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Abstract:11

Most animals fight by repeating complex stereotypic behaviors, yet the in-12

ternal structure of these behaviors has rarely been dissected in detail. We13

characterized the internal structure of fighting behaviors by developing a ma-14

chine learning pipeline that measures and classifies the behavior of individual15

unmarked animals on a sub-second timescale. This allowed us to quantify16

several previously hidden features of zebrafish fighting strategies. We found17

strong correlations between the velocity of the attacker and the defender in-18

dicating a dynamic matching of approach and avoidance efforts consistent19

with the cumulative assessment model of aggression. While velocity match-20

ing was ubiquitous, the spatial dynamics of attacks showed phase-specific21

differences. Contest phase attacks were characterized by a paradoxical side-22

ways attraction of the retreating animal towards the attacker suggesting23

that the defender combines avoidance maneuvers with display maneuvers.24

Post-resolution attacks lacked display-like features and the the defender was25

avoidance-focused. From the perspective of the winner, game theory model-26

ing further suggested that highly energetically costly post resolution attacks27

occurred because the winner was trying to increase its relative dominance28
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over the loser. Overall, the rich structure of zebrafish motor coordination29

during fighting indicates a greater complexity and layering of strategies than30

has previously been recognized.31

1 Introduction32

Animals fight by roaring [1], lunging [2], circling [3], head-waving [4], head-33

butting [5], biting [6], wrestling [4] and in a myriad of other ways [7]. While34

we have good theories and measurements about why an animal might start35

a fight with a fin-display and end the fight with mouth wrestling [8], we have36

have much less information about what exactly happens during a lunge,37

a circling display or a directed attack maneuver. Much of this may come38

down to the problem of measurement. It is comparatively easy to count the39

number of displays or time the duration of a wrestling bout, it is much harder40

to accurately measure a multi-dimensional signal like a threat display. We41

are therefore mostly confined to verbal descriptions of contest behaviors.42

Yet the accurate measurement of within-behavior limb and body dynam-43

ics has been a source of rich insight in many other systems. When researchers44

were able to use high speed cameras to capture fly leg movements before45

they jumped to dodge a moving stimulus, they uncovered a sophisticated46

context-sensitive control system in what was previously believed to be a sim-47

ple ballistic reflex [9]. Likewise, statistical descriptions of escape trajectories48

have given us convincing experimental evidence of protean behavior- a strat-49

egy where prey occasionally randomize their movement direction in order to50

reduce the degree to which their behavior can be predicted [10, 11]. The51

analysis of peregrine falcon attack trajectories has revealed a precise math-52

ematical analogy between falcon prey capture and ballistic missile targeting53

which can only by uncovered through precision measurement [12].54

The last two examples are particularly relevant for the study of aggression,55

because they illustrate cases where a complete understanding of strategic be-56

haviors cannot be obtained unless we measure the dynamics occurring within57

elementary behaviors. Next we will highlight some outstanding issues in the58

study aggression which might similarly benefit from modern data capture59

methods.60

As a first example, let us consider how much is known about attack ma-61

neuvers in zebrafish. During contests, zebrafish frequently engage in repeated62

attacks, where one animal performs a rapid directed movement towards an-63

other and the other animal sometimes responds with an avoidance/retreat64

maneuver [6]. What has remained unclear is the quantitative relationship65

between the attack maneuvers and the avoidance maneuvers. Does every66
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attack induce an avoidance maneuver? Are the locomotor costs of an attack67

greater or smaller than the locomotor costs of a retreat?68

One reason why answers to these questions matter concerns the theoreti-69

cal interpretation of zebrafish fighting. Animal conflict is partly structured as70

a series of assessments of relative strength and different game theory models71

of assessment postulate a different relationship between individual activity72

levels and fitness costs. For example, WOA models postulate that individ-73

ual acts of behavior induce fitness/energy costs only in the producer of the74

behavior [13] whereas SA [14] and CA [15] models allow the behavior of the75

producer to influence the fitness costs of the target of the behavior as well.76

Target fitness costs might occur because the target suffers contact injuries77

or alternatively, because it needs to perform costly avoidance maneuvers to78

avoid suffering the injuries. The relevance of the aforementioned factors to79

the interpretation of zebrafish contests is obvious: if attacks rarely end in80

contact and the cost of an avoidance maneuver is small compared to the cost81

of an attack, then a WOA model might potentially be a good description82

of zebrafish fighting. However, if each attack nearly always induces a costly83

avoidance maneuver in the target of the attack and in the absence of avoid-84

ance bodily contact typically occurs, then only the CA and SA model remain85

viable as descriptions of fighting.86

A second utility to measuring the fine structure of fights stems from87

the potential to expand domains in which evolutionary game theory can be88

tested. As was already mentioned, it has been speculated that predator and89

prey interactions during escape maneuvers are best characterized as a game90

where the prey makes unpredictable maneuvers in order to avoid easy capture91

[10, 11, 16]. Similar games might unfold within the multitude of elementary92

interactions occurring during a fight. Analyzing games which occur on a fast93

time-scale might be of interest not only because it provides opportunities to94

expand the domain where game theory is applied, but also because payoffs95

obtained in low-level games will determine the payoffs of various strategies96

for the long time-scale assessment games in which they are embedded. A97

similar methodology has already shown promise in the analysis of schooling98

behavior [17].99

In the last section of our results, we take a first step towards game-100

theoretical analysis of movement rules with a particular focus on the struc-101

ture of resolution phase attacks. The literature on game theory and dyadic102

aggression is rich but appears to be primarily focused on the symmetri-103

cal/assessment phase of the conflict (see for example Chapter 2 of [18]). In104

addition to an assessment phase, zebrafish fights also have a structured post-105

