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Abstract 25 

Cooperation significantly impacts a species’ population dynamics as individuals choose 26 

others to associate with based upon fitness opportunities. Models of these dynamics typically 27 

assume that individuals can freely move between groups. Such an assumption works well for 28 

facultative co-operators (e.g. flocking birds, schooling fish, and swarming locusts) but less so for 29 

obligate co-operators (e.g. canids, cetaceans, and primates). With obligate co-operators, the 30 

fitness consequences from associations are stronger compared to facultative co-operators. 31 

Consequently, individuals within a group should be more discerning and selective over their 32 

associations, rejecting new members and even removing current members. Incorporating such 33 

aspects into population models may better reflect obligately cooperative species. In this paper, 34 

we create and analyze a model of the population dynamics of obligate co-operators. In our 35 

model, a behavioral game determines within-group population dynamics that then spill over into 36 

between-group dynamics. Our analysis shows that group number increases when population 37 

dynamics are stable, but additional groups lead to unstable population dynamics and an eventual 38 

collapse of group numbers. Using a more general analysis, we identify a fundamental mismatch 39 

between the stability of the behavioral dynamics and the stability of the population dynamics. 40 

When one is stable, the other is not. Our results suggest that group turnover may be inherent to 41 

the population dynamics of obligate co-operators. The instability arises from a non-chaotic 42 

deterministic process, and such dynamics should be predictable and testable.   43 
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Introduction 44 

Cooperation – where the action of an individual benefits a recipient – is widely observed 45 

in nature, from the level of genes to organisms (West et al., 2007; Nowak, 2006). Individuals 46 

will choose to cooperate with others if fitness benefits, whether direct or indirect, outweigh the 47 

costs (Hamilton, 1964; Trivers, 1971; Taylor, 1992). Because cooperation leads to fitness 48 

benefits, it can have significant impacts on a species’ population dynamics as individuals 49 

associate with others to form groups for greater fitness benefits. Linking the dynamics at the 50 

group level to the entire population will lend a greater understanding of the effects of 51 

cooperation on overall population dynamics (Bateman et al., 2018). We suggest that the type and 52 

context of cooperation must be considered when understanding the population dynamics of 53 

cooperative species. Cooperative societies can be categorized into two broad types: casual and 54 

demographic (Wilson, 1975). Casual societies (e.g. starling murmurations or fish schools) are 55 

characterized by a constant turnover of group membership with little to no lasting impact on a 56 

member’s fitness. Demographic societies (e.g., most social primates, canids, cetaceans, 57 

elephants, lions, and eusocial insects), on the other hand, show limited exchange between groups, 58 

and dispersal between groups can have lasting fitness impacts on the group’s members. This 59 

difference is due to whether cooperation is facultative and therefore helpful but not necessary for 60 

survival (casual societies) or obligate where individuals need others for survival and successful 61 

reproduction (demographic societies). The difference in cooperation means that obligate 62 

cooperators are more selective in their associations and helps explain their limited dispersal. 63 

Therefore, one would expect that the differences in cooperation would lead to distinct impacts on 64 

their population dynamics, particularly regarding stability. 65 
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Typically, swarm dynamics have been used to model the social and population dynamics 66 

of cooperative species (Couzin and Krause, 2003; Okubo, 1986; Gueron and Levin, 1995; Zemel 67 

and Lubin, 1995; Gueron et al., 1996; Bonabeau et al., 1999; Mirabet et al., 2007; Saffre and 68 

Deneubourg, 2002). This approach has worked well to model the population dynamics of 69 

facultatively cooperative species, however not as well for obligately cooperative species. While 70 

actors in a swarm model are selective regarding associations, dispersal is generally not limited 71 

with individuals moving freely between groups. On the other hand, some models with limited 72 

dispersal do not permit selectivity of any individual (Courchamp et al., 1999; Courchamp et al., 73 

2000; Dennis, 2002). And more generally, not all individuals are selective in population models 74 

of cooperators. Whether models of swarm dynamics or of limited dispersal, the focus remains on 75 

an individual disperser and their choice of associations with non-dispersers lacking choice 76 

(Lehmann et al., 2006; Parvinen and Brannstrom, 2016). Including both limited dispersal and 77 

group-wide selectivity into a model of cooperative species’ dynamics should better reflect the 78 

dynamics of obligate co-operators. 79 

In this paper, we model the population dynamics of obligately cooperative species. First, 80 

we construct and analyze a specific model of population dynamics embedded with a behavioral 81 

game with group-wide selectivity. In this model, there is within-group cooperation, within-group 82 

competition, between-group competition, and limited dispersal between groups (specifically no 83 

movement). We analyze the model’s population dynamics and behavioral dynamics separately 84 

before combining the two. From there, we relax our assumptions and generalize our analysis to a 85 

class of models that keeps all key features of the specific model. We show a mismatch in 86 

stability: a stable population size is not behaviorally stable and groups that are behaviorally 87 

stable are unstable in terms of population dynamics. In other words, a group can either have 88 
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behavioral stability or population size stability but never both. We go on to discuss the 89 

implications of our model including its relevance to real systems and future applications. 90 

Dynamics of the Specific Model 91 

Population Dynamics 92 

  To model the population dynamics of obligate cooperators, we first assume that 93 

individuals can cooperate with each other by forming associations, i.e. groups, to gain greater 94 

fitness. Here, we define fitness as an individual’s expected per-capita growth rate. For the sake of 95 

simplicity, we assume all individuals are identical, distinguished only by whether they are within 96 

or outside a group. Each individual within a group can be described by the same fitness function. 97 

Only the number of individuals within the group directly determines fitness. 98 

As individuals come together, an emergent group-level of cooperation appears as the 99 

aggregation of each individual’s cooperative acts (Dugatkin, 1998). In terms of population 100 

dynamics, this is often modeled as an Allee effect, or the positive relationship between an 101 

individual’s fitness and its associations within a group – typically measured as group size (Allee, 102 

