagent (Sigma) according to manufacturer’s 
protocol. cDNA was prepared using qScript cDNA Synthesis Kit (Quanta Biosciences) 
according to manufacturer’s protocol. Real time PCR was performed using the SYBR 
Green PCR master-mix (ABI) on a real-time PCR system QuantStudio 12K Flex (ABI) with 
the following primers (forward, reverse): 
 
IE1 (GGTGCTGTGCTGCTATGTCTC, CATGCAGATCTCCTCAATGC) 
UL138 (GTGTCTTCCCAGTGCAGCTA, GCACGCTGTTTCTCTGGTTA) 
RNA 2.7 (TCCTACCTACCACGAATCGC, GTTGGGAATCGTCGACTTTG) 
RNA 4.9 (GTAAGACGGGCAAATACGGT, AGAGAACGATGGAGGACGAC) 
Anxa 5 (AGTCTGGTCCTGCTTCACCT, CAAGCCTTTCATAGCCTTCC) 
 

Single cell sorting and MARS-seq RNA library construction 

Single cell sorting and library preparation were conducted according to the massively 
parallel single-cell RNA-seq (MARS-seq) protocol, as previously described (45). In brief, 
cells from latently infected populations of CD14+ monocytes and CD34+ HPCs were 
FACS sorted into wells of 384 well capture plates containing 2 µl of lysis buffer and 
reverse transcription (RT) indexed poly(T) primers, thus generating libraries 
representing the 3’ of mRNA transcripts.   Four empty wells were kept in each 384-well 
plate as a no-cell control during data analysis. Immediately after sorting, each plate was 
spun down to ensure cell immersion into the lysis solution, snap frozen on dry ice and 
stored at −80 °C until processed. Barcoded single-cell capture plates were prepared with 
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a Bravo automated liquid handling platform (Agilent). For generation of RNA library, 
mRNA from cells sorted into capture plates was converted into cDNA and pooled using 
an automated pipeline. The pooled sample was then linearly amplified by T7 in vitro 
transcription, and the resulting RNA was fragmented and converted into a sequencing-
ready library by tagging the samples with pool barcodes and Illumina sequences during 
ligation, RT, and PCR. Each pool of cells was tested for library quality and concentration 
was assessed as described earlier (45).  

RNA sequencing of lytic cells 

For generation of a reference lytic RNA library used in the single cell experiments, 
monocyte-derived macrophages or primary fibroblasts were infected with TB40E-GFP 
virus at MOI of 5 and used for library preparation at 4 dpi. The libraries were generated 
from a samples of ~10,000 cells according to the MARS-seq protocol (45). 

The lytic fibroblasts derived RNA-seq libraries used as reference in analysis of the 
natural samples were previously described (14). 

Single cell library construction using 10x platform 

Cell suspensions at a density of 700 cells/l in PBS + 0.04% BSA were prepared for single 
cell sequencing using the Chromium Single Cell 3’ Reagent Version 2 Kit and Chromium 
Controller (10x Genomics, CA, USA) as previously described (65). Briefly, 9,000 cells per 
reaction were loaded for Gel Bead-in-Emulsion (GEM) generation and barcoding. GEM-
RT, post GEM-RT cleanup and cDNA amplification were performed to isolate and amplify 
cDNA for library construction. Libraries were constructed using the Chromium Single Cell 
3’ Reagent Kit (10x Genomics, CA, USA) according to manufacturer’s protocol. Library 
quality and concentration were assessed according to manufacturer’s instructions. 

Sequencing  

RNA-Seq libraries (pooled at equimolar concentration) were sequenced using NextSeq 
500 (Illumina), at median sequencing depth of ~45,000 reads per cell for MARS-Seq and 
~32,000 reads per cell for 10x. Read parameters were: Read1: 72 cycles and Read2: 15 
cycles, for MARS-seq and Read1: 26 cycles, Index1: 8 cycles, and Read2: 58 cycles for 
10x. 