resolution phase, where both the winner and the looser engage in stereotyp-106

ical behaviors. It has previously been shown that post-assessment behaviors107
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either serve the function of chasing the looser out of the territory or main-108

taining dominance rank [19, 20, 21]. We show how insight from these studies109

can be used to formulate a model of zebrafish resolution phase attacks which110

provides a concise explanation of the main qualitative trends present in our111

data.112

Thirdly, analysis of elementary aggressive interactions can shed light on113

multiple functions of a single behavior. When a boxer holds up his hands, it114

is with the dual purpose of being ready to both attack and defend. Likewise,115

a zebrafish attack may be shaped by multiple competing needs. The attack116

intensity may need to be moderated in order to avoid overcommitment to117

a single direction of assault which could be exploited by a responsive oppo-118

nents. An attack might simultaneously carry out the function of damaging119

an opponent and signaling to it, or the dual functions of the attack may be120

somewhat separated in time. Without large-scale datasets, it is difficult to121

experimentally address these subtleties of multi-functionality and variability.122

In order to measure zebrafish aggressive interactions at a level compat-123

ible with making progress on solving the above mentioned issues, it was124

imperative to create a new measurement system. We took inspiration from125

several pre-existing machine learning tools to create a system which allows126

for tracking and identifying unmarked animals as well as automatically an-127

notating their behaviors [22, 23, 24]. The resulting system provides the user128

with trajectory data containing information about velocities, accelerations129

and relative positions of the fighting individuals as well as an automated130

ethogram which identifies the behavior performed by any animals at any131

given moment. Our set of tools provided us with the data necessary to ex-132

amine aggressive behavioral interactions at the lowest possible level.133

2 Methods134

2.1 Staging of contests135

The study used 68 male zebrafish of the AB strain approximately 1 year of136

age. All rooms are ventilated through a centralized HVAC system and are137

kept at controlled room temperature (25C), 50%–60% humidity. Fish holding138

rooms are kept under a 14-h light10-h dark cycle with a light intensity of 200139

300 lux at the water surface. The density of the fish in the tanks was 10140

fish/L and in a typical cage we had 20-25 animals. Our general feeding141

protocol consists of two types of live feeds, rotifers and Artemia nauplii, and142

a processed dry feed (Gemma Micro, Skretting, Spain). Depending on the143

fish age, the feeding frequency varies. In the months prior to experiments,144
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the fish were fed Gemma500 feed and live de-capsulated Artemia once a day.145

Our study involved staging contests between zebrafish. We adapted a146

procedure from [6] where a pair of males were removed from their home tanks147

and kept in visual but not olfactory isolation for a period between 24 to 48148

hours. In a slight departure from the previous procedure, the fight was staged149

in an arena which was different from and larger than the arena used for pre-150

fight isolation, because we wanted to avoid the confounding influence of walls151

on swimming behavior which occurs too frequently in smaller arenas. The152

fight was staged in a uniform rectangular arena with dimensions 32-by-24-153

by-12 cm, slightly rounded corners and water depth of approximately 7 cm.154

Care was taken to ensure a lack of sharp illumination gradients in the tank so155

as to facilitate later tracking. Recordings began when the two animals were156

simultaneously poured from the isolation tank to the fight arena. A typical157

recording lasted for 1 hour and was continued for another hour in the rare158

cases where the fight appeared unresolved after 1 hours time. After the fight159

was terminated, both animals were returned to their home tanks. Video data160

was acquired at 20 frames per second using MATLAB standard functions.161

2.2 Tracking162

Code and trajectory data are available on request:163

https://goo.gl/eGCp3q164

Aggressive contests in zebrafish pose three challenges. First, fighting is a165

3D process and the maneuvers are facilitated by deep waters, which induces166

appearance changes as the depth of the fish varies. Second, fish change their167

appearance not only due to varying depth but also due to color changes dur-168

ing the fight. Third, collisions are more frequent during fighting than during169

schooling. This motivated the use of a hybrid system where a new version170

of idTracker [22] (idtracker.ai, Romero-Ferrero, Bergomi et. al, in prepa-171

ration) utilizing deep convolutional networks was used for tracking when172

the animals were not colliding, because of the greater expressive capacity173

of learned templates compared to the hand-engineered template of classical174

idTracker. When the pair of fish collided, a Gaussian mixture model was175

used to separate the colliding animals (as in [24]) and identity information176

was propagated into the collisions by using a greedy acceleration minimiza-177

tion principle along the trajectory with the constraint that identities of both178

trajectories at the start and end of the collision had to be matched with the179

predictions from idTracker (see [22] for an analogous algorithm for collision180

resolution).181

The greedy acceleration minimization was implemented step by step. At182

each time step, two candidate coordinates (each representing the center of183
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mass of a fish with unknown identity) originating from the GMM algorithm184

needed to be identified. We considered the identities of the coordinates at185

the previous two time steps to be fixed and then we calculated the absolute186

net linear acceleration along both trajectories for the two possible identity187

assignments. Whichever assignment resulted in the lower total acceleration188

was used for final identification and the cycle was repeated again and again189

until end of collision. During collisions, we had an identification accuracy of190