1931; Allee, 1938; Trivers, 1971; Axelrod and Hamilton, 1981; Dugatkin, 1998; Nowak, 2006; 103 

Stephens et al., 1999; Angulo et al., 2018). We include this Allee effect to within-group 104 

dynamics but not between-group dynamics. We imagine that individuals benefit from group 105 

living via collective foraging, defense, or other positive social interactions yet suffer from 106 

resource sharing, disease transmission and other negative interactions. With group size, we 107 

assume that benefits to an individual increase linearly while fitness costs increase super-linearly 108 

leading to an overall humped-shaped relationship between group size and fitness (Terborgh, 109 

1983). 110 
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With these assumptions, we imagine ��different groups, each with their own group size. 111 

The fitness function (per capita growth rate) for each group is given by equation (1). 112 

 ���� , ��� � � 	��
� �� ��
�


�
 � ���  (1) 

where � is the vector of group sizes � � ���, ��, … , �����, ����. Here, ��  is the size of focal 113 

group �, �� is the cumulative size of all other groups ∑ ��
��
�	� � �� , � is a growth rate scaling 114 

factor, 
 is maximum potential group size, and � is the strength of intergroup competition 115 

(potentially determined by the depletion of shared resources). Since all individuals are identical, 116 

all groups have the same fitness function allowing us to rescale per-capita growth rates by � to 117 

give: 118 

 ���� , ��� � ��
 � ��
�


� � �
�� (2) 

where �
 � �

  is the ratio of intergroup competition to the growth rate scaling factor. Let us 119 

denote the equilibrium group size as ��

  where growth rate equals zero. Solving for ��


 , we obtain 120 

two values where ��

 � �

� �1 � �1 � 4�
���.  121 

In this equation, fitness at first increases at low group sizes 	�� � �
� � and then decreases 122 

at high group sizes 	�� � �
� � (Fig. 1a). Within-group interactions create an Allee effect and 123 

fitness does not monotonically decline with more individuals (Fig. 1b) (Allee, 1931; Allee, 124 

1938). The first two terms of equation (2) define these intra-group dynamics where the first term 125 

represents the fitness benefits of group living and the second term represents the fitness costs of 126 

group living. So long as �� � 
, the benefits from cooperation are greater than the costs of 127 

competition and so fitness is positive; and if �� � �
� , then the benefits of additional cooperation 128 
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are greater than the costs of additional competition, i.e. an individual’s marginal contribution is 129 

positive, and the Allee effect holds. The third term of equation (2) represents the loss of fitness 130 

due to inter-group competition and is broadly assumed to be linear. 131 

 We can now analyze the overall population dynamics of the entire system of groups. This 132 

analysis replicates Wang et al. (1999), revealing the same qualitative results with minor 133 

differences. Therefore, we keep this section brief. With a single group, there are two equilibria: 134 

��

 � 0, 
. The first equilibrium is unstable, the second is stable. Therefore, any group of strictly 135 

positive size will grow or shrink to 
 (Fig. 3a,b,c). With a single group, we also note that the 136 

Allee effect is weak (fitness at ��

 � 0 is non-negative, ��0,0� � 0) (Courchamp et al., 1999b; 137 

Stephens et al., 1999; Angulo et al., 2018). When another group is added, inter-group 138 

competition induces a strong Allee effect (fitness at ��

 � 0 is strictly negative, ��0,0� � 0). 139 

Outcomes now depend upon the strength of inter-group competition �
 (Fig. 2). If inter-group 140 

competition is strong �
 � �
�, then either only one group survives or both groups go extinct (Fig. 141 

2a). The equilibrium where both go extinct is a saddle-point (unstable except for when the initial 142 

population sizes of the two groups are equal) while the equilibria where only one group survives 143 

is locally stable (the group with the larger size outcompetes the other). As inter-group 144 

competition weakens 
�

�� � �
 � �
�, there arises an unstable (saddle point) interior equilibrium 145 

(Fig. 2b,c). The equilibrium where both groups go extinct is now fully unstable. The equilibria 146 

with just one surviving group remain locally stable. 147 

If competition weakens even further 0 � �
 � �
��, two new interior equilibria appear 148 

where both groups co-exist at positive but unequal sizes. These two new interior equilibria are 149 

unstable stable. The former interior equilibrium where both groups have the same population size 150 

now becomes locally stable (Fig. 2d). With weak competition, there is a strong Allee effect and 151 
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each group has an extinction threshold based on the number of individuals in the other group. If 152 

the initial sizes of both groups are above their extinction thresholds, competition is too weak to 153 

drive extinction, and the two groups will persist at the interior equilibrium of equal sizes. If one 154 

or both groups are below their extinction thresholds, then the smaller group will go extinct and 155 

the larger group will grow to size 
. As intergroup competition disappears, the interior 156 

equilibrium with equal sizes becomes globally stable as both reach maximal carrying capacity, 157 

and the other interior equilibria merge with the two in which only one group survives. These two 158 

equilibria and the one in which both groups go extinct are all unstable. 159 

As we add additional groups, the same fundamental dynamics remain (see SI). The only 160 

difference is that inter-group competition must be weaker – specifically, it must be scaled by 161 

�
���� where �� is the number of groups – for the interior equilibrium to be locally stable. More 162 

generally, we can say that for any system of �� groups, the only stable interior equilibrium (all 163 

groups at strictly positive size) occurs when all groups, equal in size, are at a size 
�
� 
 or greater. 164 