MARS-seq CD14+ analysis 

The analysis of the MARS-seq data was done with the tools described in (45) and (46). 
The reference was created from the hg19 and TB40E (NCBI EF999921.1) strain of HCMV. 
The transcription units of the virus were based on NCBI annotations, with some changes 
based on the alignment results. This includes merging together several transcripts 
(taking into account that the library maps only the 3’ of transcripts), and adding some 
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antisense transcripts.  Reads assignment to wells was based on the batch barcode (4bps) 
and the well barcode (7bp), and removing reads with low quality of the barcodes. The 
read itself (37bp) was aligned to the reference using bowtie2 (Langmead and Salzberg, 
2012), and the counting of the reads per gene is done based on unique molecular 
identifiers (UMIs) (8bp). For each batch the leakage noise level was estimated by 
comparing the number of UMIs in the 2 empty wells, to the total number of UMIs in the 
batch.  Batches with high noise level (>8%) were discarded. Wells with number of reads 
< 1000 were discarded. The number of wells that were used for further analysis is 3655. 
Genes with low total number of reads (< 10), with low variability (variance / mean < 
1.1), and also ribosomal protein and histones were excluded. By using a multiplicative 
probabilistic model, and expectation-maximization like optimization procedure, the 
3,655 cells were clustered to 6 clusters. The model includes a regularization parameter 
(=0.5) simulating additional uniform reads to all genes. The clusters are ordered 
according to the viral content from high to low. 

When analyzing correlation in gene expression the error bars represent 95% confidence 
interval that were calculated by 10,000 bootstrap iteration of the cells in each one of 
the clusters. The t-SNE plot of the MARS-seq CD14+ cells was calculated with the R 
package (67), after down sampling each cell to 1000 UMIs. 

To exclude background noise, in each one of the batches, all cells with number of viral 
reads below 3 times the estimated noise at this batch, were excluded.  

To estimate the p-value of getting number of reads n, in cluster B, under the null 
hypothesis of same expression program as in cluster A, a semi parametric bootstrap 
method was used. First the probability of sampling UMIs for each viral gene was 
calculated according to the gene expression in cluster A. Then each bootstrap simulation 
consists of a parametric step and a-parametric step. The parametric step is, for each cell 
in cluster B, to sample number of UMIs according to the actual number of read in this 
cell, with distribution over the genes according to the probabilities calculated from 
cluster A. Then the a-parametric step is a usual bootstrap sampling of the cells in cluster 
B, and calculate the total number of reads in this cluster B. After doing this simulation 
1,000 times, for each viral gene, the mean and the standard deviation of the number of 
reads in cluster B, under the null hypothesis was calculated. Based on this value, the Z- 
score of the actual value n was calculated, and a p-value was calculated assuming 
normal distribution of the number of reads under the null hypothesis. Lastly, these p-
values were adjusted for multiple testing, and just the genes with false discovery rate 
(FDR) of < 0.01 are reported in tables S4 and S5. 

GTEx and GEO analysis 

All RNA-Seq, paired end GTEx samples available on July 2016 were used for the analysis. 
The reference genome that was used was based on hg19 and Merlin strain of HCMV 
(NC_006273.2). Bowtie2 (Langmead and Salzberg, 2012) was used for alignment with 
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the default parameters, besides the additional flag --local. Pairs with mapping quality 
less than 30 were excluded. Pairs with only one read aligned to the Merlin sequence 
were excluded. For each sample possible PCR duplications were removed. The counting 
of the alignments to the genes was done with HTSeq-count (68). Annotation of gff files 
is based on NCBI data, with some adjustment taking into account correcting for the non-
stranded library. The clustering and Fig. 5B  were generated with GENE-E (69).  The 
analysis of the CD34+ GEO samples was carried out in the same way. The list of datasets 
that were used is presented in Table S2. 

10X CD34+ Data analysis 

We used CellRanger v2.0.0 (70) software with the default settings to process the FASTQ 
files. The reference was created with the mkref CellRanger command, based on the 
CellRanger human hg19 reference, and TB40E (NCBI EF999921.1) as was used in the 
analysis of the MARS-seq data. The de-multiplexing of the Illumina files, and the analysis 
done with the CellRanger commands mkfastq and count respectively, The raw reads 
data was extracted with the CellRanger R Kit (70). The t-SNE plot is based on the 
coordinates calculated by the count command.  

Ethical statement 

All fresh peripheral blood samples were obtained after approval of protocols by the 
Weizmann Institutional Review Board  (IRB application 92-1) and umbilical cord blood of 
anonymous healthy donors was obtained in accordance with local Helsinki committee 
approval (#RMB-0452-15). Informed written consent was obtained from all volunteers 
and all experiments were carried out in accordance with the approved guidelines. 