98%.191

2.3 Automated behavior classification and analysis192

To improve data efficiency, we used a preprocessing method which was de-193

signed to reduce translational and rotational variance. For our four vectors194

at each time point, we transformed them into a new coordinate system where195

the zero was located at the joint center of mass of the pair of fish at time196

t−K. The x axis was aligned with a vector which pointed from fish 1 towards197

fish 2 at time t−K. All coordinates of the four vectors were converted into198

this coordinate system. After the preprocessing, the four processed vectors199

were then concatenated into a single vector and passed as input to the first200

layer of a standard multilayer perceptron with a ReLu hidden layer activation201

function, a cross entropy loss function. Using this preprocessing and a fairly202

small amount of annotated data (small as compared to the total corpus of203

data analyzed), we were able to train a perceptron with two hidden layers of204

size 250 neurons to have a test set accuracy of 95%.205

All further analysis was done using custom-written MATLAB code. The206

forcemap technique was adapted from [25]. In order to avoid potential influ-207

ences from walls, the symmetric phase forcemaps were analyzed only when208

both fish were further than 5 cm away from the nearest wall. During the209

asymmetric phase, the fish spent most of their time swimming very close to210

the wall, but we excluded the influence of corners on turning by removing all211

data when fish were closer than 5 cm to the nearest corner.212

3 Results213

We began our study by staging 34 contests between adult male zebrafish214

(see Methods for details of contest staging). In order to analyze the fine215

details of aggressive behavior in fish, we augmented the software idTracker216

[22] (which allows tracking and identification of unmarked animals) with217

a custom-written collision resolution system that enabled us to resolve the218

identities of the animals while they were colliding as well (see methods for219
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details on this and all other machine learning procedures). The output of220

the tracking system was a time series of trajectories for both contestants221

(sampling rate 50 ms, 20 Hz). We annotated a small fraction of our video222

data to indicate when attacks were taking place. These annotations were223

in turn used to train a neural network which could detect the presence of224

attacks from trajectory data with 95% reliability. Our behavior classification225

system differed from similar systems [23] through the use of end-to-end deep226

learning on trajectory data, which allowed us to eliminate an intermediate227

feature engineering step. By combining several augmented and improved228

machine learning tools into a common pipeline, we thus created a machine229

learning software that automatically provided information about the move-230

ment, behavior and identity of each animal on a subsecond timescale (Figure231

1).232

Figure 1: The computer vision pipeline. 1: the raw video. 2: unmarked
animals after identification with idTracker and a short span of the trajectory
of each animal overlaid. 3: preprocessing of a local chunk of trajectory for
neural network analysis. 4: schematic of the neural network classifier which
was trained to mimic human annotations. 5: a time series of attack scores
for two animals as produced by the neural network classifier. High attack
score values indicate a high internal confidence of the network that an attack
is taking place. 6: an automatic ethogram calculated by thresholding the
attack score.
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3.1 Analysis of activity correlations and assessment233

models234

As mentioned in the introduction, one of the focal points of our study was to235

achieve more precise measurements of locomotor activity in order to assess236

the relative costs of attacks and retreats. A necessary preliminary to study-237

ing activity correlations was to first characterize the large-scale patterns of238

aggressive behavior in our dataset. We found clear signs of aggression in239

27 of the 34 staged contests. When we examined the attack rates of our240

contestants during individual contests, there was evidence that fights con-241

sisted of two distinct types of phases (Figure 2A, see also supplementary242

video S1). During what we called the symmetric phase (Figure 2A, 24-28243

minutes), both individuals engaged in mutual attack behavior. During the244

asymmetric phase, mainly one individual performed attack behaviors (Fig-245

ure 2a, 34-60 minutes). When a symmetric phase was present (N=15 fights),246

the most common pattern (N=8 of 15 fights) was for there to be a pre-fight247

phase with very few attacks (Figure 2A 0-22 minutes), followed by a sym-248

metric phase, which was in turn followed by an asymmetric phase where249

only one individual engaged in attacks. It is thus likely that the symmetric250

phase is similar to the contest phase described in many other model systems251

of aggression, whereas our asymmetric phase resembles the resolution phase252

[21, 18].253

However, not all fights followed the aforementioned progression. In some254

cases, the symmetric phase was not followed by an asymmetric phase and in255

other cases, an asymmetric phase both proceeded and followed the symmetric256

phase. Interestingly, the individual who was dominant before the symmetric257

phase was not necessarily the same one who engaged in attacks after the258

symmetric phase (see Figure S1 for example plots of fight progression in the259

more rare cases). In 12 fights, no symmetric phase was present and the only260

phase present was the asymmetric one. In the next sections, our analysis will261

focus on 14 of the 15 fights were the symmetric phase was present unless we262

state otherwise (with 1 fight excluded from analysis since its long duration263

posed a threat to animal welfare and had to be prematurely stopped).264

We used the outputs of our machine learning pipeline to analyze coarse265

kinematic parameters of attacks, namely velocity and acceleration. We fo-266

cused on these variables first since they may be regarded as an approximate267

individual level measure of energy expenditure [26]. Attacks in both the268

symmetric and asymmetric phase were associated with high velocities com-269

pared to the pre-fight phase. Pre-fight, the fish had an average speed of270

5.3± 0.84 cm/s (N=13, mean ± standard deviation), which during the sym-271

metric phase rose to 10.3 ± 1.9 cm/s (N=14) for the attacker and 10.9 ± 1.4272
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Figure 2: A kinematic characterization of a fight. A: The fraction
of an animal’s time budget used in attacks (the individual attack fraction)
over the course of the fight (blue and red curves mark the two different
individuals here and elsewhere). Analysis is conducted in non-overlapping
2 minute time windows. Minutes 24-28 correspond to the symmetric phase.
The asymmetric phase approximately spans the time from 34-60 minutes. B:
correlation between total attack fraction (sum of individual attack fractions)
and velocity. C: very high intensity acceleration bouts (a > 128 cm/s2) occur
mostly during attacks. D: a time series of acceleration during the symmetric
phase of the fight depict the occurrence of sudden acceleration bouts. E: the
velocity waveforms of the attacker (green) and defender (orange) during an
average attack (N=114) in the symmetric phase. Attacks begin at time 0.
F: same as before but for the asymmetric phase (N=116).