For this to occur with an increasing number of groups, inter-group competition must decrease. If 165 

not, then the addition of more groups destabilizes the interior equilibrium and leads to a collapse 166 

of group numbers. 167 

Behavioral Dynamics 168 

A behavioral game of association can be embedded into equation (2). In this game, we 169 

assume that individuals are “rational” and seek associations that maximize their fitness (per-170 

capita growth rate). Since all individuals are identical, only group size determines the fitness of 171 

each member. We also assume that individuals are dealing with limited information, namely that 172 

they can only “see” their fitness in relation to the size of their current group and are blind to the 173 

influences of non-group members. In essence, individuals can only understand the marginal 174 
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contribution of an additional group member to average fitness. Under these assumptions, we can 175 

obtain the “association” function by taking the partial derivative of the fitness function with 176 

respect to �� . This association function ����� indicates the marginal contribution of an individual 177 

to the others’ fitness (equation 3). 178 

 ����� � ���������
� 1


  1 � 2��
 " (3) 

We call the group size which maximizes fitness the optimal group size and denote it by ��

. 179 

Because ����� starts at a positive point and declines linearly (and therefore monotonically) with 180 

increasing group size, we can say simply solve for ����� � 0 to obtain ��

, resulting in ��


 � �
� . 181 

This value provides maximum fitness as confirmed by taking the second derivative.  182 

Typically in models of cooperative species, only the dispersing individual is selective and 183 

given choice of association. However, all individuals in a group should be just as selective as the 184 

disperser. We can use coalitional (a.k.a. cooperative) game theory to analyze the behavior of all 185 

individuals en masse. Coalition game theory seeks to understand two things: how individuals 186 

select their associations and how the resulting payoff to that coalition is distributed in an 187 

equitable and efficient manner (von Neumann and Morgenstern, 1944; Peleg and Sudhölter, 188 

2007). In coalitional game theory, there are # players who can choose to associate with other 189 

players to form various coalitions $ � %$�, $�, … , $��&. Through their associations, they receive 190 

a payoff '�$��. If all players choose to form a single coalition $ � %#&, this is known as the 191 

grand coalition. In our case, the players are the individuals within a group # � �� , and the total 192 

payoff to the group is its growth rate '�$�� � �� ( �����. By assuming that all individuals are 193 

identical, payoffs are equally shared among all members and can be represented as fitness or per-194 
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capita growth rate �����. Using this framework, we can analyze how individuals should choose 195 

their associations. 196 

For illustrative purposes, we analyze the behavioral game in which there is a single group 197 

facing no inter-group competition ��
�� � 0�. However, the general principles remain the same 198 

regardless of the presence or strength of inter-group competition. Based on the association 199 

function �����, the marginal contribution of an individual is positive ����� � 0 when group size 200 

�� � ��

. Under these conditions, the game is super-additive, i.e. all individuals receive greater 201 

fitness from being in one large coalition of ��  rather than separated into smaller coalitions. As 202 

such, there is no incentive for any individual to seek a group of a lower size. However, if the 203 

group is larger than its optimal size �� � ��

, then the behavioral game is no longer super 204 

additive. Instead, the marginal cost of an individual is negative ����� � 0. Therefore, individuals 205 

in a marginally smaller group will obtain greater fitness. As such, individuals in a group of size 206 

�� � ��

 will prefer to be in a smaller coalition, specifically at the optimal group size ��


. The 207 

group is not behaviorally stable as individuals will leave or be forced out from the current group, 208 

creating new groups in the process (Fig. 3b). Summarily, through coalition game theory any 209 

group smaller than optimal group size is behaviorally stable while any group larger than optimal 210 

group size is behaviorally unstable. 211 

Now with population and behavioral dynamics analyzed separately, we can combine 212 

them to derive a full picture of the population dynamics of cooperative species. We seek the 213 

possibility of a joint population and behavioral equilibrium and show it to be impossible. 214 

Overall Population Dynamics 215 

In our specific model, any fully stable equilibrium must have all groups at a size 
�
� 
 or 216 

greater and that more groups in a system lead to greater instability. Analysis of behavioral 217 
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dynamics shows that current groups will split and new groups will be formed so long as the 218 

current group’s size is beyond ��

 � �

� . Combining the two results, we obtain the main result: 219 

over time, the behavioral dynamics of cooperative species will tend towards more groups when 220 

population dynamics are stable, and a stable behavioral equilibrium will lead to unstable 221 

population dynamics and an eventual collapse of group numbers. Through this, we see that there 222 

is a mismatch between the regions where population dynamics and behavioral dynamics are 223 

stable. Later, we show this to be a more general phenomenon. For now, we look in detail at the 224 

potential dynamics of our specific model. 225 

 We add to our model the limited dispersal behavior seen in obligate cooperators. To do 226 

so, we make additional assumptions. Groups can only split (i.e. members can leave or be forced 227 

out of a group but not join other groups), group size only increases through reproduction (a 228 

consequence of the former assumption), and splits only happen when the system is at a 229 

population equilibrium. In addition to limiting the dispersal of individuals, these assumptions 230 

render analyses more tractable which allow for clarity when describing the potential dynamics. 231 

In our analysis, we begin by assuming a single group without competition. So long as 232 

initial population size is strictly positive, the group will either grow or shrink to the stable 233 

equilibrium ��

 � 
. Our behavioral analysis shows that a single group of size 
 is unstable. 234 

There is a strong incentive for the members to achieve a group of size ��

. Therefore, as the 235 

group’s size reaches ��

 , it splits into two groups, both of size ��


 � �
�  (Fig. 3d). 236 

After the split, the addition of another group means both groups are facing competition 237 

with �� equaling ��

 for both groups. The fitness for both groups is ����


, ��

� � 0.25 � �


�
� . 238 

The size of inter-group competition �
 will determine the long-term dynamics of our system. 239 

There are two thresholds of �
. There is the main threshold �
 � +� which divides competition 240 
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into strong and weak, and a secondary threshold �
 � +� � +� which divides strong competition 241 

further into moderately strong and extremely strong. These three strengths of competition – 242 

extremely strong, moderately strong, and weak – correspond to the dynamics of total extinction, 243 

unstable equilibria, and group turnover respectively, which we explore further. 244 