Data availability 

All next generation sequencing data files were deposited on Gene Expression Omnibus 
and will be publically available upon manuscript publication. 
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Figure 1: Viral gene expression during natural persistent infection

(A) Box plot showing number of HCMV reads per sample in HCMV seronegative and HCMV 
seropositive samples (B) Bar plot showing distribution of total sequenced reads in different tissues, 
color coding reflects the number of viral reads normalized to total number of sequenced reads in each 
tissue (Number of HCMV reads/10^9 total aligned reads). Viral reads from samples containing less 
than 2 viral reads were filtered out. Data for all samples was obtained from GTEx (35) except CD34+ 
data that were collected from 25 different NCBI GEO datasets (Table S2). (C) Hierarchical clustering of 
natural samples, with more than 4 HCMV reads, according to viral gene expression. The samples are 
portioned into 2 groups: group I and group II. Upper panel color coding indicates tissue origin of each 
sample. The heatmap in the lower panel shows expression level of representative differentially 
expressed genes in each sample. (D) Genome browser view showing aligned reads from samples 
assigned to group I or group II in genome regions coding for abundant genes in these groups. 
(E) Heatmap showing correlations between viral gene expression program from natural samples from 
both groups (I and II) and experimental lyticaly infected fibroblasts at different time points post 
infection.
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Figure 2: Establishment of HCMV latency in CD14+ monocytes

(A) Monocytes and monocyte-derived macrophages were infected with HCMV strain TB40E-GFP at an 
MOI of 5. RNA was collected at 4 days post infection (dpi) from the latent monocytes and 5 hours post 
infection (hpi) from lytic monocyte-derived macrophages and was analyzed by RT-qPCR for the 
transcript levels of UL138 and IE1. Expression was normalized to the human Anxa5 transcript. Means 
and error bars (showing standard deviations) represent three measurements. (B) Monocytes were 
latently infected with TB40E-GFP at an MOI of 5. Three dpi cells were either differentiated into 
dendritic cells (reactivated DCs) or left undifferentiated (latent monocytes) and 2 days post terminal 
differentiation reactivation was visualized by GFP and IE1/2 staining. Representative fields are 
presented. (C) Monocytes were latently infected with TB40E-GFP at an MOI of 5. At 3 dpi cells were 
either differentiated to dendritic cells (reactivated DCs) or left undifferentiated (latent monocytes). 
Two days post terminal differentiation cells were co-cultured with primary fibroblasts and GFP-positive 
plaques were counted. Number of positive plaques per 100,000 monocytes or monocyte-derived 
dendritic cells is presented. Cell number and viability were measured by Trypan blue staining prior to 
plating. Means and error bars (showing standard deviations) represent two experiments.
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Figure 3: scRNA-seq analysis of latently infected CD14+ monocytes

Single cell RNA sequencing analysis of 3,655 cells from a cell population of latently infected monocytes. 
CD14+ monocytes were infected with HCMV (TB40E-GFP) and analyzed at 3, 4, 5, 6, 7 and 14 dpi. 
(A) t-SNE plot of all 3,655 single cells based on host and viral gene expression. Color bar shows the 
percentage of viral reads from total reads per cell. (B) Heatmap showing clustering analysis of 3,655 
single cells showing expression of 176 differential genes (32 viral, 144 cellular). Upper panel shows the 
most abundant viral genes, central panel indicates most differential host genes and lower panels 
indicate the percentage of viral reads from total reads and dpi for each cell. Cells are partitioned into 6 
distinct clusters (C1-6) based on gene expression profiles and ordered by the relative abundance of 
viral reads, from high to low. Number of cells in each cluster is shown in parentheses next to the cluster 
number.
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Figure 4: Transcriptional program in latently infected CD14+ monocytes

(A) Scatterplot showing read number of viral genes in latent monocytes (defined as cells in which the 
proportion of viral reads was below 0.5% of total reads) versus lytic cells (cells from cluster 1). 
Horizontal and vertical error bars indicate 95% non-parametric bootstrap confidence interval across 
cells. (B) Relative expression of IE1 and UL138 transcripts in RNA-seq data from lytic fibroblasts at 5 
and 72 hpi. (C) Relative RNA expression level of viral RNA2.7 (left panel) and RNA4.9 (right panel) in 
monocytes infected with untreated or UV inactivated virus, measured by qRT-PCR at 5 dpi. 
A representative analysis of two independent experiments is shown. (D) RNA expression level of viral 
RNA2.7 (left panel) and RNA4.9 (right panel), relative to –RT samples, in infected monocytes, 
measured by qRT-PCR at 5 hours and 5 days post infection. Means and error bars (showing standard 
deviations) represent three measurements. A representative analysis of two independent experiments 
is shown.
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Figure 5: scRNA-seq analysis of latently infected CD34+ progenitor cells