cm/s (N=14) for the defender. We note that here and elsewhere, the roles of273

attacker and defender were not fixed during the analysis of a fight but were274

calculated dynamically for each individual at each moment in time based on275

the outputs of our classifier. Fish swimming speed rose further during the276

asymmetric phase where the attacker attacked with speed 13.5 ± 1.6 cm/s277

(N=11) and the defender swam with velocity 14.0 ± 1.6 cm/s (N=11). As a278

further check of our analysis, we binned data from each fight into consecu-279

tive non-overlapping 2 minute long segments and calculated the average speed280

and the total percentage of time that attacks were occurring (the total attack281

fraction) during each time bin. There is a strong linear correlation between282

average movement speed and attack percentage (Figure 2B, r = 0.90± 0.06,283

N=28 individuals).284
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Fighting is associated not only with an increase in velocity but also with285

the occurrence of bursts of high acceleration (Figure 2D). As with speed,286

there was a strong correlation between the total attack fraction and the total287

fraction of time each animal spent performing acceleration bursts (Figure288

2C, r = 0.88 ± 0.15, N=28).289

From our analysis, it becomes clear that an attack induces a strong en-290

ergetic cost not only for the attacker but also for the defender. This point291

is further reinforced if we time-align individual attacks and calculate the av-292

erage velocity waveform for both the attacker and the defender during both293

the symmetric (Figure 2E) and the asymmetric (Figure 2F) phase. From294

Figure 2E,F it is apparent how attacks begin with an increase in the velocity295

of both the attacker and the defender. In fact, the locomotor costs for the296

defender are on average even higher than those for the attacker as defenders297

swim with a higher average speed in 20 out of the 25 conflict phases analyzed298

(p=0.004, two-tailed binomial test). These findings are compatible with the299

assumptions of the CA and SA models and violate the assumptions of WOA300

models.301

As a control, we compared the inferences derived from our method with302

more established methods of analysis, which recommend disambiguating as-303

sessment strategies by studying the covariation between resource holding po-304

tential (fighting ability) and the duration of the contest phase (the symmetric305

phase in our terminology). The first step involved finding an indicator of re-306

source holding potential. In our dataset, size was a statistically significant307

indicator of resource holding potential (RHP) as the larger animal ended up308

as the dominant individual in 20 out of 25 fights where we could identify a309

clear winner (p=0.002, one-tailed binomial test, analysis includes fights both310

with and without a symmetric phase). In fights where a symmetric phase was311

present, there was a statistically significant trend for large size differences to312

be associated with longer fights (r=-0.47, p=0.045, one-tailed t-test for Pear-313

son correlation coefficient). A linear regression analysis of the effects of the314

sizes of both contestants yielded a model where the larger individual’s size315

had a negative effect on fight duration and the smaller individual size had a316

weaker but positive effect of fight duration, although the latter value was not317

statistically significantly different from zero (clarge = −0.14, csmall = 0.04,318

plarge = 0.02, psmall = 0.52).319

A negative relationship between body mass difference and fight time is320

expected in all three models (WOA, CAM, SAM) [27]. A negative effect of321

larger individual body size on fight duration is incompatible with a WOA322

model of contest behavior. Our result, where the size of the larger individual323

has a stronger effect on fight times than the body size of the smaller individual324

is inconsistent with a pure sequential assessment game model, but as we show325
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in a mathematical addendum, it is in principle consistent with the CAM326

model (see supplement, Mathematical analysis of the cumulative assessment327

model).328

Overall, our analysis of resource holding potential and body size cor-329

relations yielded results which are consistent with the analysis of velocity330

correlations and thus indicates that our method might be of use as a substi-331

tute where the standard analysis is inapplicable or yields ambiguous results.332

A particularly interesting use case for our method might occur when fight333

times are found to be dependent only on the resource holding potential of334

the loser. Such a result has sometimes been interpreted as providing un-335

equivocal support for WOA model [27], but other authors have held that336

this result would be compatible with CAM as well [4]. Our supplementary337

modeling agrees with the conclusions of [4] and thus motivates the need for338

further testing when loser-only fight time scaling relationships occur. Since339

our measurement methods allow discriminating between WOA and CAM,340

they may prove to be valuable for those further tests.341

In addition to size, another weak predictor of fight outcome was color. We342

found that zebrafish exhibited a transient darkening which occurred specifi-343

cally during the symmetrical contest phase (see Figure S2 and supplementary344

methods). On average, the symmetric fight phase was accompanied by an345

8%± 4% (N=28) darkening of appearance in both fighters and this transient346

largely disappeared irrespective of weather the fight ended with asymmetric347

chasing or not. The eventual looser tended to darken more than the win-348

ner. In 9 out of 10 fights, the eventual looser had a higher intensity change349

relative to pre-fight intensity than the eventual winner (p=0.02, 2-tailed bi-350