Total Extinction and Unstable Equilibria 245 

Our main threshold of inter-group competition +� determines the fitness of two groups 246 

just after splitting. In our model, +� � �
��. If �
 � +�, then the fitness of each group is negative 247 

����

, ��


� � 0, and both groups will simultaneously decline in size. As both groups decline in 248 

size, individual fitness partially falls due to the Allee effect but also partially rises due to release 249 

from inter-group competition. The balance between these effects determine whether the groups 250 

will reach a positive equilibrium group size less than ��

 or go extinct; this is determined by the 251 

second threshold +� � �
�. 252 

If inter-group competition is moderately strong +� � �
 � +�, then the increasing fitness 253 

that comes from less inter-group competition eventually outweighs the decrease in fitness from a 254 

smaller group size. Both groups equilibrate at a size that is less than ��

. This equilibrium is 255 

behaviorally stable, but it is an unstable saddle-point with regard to population. With the slightest 256 

inequality in the two groups’ sizes, the smaller one will go extinct while the larger grows to 257 

��

 � 
. If inter-group competition is extremely strong +� � �
, then the increasing fitness that 258 

comes from the decline of the other group is never enough to outweigh the decrease in fitness 259 

from a smaller group size; therefore, both groups will go extinct. Our analysis here accords with 260 

the analysis in the section on population dynamics. 261 

Group Turnover 262 
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If inter-group competition is weak 0 � �
 � +�, then a more interesting dynamic occurs 263 

(Fig. 4). Here ����

, ��


� � 0 meaning both groups will grow until reaching a new population 264 

equilibrium ��

  where ��


 � ��

 � 
. Let us denote the roots of the fitness function with �� � 0 265 

as ,
 and -
, 0 � ,
 � ��

 � -
 � 
. Here, -
 is the size of the groups at fitness equilibrium 266 

��

 � -
, and ,
 is the extinction threshold of each group. Since the groups are larger than 267 

optimal group size, they will split into two, creating four groups. However, since -
 � 
, the 268 

split will be unequal. One group will form a group of optimal group size ��

, while the other will 269 

be left in a group of size -
 � ��

. As seen in the section on population dynamics, the eventual 270 

equilibrium of the system depends on whether any groups are below their extinction threshold. 271 

Therefore, in a multi-group population, it is the fitness of individuals in the smallest group that is 272 

key to understanding the dynamics. 273 

Let ��,� be the size of the smallest group, let ,�,�

  and -�,�


  be the roots of the fitness 274 

function for the smallest group, and let ��,� be the size of the rest of the population from the 275 

perspective of the smallest group, all after the �-th split. After the first split, both groups grow 276 

from ��

 to -�,�


 . As mentioned earlier, each group will split, giving us four groups: two larger 277 

groups of size ��

 and two smaller groups of size ��,� � -�,�


 � ��

 � �

� �1 � 4�
��,�. Thus, 278 

��,� � 
 . �
� �1 � 4�
��,� with the two new roots of ,�,�


 , -�,�

 . If the sizes of the smaller 279 

groups are much larger than the extinction threshold ��,� / ,�,�

 , then the smaller groups persist. 280 

All four groups will grow to the new equilibrium and then split to give rise to eight groups, four 281 

large and four small. So long as ��,� / ,�,�

 , the doubling of the group numbers will continue. 282 

With each new group added, �� gets bigger, and ,
 and -
 converge to ��

 with ,
 283 

getting bigger and -
 getting smaller. Therefore, with each splitting of the groups (� increasing) 284 
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��,� gets smaller and closer to the extinction threshold of ,
 which it eventually reaches. There is 285 

still a division between the group with half of them at ��

 and the rest at size ��,� � ��


. These 286 

smaller groups will be extirpated which returns the system to the previous state. This leads to a 287 

cycling of the system in which there is a constant turnover of groups. For example, imagine there 288 

are 16 groups all at size -�,�

  after the fourth split. These groups will then split to create 32 289 

groups, 16 larger groups at size ��

 and 16 smaller groups at size ��,� � -�,�


 � ��

. If those 16 290 

smaller groups are at or below the extinction threshold, they will go extinct which returns the 291 

system to having 16 groups at ��

 which then grow to the fitness equilibrium -�,�


 � -�,�

 . The 292 

process then repeats again, creating the turnover dynamic. 293 

This turnover dynamic depends upon a threshold value of ��. Determining the threshold 294 

is tricky as it can happen even when ��,� � ,�,�

 , ����,�, ��,�� � 0. However, we can find an 295 

upper bound to ��. When ��,� 0 ,�,�

 , individuals within the smaller groups are at or below the 296 

extinction threshold and have negative or zero fitness ����,�, ��,�� 0 0. This guarantees 297 

turnover dynamics as the larger groups have positive fitness leading to their growth which then 298 

lowers the fitness of the smaller groups. As such, the �� which makes �� � ,
 is the upper 299 

bound of the threshold value. Solving for this, we get �� � �
���

� �
����

�1 � 2�

�� (see SI). 300 

This population is of finite size (assuming �� 1 0) and will be reached after some time, meaning 301 

there will be eventual cycles with larger groups splitting and smaller groups being extirpated 302 

(Fig. 5). 303 

Argument for the General Instability of the Behavioral and Population Dynamics 304 

Now we present a more general demonstration of the fundamental mismatch between a stable 305 

population equilibrium and a stable behavioral equilibrium. We retain the majority of our earlier 306 

fundamental assumptions including 1) cooperation leading to fitness benefits, 2) all individuals 307 
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being identical and only distinguished by presence or absence in a group, 3) individuals seeking 308 

to maximize their fitness but only know the size of their current group. We relax our previous 309 

assumption relating to dispersal. Individuals can join existing groups, and behavioral dynamics 310 

can occur concurrently with the population dynamics.  311 

Let 
���
�� � �� ( ����� be the population dynamics within group � where ����� gives the 312 

expected per capita growth rate and is assumed to be a continuously differentiable (at least $�) 313 

function of � � 	��, ��, … , ���� which is the vector of group sizes for all groups numbering 1 to 314 

