






Figure 4: Temporal correlations between the Default mode network (DMN)
and several large-scale networks, including three visual (Vis) networks (medial,
occipital pole and lateral), cerebellum network, auditory (Audit), sensorimo-
tor (Sensi/Mot), executive control network (ECN), left and right frontoparietal
(lFP, rFP), dorsal attention networks (DAN1 and DAN2). The coupling be-
tween the DMN and the rest of the networks is illustrated in the above correla-
tion matrix which represents the Pearson correlation between the network time
courses, in both the on-task and the introspection periods (* illustrate results
corrected for multiple comparisons using FDR).
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inferior and superior parietal and superior frontal and prefrontal substrates.
Neural pattern similarity between search and introspection states was found
in two different task contexts in which the relevance of the attentional cues
for behaviour was manipulated, namely, both when the cues served a guiding
role in behaviour and when the predictiveness of the cues was extinguished and
turned to be associated with the colour of a search distracter rather than the
target. This is reminiscent of the cue encoding/retrieval re-activation seen in
recognition tests wherein the pattern of cortical activity observed during direct
experience with a sensory object is at least partially reinstated when the object
is later retrieved or remembered (Danker & Anderson, 2010; Kuhl & Chun,
2014; Nyberg, Habib, McIntosh, & Tulving, 2000; Polyn, Natu, Cohen, & Nor-
man, 2005; Johnson, McDuff, Rugg, & Norman, 2009). Notably, however, the
introspection-related demand in this paradigm is distinct from a basic memory
requirement (e.g. paired associate learning or delayed recall of items previously
encoded), because participants were required to reinstate in their mind the prior
experiences during task performance as well the states of cognitive control, and
not merely the content-specific task events (e.g. the associations between the
hiragana cue and colour of the target).

The pattern of neural activity during the introspection states is also un-
likely to merely reflect domain-general processes such as working memory or
preparatory attentional control (e.g. similar to those elicited by the hiragana
cues during on-task states). These processes would include lingering expec-
tations about the properties of the behavioural target (Corbetta & Shulman,
2002; Hopfinger, Buonocore, & Mangun, 2000; Kastner, Pinsk, De Weerd, Des-
imone, & Ungerleider, 1999) or the preparation of a critical response (Connolly,
Goodale, Menon, & Munoz, 2002; Astafiev et al., 2003), which are known to
be mediated by dorsal frontoparietal networks (e.g. intraparietal sulcus and the
superior parietal areas, superior frontal gyrus). Several aspects of the results go
against this possibility. First, there was a high similarity between the pattern
of responses during task and introspection periods in most brain regions during
both Experiment 1 and 2. The whole-brain response profile arguably reflected
both processes triggered by the cue and by the search display. Second, notably,
neural pattern similarity during introspection and on-task periods was high in
inferior parietal and temporal regions which are typically involved in target de-
tection rather than preparatory control. Third, in both Experiment 1 and 2, the
results showed that the functional connectivity amongst frontoparietal control
areas is distinct between introspection and on-task states and that the func-
tional integration of these frontoparietal areas during introspection is sensitive
to the behavioural relevance of the cues during the on-task phases. This rever-
sal of the cueing effect seen here relative to Experiment 1 may be accounted for
the reversal of the validity or task relevance of the cues from Experiment 1 to
Experiment 2. Note that in Experiment 1 the cues were valid hence predicting
the target. However, in Experiment 2 this was no longer the case and the cues
were associated with a search distracter. Crucially, if the neural correlates of
introspection reflected the operation of a similar mechanism to that engaged
during on-task states then a similar connectivity profile in this frontoparietal
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control network would have been expected, but clearly this was not the case.
Together these results indicate that neural pattern similarity between in-

trospection and on-task states did not merely reflect domain-general processes
driven by the cue such as working memory or attentional preparation, which
could have led to a similar response profile during the on-task state. Rather we
suggest that the pattern of results reflects participants’ introspection and re-
experience of the cognitive states during task performance. Notably introspec-
tion periods were blocked allowing to separate neural activity from the on-task
periods. Also, because introspection was blocked, it is unlikely that participants
developed expectations of a forthcoming stimulus or action following the presen-
tation of the hiragana cue during introspection blocks. The interpretation that
the response profile in frontoparietal areas during introspection reflected partici-
pants’ experience and cognitive states during task performance is also consistent
with the subjective reports provided by the participants. These indicated that
during introspection participants were re-experiencing the task events, report-
ing that they were thinking about the color association and how this was used
to spot the search target and respond to it.

These findings are in keeping with a network memory approach (Fuster,
1997, 2009), according to which memory is a general property of all neural
systems reflected in global patterns of brain activity and connectivity for a
given experience and behaviour. In this vein, patterns of brain activity during
on-task attentional control can be reinstated during introspection of one’s recent
behaviour. It is tempting to suggest that large-scale patterns of brain activity
engaged during introspection can encode memories of our recent experiences of
cognitive control.

The present results are relevant to further understand how the human brain
builds and maintains an internal model of one’s own cognition and behaviour.
We found that relative to on-task states, during introspection the DMN increases
its coupling with frontoparietal control networks, the DAN, and domain-specific
regions (i.e. visual cortex). This finding supports the view that functional in-
tegration, and segregation, of the DMN and on-task networks is reliant on an
internal, self-related focus of experience. In a similar vein, on-task goal-directed
behaviour (i.e. during visuo-spatial planning driven by external cues) typically
activates frontoparietal and then DAN, however the DMN becomes more cou-
pled with these control networks when participants mentally simulate themselves
in a context of goal-directed planning (Spreng, Stevens, Chamberlain, Gilmore,
& Schacter, 2010; Gerlach, Spreng, Madore, & Schacter, 2014) and when in-
dividuals imagine themselves solving problems (Gerlach, Spreng, Gilmore, &
Schacter, 2011).

The idea that self-reflection of one’s recent states of control involves DMN
substrates ’reading’ the state of task-based frontoparietal control networks is
consonant with theoretical accounts of self-referential processing that contend
an important function of DMN may relate to our experience of being the agent
of a cognitive process, such as attending or acting upon the world around us in
the context of a sensory-motor loop(Legrand, 2007; Christoff et al., 2011). One
limitation of the temporal correlation analyses between the DMN task positive
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networks is that these comprised the entire scan, rather than being time locked
to the onsets of the cue. As such, this analysis provides a bird-view of the pattern
of brain network interactions during introspection and how this relates to the
pattern of brain interacctions that are observed on-task. Additional work with
tailored experimental design is needed to specifically assess how the interplay
between DMN and task positive networks during introspection is shaped by
the actual relevance or attentional validity of the on-task events that are later
re-experienced.

The present findings serve as an empirical foundation to test further hy-
potheses of how an internal model of one’s own cognitive control processes is
built in the human brain. This will require testing self-reflection across multi-
ple contexts of cognitive control to evaluate whether and how DMN patterns
of activity and connectivity with key frontoparietal control networks represent
the content of experience during task performance and/or the actual processes
engaged on-task.
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