nomial test). However, color change was a weak predictor of how the fight351

ended, since unequal changes in color were also associated with fights that352

ended without a clear way to determine the winner because chasing behavior353

was absent.354

3.2 Analysis of movement rules355

Zebrafish fight maneuvers have a complicated spatio-temporal structure, which356

may potentially contain useful information about strategic incentives. In or-357

der to analyze this structure, we utilized the tool of forcemaps which was orig-358

inally developed to study cooperative movement coordination during school-359

ing [28, 25, 17]. Forcemaps are useful for the study of aggression because they360

allow an easy visualization of the way fish influence each others movement361

during social interactions.362

The central idea is to characterize the kinematic movements of a focal363

individual from its point of view. As a brief description of the procedure (see364
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Methods for full details), during each moment in time, we transformed our365

trajectory data into a coordinate system where a focal fish is located at the366

center of the coordinate system and the y axis is aligned to the instantaneous367

velocity of the focal fish (see panel 3A,E and panel 4A,E; direct attention368

towards the orange and green dots). We then measured the distribution369

of locations for the partner of the focal fish in this new focal fish coordinate370

frame (see for example Figure 3B). We also calculated how the location of the371

partner fish influenced the tendency of the focal fish to turn and to speed up.372

As was the case with the analysis of velocity correlations, we separated our373

data into four categories depending on whether the focal fish was attacking374

or defending and whether the current phase of the fight was symmetric or375

asymmetric (in Figures 3 and 4 which follow, the colored fish on the inset376

images A,E always illustrates which fish is the focal fish for a given row of377

the figure).378

Previously, [6] had described zebrafish attacks as locomotion maneuvers379

where the attacker orients its body towards the defender and then swims380

rapidly towards it. The defender typically responds by swimming away from381

the attacker in a maneuver named retreat. Additionally, the attacker some-382

times veers to one side or the other of the defender in order to deliver bites383

to the sides of the defender. Based on this description, we had four base-384

line expectations. First, the attacker is expected to be located behind the385

defender most of the time. Second, the attacker is expected to exhibit an386

acceleration response towards the defender if the defender is in front of the387

attacker. Third, the defender is expected to exhibit a repulsive speeding re-388

sponse when the attacker is behind it (the running away response). Fourth,389

when the attacker is located to one side (e.g. the right) of the defender, the390

defender was expected to turn towards the other side e.g the left) in order391

to dodge potential bites. To our surprise, all the hypothesis except the first392

turned out to be partly incorrect to varying degrees.393

We begin by considering the relative positions of the defender and the394

attacker. The maps in Figure 3B,F depict the distribution of the locations395

of the attacker relative to the defender during attacks in the symmetric (3B)396

and asymmetric phase (3F). From the maps it is clear that as was antici-397

pated, the attacker is typically located behind the defender. However, an398

interesting elaboration on the baseline hypothesis was the finding of different399

appearances of the maps between the two phases. During the symmetric400

phase, the attacker is located about half a body length behind the defender401

and is positioned to the left or to the right of the defender rather than staying402

directly behind it (Figure 3B). In contrast, during asymmetric phase attacks403

the attacker is typically located a whole body length behind the defender404

(Figure 3F). Since a sideways location of the attacker was expected to be405
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Figure 3: Forcemaps of the defender in the symmetric (top row)
and asymmetric (bottom row) phase. Average forcemaps (N=14 fights,
230 000 time-points). The top inset image shows a typical configuration of
the two fish during the symmetric phase (same for asymmetric phase at the
bottom). In this figure, the focal fish is always located at the top middle
of the map (orange dot, point 0,0) and its velocity vector is oriented up.
A: a typical configuration of the two fish during the symmetric phase. B: a
probability density map of the position of the attacker relative to the defender
during the symmetric phase. Note that the negative numbers in the distance
axis indicate that the attacker is behind the defender. C: the speeding force
as a function of the relative location the attacker during the symmetric phase.
Red color signals speeding up, blue color signals slowing down. D: the turning
behavior of the defender as a function of the relative location of the attacker
during the symmetric phase. Red colors signify turning to the right, blue
colors signal turning to the left. E: a typical configuration of the two fish
during the asymmetric phase. F-H: same as B-D for the asymmetric phase.

associated with attempts of biting, the phase differences initially suggested406

a greater motivation on the side of the attacker towards delivering bites in407

the symmetric phase. While this view is likely to be partly correct, we will408

explore a further alternative explanation below.409

Focusing on the speeding responses of the attacker next, we see that our410

initial expectation of seeing acceleration responses was again partly fulfilled.411

As can be seen in Figure 4C,G, if the defender is located far in front of the412

attacker, the attacker does indeed have a tendency to accelerate towards the413

defender as if it was attracted to the defender and was trying to chase it (the414
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red and yellow areas at the top of the maps in Figure 4C,G). However, the415

expectation of pure attraction was violated at close range by the presence of416

repulsion zones (blue areas at the bottom of Figure 4C,G). If the attacker417

reached close to the defender, there was a tendency for the attacker to de-418

celerate rather than accelerate. This deceleration response was present even419

if we removed periods of collision from the analysis (see figure S3C bottom420

panel). Therefore, the slowing down appeared to be a deliberate response by421

the attacker and not the consequence of some direct physical interaction like422

contact-driven repulsion.423

Overall the speeding map of the attacker was consistent with a strategy424

where the attacker tries to maintain a constant distance from the defender425

by speeding towards the defender if the defender was far and by slowing426

down and letting the defender escape if the defender was too close. This427

finding was at odds with our initial expectation that the primary goal of the428

attacks was to create bodily contact which would enable delivery of bites.429

However, we found evidence for such a distance maintaining strategy on the430

part of the defender was well. The speeding map of the defender in both431

phases showed acceleration responses (running away) when the attacker was432

too close (Figure 3C,G) and deceleration responses (permitting approach)433

when the attacker was far.434

When we examined the turning maps of the attacker, it gave us further435

support for the idea that the attacker is using a distance maintaining strategy436