��. We refer to ����� as group i’s fitness function. Taking the partial derivative of ����2� with 315 

respect to ��  and fixing all other variables to the ��� � 	��, … , ����, ����, … , ���� results in a 316 

function of association ������|��� � ������
���

 for focal group � which gives the change of the 317 

group’s per capita growth rate due to additional members, i.e. an individual’s marginal fitness 318 

contribution. When ������|��� is positive (or negative), additional members increase (or 319 

decrease) an individual’s fitness. We call these states cooperative and competitive respectively. 320 

������|��� also determines the preference of individual group members for more or fewer 321 

members. In a cooperative state, individuals at best do not want the group size to decrease and 322 

will resist splitting and behaviorally favor an increase, and vice-versa for group sizes in a 323 

competitive state. 324 

Let �
 � �	��

, ��


, … , ���

 �� � 0 be a solution to the equation ����
� � 0 for all � 4325 

%1, … ��&. Let �� 5 %1, … , ��& be the subset of all groups with positive population size. We can 326 

analyze the stability of this point through the Jacobian 6. The diagonals of the Jacobian are 327 

����� ��� �
���

 7��  �  � ���!������
���

7��� ����
� . ��

 ( �����


� 7����  �  ��

 ( �����


� 7����  for all � 4328 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2020. ; https://doi.org/10.1101/208934doi: bioRxiv preprint 

https://doi.org/10.1101/208934
http://creativecommons.org/licenses/by-nc/4.0/


 %1,2, . . . , ��&. As ��

 � 0, the diagonals are either 0 or reflect the sign of the behavioral game at 329 

that point. If the equilibrium is cooperative for all groups in the set �� ������

�|�� � 0 for all � 4330 

���, then the trace of the Jacobian is positive, Tr�6� � 0. Since the sum of all eigenvalues is 331 

positive, at least one eigenvalue is positive, and this vector of equilibrium population sizes is 332 

unstable. 333 

If at least one of the groups in �� is at a competitive state, then all eigenvalues could be 334 

negative, meaning the population dynamics could be at a stable equilibrium. Those competitive 335 

groups though are at a behaviorally unstable equilibrium. Since ����� is $� smooth for all �, then 336 

there exists a point of lower population size �� � ��

 that gives higher fitness ���%�� , ���


 &� �337 

����
�. If this is the case, coalition game theory tells us that a coalition of ��

 in group � will not 338 

form; instead, individuals will break off to form a group of size �=� � ��

 where �=�  is a group size 339 

that maximizes the group’s per capita growth rate. 340 

An individual’s preferred state is one that maximizes its fitness. A necessary condition is 341 

that �����

�|���� � 0 and 

���"���#|����
���

� 0. If there is an �
 satisfying these conditions for all groups, 342 

then diagonals of the Jacobian matrix 6 are all 0; therefore, the sum of all eigenvalues are 0. If 343 

this is the case, then there is either a mix of positive and negative eigenvalues (meaning unstable 344 

population dynamics) or all eigenvalues are 0. Because 
���"���#|����

���
� 0, the latter corresponds to a 345 

partially stable state and not a neutrally stable state. This means there are clear domains of 346 

instability on whose boundary the point �
 resides. 347 

According to this analysis, there will be a fundamental mismatch between stable 348 

behavioral dynamics and stable population dynamics in obligate cooperative species, and their 349 

overall population dynamics will always be unstable. 350 
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Discussion 351 

We have analyzed the population dynamics of obligately cooperative species with limited 352 

dispersal. We embedded a behavioral game with these properties into a model of population 353 

dynamics. There were three potential outcomes: 1) extinction of all groups, 2) unstable equilibria 354 

of population sizes within groups, and 3) group turnover. The cooperative species fails to achieve 355 

stable population dynamics due to a mismatch between the stability of the behavioral equilibrium 356 

and that of the population dynamics. While we are not the first to note that local extinctions and 357 

extirpations occur in population dynamics due to Allee effects, our model shows them to be 358 

intrinsic and unavoidable. Our findings join other mathematical analyses in generalizing the 359 

phenomenon to factors intrinsic of obligately cooperative species. 360 

Empirically, many obligately cooperative species including mole-rats, social spiders, and 361 

banded mongooses do not show stable population dynamics and instead show constant group 362 

turnover (Jarvis et al., 1994; Aviles, 1997; Clutton-Brock et al., 1999). Hypotheses with 363 

mathematical support have been developed to explain the phenomenon. Aviles (1999) noted that 364 

cooperation can magnify reproductive output, leading to oscillations and chaotic behavior, and 365 

ultimately extinction of a group. Chourchamp et al. (1999a) and Wang et al. (1999) both showed 366 

the importance of a within-group extinction threshold. Our results align further indicate the 367 

importance of extinction thresholds. However, whereas groups by assumption had extinction 368 

thresholds in prior models, we show that this extinction threshold necessarily emerges due to 369 

intergroup competition regardless of whether the Allee effect is strong or weak. Furthermore, 370 

more groups lead to greater instability. The models of Chourchamp et al. (1999a) and Wang et 371 

al. (1999) relied on external factors to drive the instability. With the addition of a behavioral 372 

game of group splitting and formation, we show that new groups will constantly be created, 373 
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leading to unstable population dynamics and an eventual collapse of group numbers. Among all 374 

the hypotheses for the instability of obligately cooperative systems, our model with an embedded 375 

behavioral game shows how these dynamics are not only intrinsic but unavoidable. 376 