Single cell RNA sequencing analysis of 7,634 cells randomly sampled from a cell population of latently 
infected HPCs. CD34+ HPCs were infected with HCMV (TB40E-GFP) and analyzed at 4 dpi (A) t-SNE 
projection of all 7,634 single cells based on host and viral gene expression. Color bar shows the level of 
viral gene expression as percentage of total reads per cell. (B) Scatter plot showing read number of all 
viral genes in the latently infected CD34+ progenitors versus lytic cells. Horizontal and vertical error 
bars indicate 95% non-parametric bootstrap confidence interval across cells.
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Figure S1: Detection of HCMV reads in natural samples

(A) Distribution of the number of total aligned reads per sample in samples from the GTEx dataset. (B) 
Distribution of the number of HCMV aligned reads per sample in positive samples from the GTEx 
dataset. (C) RNA-seq reads from GTEx samples aligned to the MIEP region of HCMV genome colored by 
sample. (D) Alignment of RNA-seq reads from GTEx samples and sequences of 101 clinical isolates to 
the MIEP region (positions 175,493 and 175,494 in the viral genome). Base variation from the refer-
ence (Merlin strain, which is identical in these sites to the CMV promoter that is used in plasmids) is 
indicated by a color corresponding to the substituting base. Color legend is on the right. (E) Percentage 
of samples containing HCMV reads in different tissues. Viral reads from samples containing less than 2 
viral reads were filtered out.
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Figure S2: Clustering according to HCMV reads in natural samples 
 
(A)  Scatterplot showing read number of viral genes in group I samples from the GTEx database 
versus lytic fibroblasts 72 hours post infection. (B)  Scatterplot showing read number of viral 
genes in group II samples from the GTEx database versus lytic fibroblasts 5 hours post infection. 
(C and D) Violin plots showing the time of sample harvesting (measured in minutes after death) 
versus (C) sample assignment to gene expression group (I or II) and (D) presence or absence of 
HCMV specific reads in the sample. 
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Figure S3: Validation of infection and scRNA library composition

(A) Flow cytometry analysis showing GFP expression level in population of CD14+ monocytes infected 
with TB40-GFP at 2dpi. (B and C) Bar plots showing distribution of number of reads per cell (left) and 
number of genes per cell (right) in scRNA-seq data of (B) infected CD14+ monocytes and (C) CD34+ 
HPCs.
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Figure S4: scRNA-seq analysis of latently infected CD14+ monocytes.

(A) t-SNE plot of all 3,655 single cells based on host gene expression. Color bar shows the percentage 
of viral reads from total reads per cell. (B) t-SNE plot of 3,655 single latently infected monocytes based 
on host and viral gene expression (as shown in Fig. 3A) depicting the separation to 6 clusters as shown 
in Fig 3B. (C) Scatterplot showing read number of all viral genes in cells from cluster 1 versus lytically 
infected monocyte derived macrophages at 4 dpi (left panel) or fibroblasts at 3 dpi (right panel). (D) 
Scatterplot showing read number of all viral genes in cells from clusters 2-6 (labeled on y-axis) versus 
cells from cluster 1. Horizontal and vertical error bars indicate 95% nonparametric bootstrap 
confidence interval across cells.
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Figure S5

Figure S5: Assessment of lytic noise effect on gene expression in CD14+ scRNA-seq libraries

Scatter plot showing read number of all viral genes in (A) latent cells (defined as cells in which the 
proportion of viral reads was below 0.5% of total reads) and in (B) cells from clusters 2-6 (labeled on 
y-axis) versus cells from cluster 1. Analysis was done after exclusion of cells in which viral read counts 
were lower than the noise cut-off level (See materials and methods). Horizontal and vertical error bars 
indicate 95% non-parametric bootstrap confidence interval across cells.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/208603doi: bioRxiv preprint 

https://doi.org/10.1101/208603