during the symmetric phase. As can be seen in Figure 4D, if the defender437

was far away, the attacker exhibited a turning response toward the defender.438

However, at close range, the turning response once again changed to a repul-439

sive response (notice the flipped polarity at the bottom of the turning map440

when compared with the top in Figure 4D).441

Examining the turning map of the attacker during the symmetric phase442

gave evidence of a more complex pattern than a simple distance-maintaining443

strategy on the part of the defender. We remind the reader of our initial444

expectation, which was for the defender to turn to the opposite side from the445

location of the attacker as an avoidance response. What we found was the446

exact opposite. If the attacker was to the left of the defender, the defender447

turned to the left towards the attacker.448

The above response by the defender probably contributed to the stable449

maintenance of the T-like configuration (Figure 3A) which was often evident450

during the symmetric phase. Our initial hypothesis attributed the generation451

of the T configuration to efforts by the attacker to swim to this position452

so he could deliver biting attacks to the vulnerable sides of his opponent.453

Examination of social forces revealed the opposite was true. The defender454

appears to actively contribute to the maintenance of the T configuration by455
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exhibiting a statistical tendency to turn towards the attacker thus exposing456

the sides of its body even further. Contact appears to be avoided because457

of a distance-maintaining strategy by the attacker instead. We emphasize458

again that this effect is not the result of physical contact forces because the459

maps have the same qualitative features even if we exclude from analysis the460

periods where the bodies of the two fish are in physical contact (see Figure461

S3).462

Figure 4: Forcemaps of the attacker in the symmetric (top) and
asymmetric (bottom) phase. Average forcemaps (N=14 fights, 140 000
time-points). The focal fish for each row is marked in color on an inset
image (A,E). On these forcemaps, the focal fish is always located at the
bottom middle of the map (marked as a circle with a tail on the maps) and
its velocity vector is oriented up. A: a typical configuration of the two fish
during the symmetric phase. B: a probability density map of the position
of the defender relative to the attacker during the symmetric phase. The
positive numbers on the distance axis indicate that the defender is in front
of the attacker. C: the speeding force as a function of the relative location
the defender during the symmetric phase. Red color signals speeding up,
blue color signals slowing down. D: the turning behavior of the attacker as a
function of the relative location of the defender during the symmetric phase.
Red colors signify turning to the right, blue colors signal turning to the left.
E: a typical configuration of the two fish during the asymmetric phase. F-H:
same as B-D for the asymmetric phase.

We conclude that during symmetric phase attacks, at close range there is463

a paradoxical tendency for the defender to turn towards the attacker and for464
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the attacker to avoid turning towards the body of the defender. Although we465

do occasionally observe contact and biting attacks between the contestants,466

the statistically typical behavior is towards mutual short-range avoidance.467

The strongly peaked nature of the position histogram (Figure 3B) pro-468

vides quantitative confirmation of the persistent nature of the T-like config-469

uration. The persistence of the configuration in time in conjunction with the470

aforementioned evidence of repulsive interactions when the two fish are in the471

T-like configuration further supports our description of the T-configuration472

to be a metastable state. Such evidence also speaks against our initial hy-473

pothesis, which saw the T-like configuration as a non-persistent state arising474

either as a preamble to biting attacks or as a result of counter-maneuvers de-475

signed to avoid the bites. The balance of evidence seems to indicate that the476

T-configuration during symmetric phase attacks may instead be a ritualistic477

configuration which is maintained by mutual efforts and may thus function478

partly as a mutual display.479

Crucially and consistently with the display hypothesis, the T configu-480

ration did not appear during post resolution attacks- presumably because481

display behaviors are superfluous after the winner has been resolved. As can482

be seen from Figure 3E,F, the typical configuration during post resolution483

attacks had the attacker located precisely behind the defender and the de-484

fender running away from the attacker in a straight line. This pattern is485

maintained due to the mutual presence of a distance maintaining strategy486

in the speeding maps (see above). Furthermore, if we look at the turning487

response of the defender in the region where the attacker is most likely to488

be located, we see a green zone of neutrality (Figure 3H, green triangle-like489

area at the bottom of the map) rather than an attractive turning response490

as was seen in the symmetric phase. The data therefore supports a notion491

where post-resolution decision maps help the defender simply to avoid the492

attacker rather than engaging in a more complex strategy.493

One final feature of the forcemaps is worth noting. The maps can often be494

reliably calculated from data gathered only during individual fights. These495

individual maps have a structure that is qualitatively very similar to the plots496

we show in the main paper, where we pooled data across all 14 conflicts which497

exhibited a symmetric phase (see Figure S4,S5). These movement maps thus498

appear to be a very reliable feature of zebrafish aggression.499

In addition to detailed analysis of attack bouts, we also found evidence500

for a heretofore undocumented type of aggressive maneuver which we termed501

the splash (Figure 5 top panels). We named the behavior splash after the502

characteristic wave-like ripple pattern which occurred on the water surface503

after the maneuver was performed. The splash behavior typically occurred as504

one zebrafish approached another. As the two zebrafish made contact (Figure505
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5B), one or both of them responded with a sudden acceleration maneuver506