Additionally, our results show that constant group turnover arises from non-chaotic 377 

deterministic interactions. This means that the localized group extinctions are a general, 378 

repeatable, and predictable pattern against which field studies and data can be tested. Using 379 

simulations and controlled experiments, we can now predict how attributes and traits of species 380 

along with environmental variables can affect the cooperative species’ population dynamics (see 381 

Future Directions). 382 

Short-Term Intragroup Dynamics 383 

 In our model, each group has its own population dynamic with an Allee effect. With the 384 

Allee effect, there is a non-zero optimal group size which maximizes fitness for the group 385 

members. We assume that individuals in a group whose size is beyond the behavioral optimum 386 

will split off to form their own smaller groups. This enhances overall fitness of the group. We are 387 

not the first to understand that group splitting can occur due to an Allee effect. For example, 388 

Crema (2014) incorporated the Allee effect into a simulation model to understand human 389 

settlement dynamics. Fission-fusion group dynamics, permanent or otherwise, are a well-studied 390 

aspect of cooperative societies with examples ranging from ants to cetaceans to humans. 391 

 In our model, we made some simplifying assumptions at the expense of realism. For both 392 

models, we assumed: 1) cooperation leads to fitness benefits, 2) individuals are identical and 393 

only distinguished by their present group size, 3) individuals seek to maximize fitness, 4) the 394 

overall number of players within a group changes according to the average fitness of group 395 

members, and 5) individuals have limited information, specifically they only know about the 396 
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fitness function of their present group. For the specific model, we added the assumptions that 6) 397 

individuals cannot leave a group and join another established group, i.e. groups form by the 398 

fission of existing ones, and 7) behavioral dynamics occur when the system has reached the 399 

population equilibrium. Some may have more relevance (1, 3, 4) to biological systems than 400 

others (2, 6, 7), but these assumptions allow for conclusions to be derived analytically. In most 401 

eusocial insects for example, individuals within a caste are largely identical (though not between 402 

castes), and in honey bees, creation of a new colony happens when the hive has reached its 403 

maximum capacity and splits into roughly equal sizes (a process known as swarming) (Fell et al., 404 

1977). Many obligate cooperators may not able to join their group of choice, though perhaps not 405 

as restrictive as modeled. Assumption 5 is particularly interesting. Individuals are necessarily 406 

limited in information about other groups, but how and to what extent is quite variable. 407 

Furthermore, many behaviors evolve such that they appear as if they have more information than 408 

possible, i.e. instinct. Overall, we feel the assumptions mimic key features of natural systems 409 

while maintaining analytical tractability.  410 

Long-Term Intergroup Dynamics 411 

Over time, the process of groups growing and splitting results in the long-term population 412 

dynamics of that species. Under conditions of strong inter-group competition, our model 413 

illustrates an initial split followed by both groups simultaneously shrinking to extinction or some 414 

non-equilibrial state. This likely manifests as a spatial dynamic. If inter-group competition is 415 

spatially dependent, then a group that splits into two, only to remain close, might compete 416 

strongly with each, leading to one or both of their extinctions. Rather, on a larger scale, we are 417 

likely to see group turnover under conditions of weak inter-group competition. Over longer time 418 
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scales, our model shows oscillations of the total population size with repeated instances of group 419 

extirpations and splitting events (Fig. 5).  420 

Despite unstable population dynamics, the overall population size and the number of 421 

groups can persist indefinitely within a bounded state. With moderately strong competition, if the 422 

groups become unequal in size, then the largest one will grow to maximum size while the 423 

smallest goes extinct. At this point, the remaining group splits into two and returns to the same 424 

original condition. In such a case, though one of the original groups is gone, a new group has 425 

taken its place akin to the way a lizard may regrow its tail. With weak competition and group 426 

turnover, the overall population exhibits a stable limit cycle. Smaller groups are constantly going 427 

extinct, resetting the system to a previous state. This bounds the range of size over which the 428 

overall population will cycle. Old groups go extinct and new groups are created which function 429 

identically to the old groups. In addition, while the population dynamics may be unstable, the 430 

distribution of group sizes can be relatively stable. 431 

Studies of long-term population dynamics which focus on the overall population but do 432 

not assess the fates of individual groups can attribute fluctuations in population dynamics to 433 

external factors. For example, recent population decline to near extirpation of the Isle Royale 434 

wolves is attributed to genetic inbreeding or predator-prey dynamics, and a call for human-435 

mediated immigration of new wolves into the Isle Royale population (Hedrik et al. 2014). While 436 

there are many environmental factors that may contribute to extirpations, especially those 437 

anthropogenic in nature, our model provides support that extirpations and group turnover may 438 

simply be an intrinsic property of social animals, a base upon which other factors may be added. 439 

The Limits of Our Model 440 
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 Altering the assumptions of our model results in different system dynamics, some of 441 

them being quite trivial. For example, little happens when we alter the function (eq. 1) for group 442 

dynamics, mostly resulting in the ability to split into multiple groups and a budding dynamic (see 443 

SI). Other alterations have larger impacts. Removing assumption 6 (individuals cannot join 444 

groups) allows for the fusion of smaller groups which can engender some stability (but not full 445 

stability) into the system. If these groups can fuse into larger groups, then they can escape 446 

extinction by being in groups larger than the extinction threshold as well as reducing intergroup 447 

competition. The inclusion of fusion reduces the upper and lower bounds of the non-equilibrial 448 

dynamics associated with total population size and group number (see SI for a specific example). 449 