(Figure 5A) which resulted in the orientations of the two fish being completely507

reversed and the two fish being propelled apart by a distance of a few body508

lengths or more (Figure 5C). Typically, a 180 degree change in orientation509

(Figure 5D) was completed in less than 50 ms. We believe the splash may be510

a crucial behavior which helps stabilize the previously mentioned display-like511

attacks and we will comment more on this hypothesis in the discussion.512

Figure 5: The splash behavior. Top panels: a time-lapse series of 4 con-
secutive frames (sampled 50 ms apart in time) during an example splash
behavior. Bottom panels: A: the average acceleration of an individual dur-
ing a splash. The splash takes place at time 0. B: The probability of contact
during a splash. C: The average time evolution of inter-animal distance dur-
ing a splash. D: A histogram of the orientation change index during 50 acts of
splash. An index of -1 corresponds to a 180 degree change in orientation, an
index of 1 corresponds to orientation being unchanged (see methods for de-
tails). For all plots, N=50 splash behaviors. Due to their short duration and
comparatively rare occurrence, the splash behaviors were found by manual
annotation.

3.3 Modeling of the asymmetric phase513

We were motivated to seek a theoretical treatment of the post-conflict phase514

by the observation that both the winner and the looser engage in a contact-515

free but high-velocity chases, which are costly for both the winner and the516
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looser. Why does the winner use a strategy which results in a waste en-517

ergy on attacks even after it has established its dominance in the symmetric518

phase? Based on previous studies (see [19, 20, 21] as well as introduction) we519

hypothesized that the winner implements a strategy which simultaneously520

damages the loser without risking the possible loss of dominance.521

We can therefore think of the post-resolution fight as a zero-sum game,522

where the reward of the winner is rw = Cl −Cw and the reward of the looser523

is rl = Cw−Cl (Cw and Cl designate the costs incurred by the looser and the524

winner respectively). What are the possible ways that two fish can impose525

costs on one another? Zebrafish incur costs either through rapid swimming526

or by receiving bites from the opponent. During the post-resolution phase,527

the dominant engages in rapid swimming with an approximately constant528

velocity (Figure 2F) while staying a constant distance away from the sub-529

ordinate (Figure 3F). Our analysis must explain why the dominant never530

accelerates enough to touch and deliver bites to the opponent, which would531

certainly help to selectively reduce subordinate fitness.532

In order to maintain a stable velocity v, the winner fish must generate a533

force F (v) which carries a cost C(F ). If the looser also swims with velocity v,534

it will also incur a cost C(F ). If the winner engages in biting, it will deliver535

to the looser an additional cost Cb. However, it is reasonable to expect that536

the opportunity to deliver bites at velocity v will not come without a cost to537

the attacker as well. It must produce extra force in order to generate some538

pressure between his own mouth and the body of the looser. In addition,539

extra energy may be needed for moving the jaws and potentially suffering a540

less streamlined posture because of the bending needed to deliver the bites.541

The extra force needed δF will induce a greater cost of C(F + δF ), while the542

looser incurs a cost of only C(F ).543

For real fish, the functions F (v) and C(F ) are obviously not completely544

generic. F (v) is monotonically increasing, because higher velocities require545

higher forces in order to overcome increased drag. The function C(F ) is likely546

to be not only monotonically increasing, but also convex, since maintaining547

higher forces requires recruitment of more energetically inefficient muscle548

groups [29]. For convex functions, ∆C = C(F + δF )−C(F ) is an increasing549

function of F as well. At equilibrium, it must be the case that the winner550

cannot increase his reward by switching from steady chasing at velocity ve551

and force F (ve) to a biting attack at velocity ve and force F +δF . Therefore,552

at equilibrium, ∆C(F ) = Cb. Since ∆C(F ) is an increasing function of F , it553

is a mathematical inevitability that there exists a value of F high enough for554

this to condition to be true. Another solution to the model involves limits555

on the range of possible values of F. If the value F has a biological maximum556

(Fmax) which is smaller than the value of F where biting costs become equal557
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to attack costs, then the equilibrium value veq is given by F (veq) = Fmax−δF .558

In both cases, the equilibrium involves a stable value of veq.559

From our theory, we conclude that it is necessary for the looser fish to560

maintain the high velocity veq as well because otherwise biting attacks be-561

come profitable for the winner and the looser will further descend in relative562

capacity. The winner in turn must maintain a high velocity and a close dis-563

tance from its opponent or else the looser may respond by slowing down since564

the dominant is too far away to attack. The caudal deceleration zones ap-565

parent in the speeding map of the defender in the asymmetric phase (Figure566

3G) may well be a mark of such strategic responses. The analysis thus indi-567

cates a plausible link between game theory equilibria, well-known features of568

fish biomechanics/physiology and the observed long duration chasing which569

often concludes zebrafish fights.570

4 Discussion571

We have introduced a machine vision pipeline for the study of aggression in572

zebrafish which allows both automated identification and tracking (see Meth-573

ods) of unmarked animals by use of idTracker [22] as well as individual-level574

automated classification of ethologically relevant behaviors on a sub-second575

timescale (compare with the lack of identification and end-to-end deep learn-576

ing in [23, 24]).The pipeline allows for reduced human workload by elimi-577

nation of the marking stage and the annotation stage as well as reducing578

the need for controls comparing marked and unmarked animals. Our meth-579

ods also have the additional advantage of allowing for some parallelization.580

Though we focused here on experiments in large arenas to avoid confounding581

influence of walls on our analysis, it is possible to fit up to 4 smaller fight582