It must be noted though that even with fusion, population dynamics are not truly stable and still 450 

result in limit cycles. 451 

 If we alter assumption 5 and let individuals have perfect information, they may not 452 

choose to split a group if inter-group competition is strong. At the core of the splitting process 453 

are individuals seeking a group size that maximizes fitness. If competition is strong (�
 � +�), 454 

then it is always better for individuals to be in one group of size 
 than two groups of size ��  455 

and 
 � ��  (0 � �� � 
) since the fitness cost of intergroup competition always outweighs the 456 

fitness benefits of being inside a group. Group splitting becomes a kind of “mutually assured 457 

destruction. If competition is weak (�
 � +�), then eventually intra-group competition will 458 

exceed inter-group competition. Even with perfect information, splitting will still occur, the only 459 

difference being that optimal group size is greater than previously ��

 � �

� . 460 

 We can even relax the central tenant of obligate cooperation (assumption 1). Instead, 461 

what if there are no fitness benefits to association, only a difference in fitness costs ����� , ��� �462 

1 � ���
��

� �
��. In such a case, individuals seek a group size which minimizes their cost. In such 463 
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a case, there can be a splitting dynamic and unstable population dynamics similar to what we 464 

have analyzed. The addition of cooperation guarantees an optimal group size of greater than 1. 465 

Under perfect information, there will only be an optimal group size if intergroup competition is 466 

not so strong as to create mutually assured destruction, yet not so weak as to have individuals 467 

choosing to be by themselves. Under limited information, then no matter the strength of inter-468 

group competition, individuals will choose not to associate with others.  469 

Conservation Implications 470 

While much has been learned from the social structure of species of high conservation 471 

concern (Pusey et al. 2007), our findings suggest future research and conservation efforts should 472 

add inter-group dynamics as a major driver for maintaining species population. Our modelling 473 

results invite more attention to measuring the size of intra-group Allee effects and the strengths 474 

of inter-group competition. Stephens and Sutherland (1999) and Courchamp et al. (2008) focus 475 

on the conservation implications of Allee effects in the context of species exploitation, habitat 476 

loss, and habitat fragmentation. Long-range dispersal is an important mechanism of species’ 477 

range expansions, and dispersal due to group splitting may provide further insights into Allee 478 

effects and biological invasions (Lodge, 1993; Taylor and Hastings, 2005). 479 

 Our results point to four main effects relevant for the conservation of cooperative species. 480 

Firstly, these dynamics are intrinsic and will happen regardless of the environmental conditions. 481 

Simply managing for greater environmental stability will not prevent group extinction or 482 

collapse. Persistent, and not necessarily stable, populations should be the goal. Secondly, the 483 

average overall population size over time will be smaller than the potential carrying capacity, 484 

and the overall population more prone to total extinction due to the constant fluctuations. 485 

Therefore, maximizing overall population is critical. Thirdly, there must be a sufficiently large 486 
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population to allow smaller groups to fuse. The smaller the group, the more likely it is below its 487 

internal extinction threshold. By fusing, these smaller groups can avoid the extinction threshold 488 

which also has the benefit of boosting average overall population size. And lastly, stronger inter-489 

group competition is more likely to lead to unstable dynamics. Diminished resources and lack of 490 

territory between groups can enhance competition and lead to greater instability. 491 

All four of the reasons point to the disproportionate impact that habitat fragmentation and 492 

loss should have on obligate cooperative species. Often conservation practices are implemented 493 

over smaller scales, with protection for species being implemented in a distinct area of land or 494 

for a specific group of that species. For such species, single large conservation areas may be 495 

preferable over several small ones (SLOSS) (MacArthur and Wilson 1967, Diamond 1975, 496 

Simberloff and Abele 1982). A single large conservation area not only mitigates issues such as 497 

inbreeding depression but also may stabilize the population dynamics of obligately cooperative 498 

species. Conservation areas should be large enough to harbor multiple groups ensuring minimal 499 

inter-group competition. Numerous widely dispersed groups can also withstand environmental 500 

stochasticity and may permit a robust fusion process that stabilizes overall population dynamics.  501 

 Prospectus 502 

 In this paper, we provide a simple model to derive the population dynamics of obligately 503 

cooperative species. Our work offers a starting point for further analysis of cooperative species 504 

population dynamics. Firstly, we can more realistic models by further exploring the assumptions 505 

of our model or adding features. Such examples would include movement between groups before 506 

equilibria, hierarchy and dominance within the group, meta-population and spatial dynamics, 507 

source-sink dynamics, evolution, explicit consumer-resource dynamics, and variations on 508 

intergroup competition including non-linear competition, asymmetric competition, exploitative 509 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2020. ; https://doi.org/10.1101/208934doi: bioRxiv preprint 

https://doi.org/10.1101/208934
http://creativecommons.org/licenses/by-nc/4.0/


vs. interference competition, and fixed and variable intergroup costs. Demographic stochasticity 510 

and kin structure are features of smaller obligate cooperative groups not included in this model. 511 

Evolution in particular may yet prove fruitful; one way a group may escape the effects of 512 

competition in this model is by increasing its growth rate. While the term �
 was used as inter-513 

group competition in this manuscript, it also includes growth rate. Higher intra-group growth 514 

rates concomitantly reduce �
. We can see this in Figure 5. After the second splitting event, the 515 

dark red group that goes extinct has a larger maximal group size and larger initial size (and 516 

therefore exerts greater competitive force) but a smaller growth rate than either the purple or 517 

gold group which both persist. This suggests that a higher growth rate within a group alleviates 518 

inter-group competition more so than a larger group size. This lines up with the hypothesis that 519 

the evolution of eusociality and division of reproductive work is due to group competition 520 

(Reeve and Hölldobler, 2007). 521 

 With more complex models, we can compare the mathematical results against real-world 522 

data. We see many examples of group splitting and turnover in nature. Group splitting occurs 523 

among rhesus monkeys, lions, sponges, male hyenas, and invasive Argentine ants (Chepko-Sade 524 

and Sade, 1979; Dittus, 1988; Pusey and Packer, 1987; Blanquer et al., 2009; Holekamp et al., 525 