arenas into the field of view of our camera. The tracking can also be done583

in parallel without modifications to the code. Hence, it is feasible for certain584

experiments to increase the setup throughput by a factor of 4 if needed.585

In our work, we have also demonstrated how the ability to gather high586

resolution trajectory data can be of aid in the process of deciding which of587

the many assessment models provides the best description of the fight. For588

example, we observed a strong correlation between the velocity of the attacker589

and the defender during individual attacks. The observation of strong mutual590

correlation in activity levels during individual acts of behavior gives evidence591

that in zebrafish, approximately equal locomotor costs are borne by both the592

producer of the attack as well as its target. This observation rules out WOA593

models of contests as good descriptions of zebrafish aggression. We reach the594

conclusion because these models posit individual behavioral acts to have an595
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effect on the energy budget of only the one who is producing the signal and596

not on the target of the signal [13]- a hypothesis clearly violated in our data.597

Based on our results, the standard sequential assessment game also ap-598

pears ill-suited as a description of zebrafish aggression, because we were599

unable to detect statistically significant positive relationship between the600

fight time and the RHP of the looser [27]. Having ruled out both the self-601

assessment and the sequential assessment models, we were left by elimination602

with the cumulative assessment game as the only suitable description of ze-603

brafish fighting and our supplementary modeling supported this conclusion604

as well.605

As stated before, we speculate that our technology may become a valu-606

able complement to the current standard methodology of game theory model607

testing in two contexts. First, as others have argued [4] and as we showed in608

our supplementary modeling, the distinction between the CAM and WOA609

in terms of fight time scaling relationships is not as clear-cut as is sometimes610

stated [27, 30]. In such cases, the use of machine learning tools to infer611

activity budgets and correlations from video data may become a valuable612

complement to the standard toolkit as it will occasionally allow resolution613

of the ambiguities. Secondly, since our analysis does not require knowledge614

of the resource holding potential, it can be used in cases where the RHP is615

unknown or RHP differences are small.616

Beyond the falsification of game theory models, analysis of trajectory level617

data also proved useful in clarifying the nature of certain behaviors. In the618

beginning we believed that the primary function of attacks in the symmetric619

phase was to maneuver the attacker into a position where he might be able620

to elicit further damage trough direct contact and biting. We were surprised621

to find in our forcemaps that rather than avoiding such attacks, the defender622

had a statistical tendency to turn its flank towards such attacks. Even more623

surprisingly, the attacker had a tendency to incompletely exploit the resulting624

vulnerable configuration as evidenced by the presence of weak repulsion zones625

in the turning rule of the attacker. The willingness of the defender to expose626

its flank may thus be at least partly a display behavior intended to signal its627

ability to maneuver and/or withstand damage.628

The potential risk of the display may be mitigated by the opportunity629

to engage in the splash behavior. The splash behavior may enable one fish630

to halt or perturb the approach of another as it is becoming too dangerous.631

In support of this, notice how the splash is usually deployed right as the632

attacker is making first contact with the defender (Figure 5B). The potential633

option to engage in the splash behavior may also mitigate the risk associated634

with engaging in the display-like attacks which leads the defender into a635

vulnerable configuration. The vulnerable configuration which occurs during636
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the displays may be stabilized because the attacker knows that any attempt637

to exploit the vulnerability can be countered with a splash maneuver by the638

defender.639

One of the novelties in our paper was the introduction of movement rules640

[25] to the analysis of contests. The ability to quantify the fine structure of641

aggressive attacks trough movement rules is useful not only for the insight it642

provides about typical fighting tactics, but also because it enables quantifi-643

cation of change in those tactics. There is now much evidence for the role644

of cognition and learning in shaping animal fighting ability [31]. Fighting645

ability of animals changes with experience [32, 33], but exactly how experi-646

ence makes fighters more competent and skillful has not always been clear647

from the studies. It may be that changes in fine motor dynamics play an648

important role and our measurement toolbox could be helpful in clarifying649

some of these unresolved issues. For example, evidence from sticklebacks has650

established a role for learning in the development of displays [34]. If the same651

is true for zebrafish, then there is an expectation that early in development,652

contest phase attacks might lack some of the display-like features we see an653

adults. The forcemap technique we have introduced could be straightfor-654

wardly applied to address this hypothesis, which might prove more difficult655

to test with traditional methods.656

Finally, we hope that the study of trajectory level data will open up a657

new frontier in he study of strategic conflict. With the ability to record high658

resolution data, we may be able to get a better handle on the biomechanical659

determinants [17] of movement during contests. This may finally allow us to660

study the long-ago stated goal of examining not just how displays are used,661

but what factors determine the form and the fine dynamics of the displays as662

well [35]. Or in other words, we may eventually be able to study the move-663

ment subgames taking place within the larger assessment games. We took a664

small step in that direction by explaining the qualitative patterns of locomo-665

tion during the chasing phase through a game theory analysis, but there is666

also a clear need for better theoretical methods to analyze the extended games667

which occur when acceleration decisions influence inter-individual distances668

over time. The recent merging of techniques from game theory and deep669

reinforcement learning represents a promising avenue for further research in670

this regard. In particular, the use of self play, which has allowed humanoid671

robots to teach each other wrestling in an unsupervised way, is a technology672

which should be immediately applicable to the study of fish aggression as673

well [36].674
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