1993; Suarez et al. 2000). We see group turnover among Isle Royale wolves, large primates, wild 526 

dogs, elephants, mole-rats, mongooses, spiders, and chimpanzees (Peterson and Page, 1988; 527 

Ripple and Beschta 2012; Kalpers et al., 2003; Burrows, 1991; Armbruster and Lande, 1993; 528 

Parker and Graham 1989; Jarvis et al., 1994; Aviles, 1997; Clutton-Brock et al., 1999; Goodall 529 

1986). In particular, the Damaraland mole-rats display a process much like the model. Smaller, 530 

newly founded groups are more likely to die out due to competition from larger, more 531 

established groups (Jarvis et al., 1994). Intergroup competition seems to be a factor in group 532 
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extirpations of chimpanzees (Goodall 1986). By comparing simulated data from our models to 533 

real-world data such as bee swarming or the colonization of wolves in new areas (Oldroyd et al., 534 

1997; Peterson and Page, 1988), we may be able to test how the mismatch between behavioral 535 

and population dynamics govern the loss and formation of groups. Because obligately 536 

cooperative species often have a significant impact on the ecosystem, whether through 537 

ecosystem engineering, their status as keystone species, or accounting for a significant 538 

percentage of the biomass of the ecosystem (in some species, all three), it is imperative that 539 

ecologists understand the population dynamics of these species (Jones et al., 1994; Ripple and 540 

Beschta, 2012; Hoelldolber and Wilson, 1990). Better knowledge will help ecologists and 541 

wildlife conservations better manage and save their populations and the ecosystems in which 542 

they live (Stephens and Sutherland, 1999).  543 
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Table 1: A reference table of all the parameters used in this paper. 683 

Symbol Definition �� The number of groups in a population 
� The vector of all group sizes ��  The size of group � ���  The vector of all group sizes except for group � �� The size of the rest of the population 
 Maximum potential group size � A growth rate scaling factor � The strength of intergroup competition �
 The ratio between the strength of intergroup competition and the growth 

rate scaling factor ��(� The fitness function of a group in our specific model ��(� The association function of a group in our specific model ��

  Equilibrium group size ��

 Optimal group size +� The main threshold of �
 that divides competition into weak and strong +� The secondary threshold of �
 that divides strong competition into 

moderately strong and extremely strong ,
 The smaller root of the fitness function when �
 � 0 -
 The larger root of the fitness function when �
 � 0 >%,& The size of the smallest group in a population after the �-th split 
,�,�


  The smaller root of the smallest group’s fitness function after the �-th split 
-�,�


  The larger root of the smallest group’s fitness function after the �-th split 
>',& The size of the rest of the population from the perspective of the smallest 

group after the �-th split ���(� The fitness function of group � ���(� The association function of group � �
 A solution to the equation ����
� � 0 �=�  The optimal group size of group � such that �(? � ��

 �� The set of all groups with positive population size 

  684 
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Fig. 1 A figure of the fitness (a, b) and association (c, d) functions of our model (a, c) and strictly 685 

competitive model ������ � � �1 
 ��

�
�� (b, d). (a) Our model’s fitness function (b) The 686 

competitive model’s fitness function (c) Our model’s association function (d) The competitive 687 

model’s association function. Open circles indicate the group size that gives the maximum 688 

fitness, i.e. optimal group size, while closed circles indicate the stable fitness equilibrium. One 689 

can see that in both systems, the optimal group size and stable fitness equilibrium do not match; 690 

however, there is greater implication on the population dynamics in our model as the association 691 

function has both positive and negative elements, lending itself to behavioral game. � � 1,� �692 

100 693 

Fig. 2 The isoclines, equilibria, and directional field of a two-group system under different 694 

strength of competition �
. (a) �
 � 1.1 
@  (b) �
 � 0.75 
@  (c) �
 � 0.4 
@  (d) �
 � 0.25 
@ . 695 

Solid dots represent stable equilibria while open dots represent unstable equilibria.  696 

Fig. 3 A schematic of the process of group growth and splitting. On the left, a circle represents a 697 

group. On the right is said group’s fitness function on top and association on the bottom. Our 698 

parameters for this model are � � 1,� � 100, � � �

���
. (a) The fitness function of a single group 699 

at extremely small population size �� � 0.5 (b) The fitness function of the group when it is at its 700 

optimal size �� � ��� � �

	
. In this case, all members of the group are at maximum fitness and 701 

satisfied with group size, but fitness is positive causing the group to continue growing. (c) At this 702 

point, the group is at maximum size �� � � so fitness is 0 and it will stop growing, but ����� � 0 703 

so the group members are unhappy. (d) The group just after splitting into two groups ���, �	� �704 

���� , ����. The new group (dotted line) leads to a lowering of fitness due to intergroup competition, 705 
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which in this case is below 0. Here, �� � �
 � �	, so both groups will go to an unstable 706 

equilibrium. 707 

Fig. 4 A flowchart for how our model evolves starting with a single, cooperative group. Red-708 

filled squares represent initial conditions, green-filled rounded rectangles represent transition 709 

states, yellow-filled circles represent “decision” points, and blue-filled hexagons represent end 710 

points. As seen here, there are either no endpoints (weak competition) or the endpoints are 711 

unstable (strong competition). 712 

Fig. 5 A time series of the populations when 0 � �
 � ��. One can see an initial buildup of 713 

groups and overall population before transitioning to group turnover and “oscillations”. Each 714 

group is represented by a color with groups constantly appearing, shrinking, and going extinct. 715 

Each new group was given a new � and � based on the logit normal distribution. The large, 716 

solid, vertical, black lines represent a time when the existing groups split. The dashed line 717 

represents the total population size.  718 
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Fig. 3 723 

 724 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 21, 2020. ; https://doi.org/10.1101/208934doi: bioRxiv preprint 

https://doi.org/10.1101/208934
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 4 725 
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