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Abstract 
BACKGROUND: GWAS of schizophrenia demonstrated that variations in the non-

coding regions are responsible for most of common variation heritability of the disease. It is 

hypothesized that these risk variants alter gene expression. Thus, studying alterations in gene 

expression in schizophrenia may provide a direct approach to understanding the etiology of the 

disease. In this study we use Cultured Neural progenitor cells derived from Olfactory 

Neuroepithelium (CNON) as a genetically unaltered cellular model to elucidate the 

neurodevelopmental aspects of schizophrenia. 

METHODS: We performed a gene expression study using RNA-Seq of CNON from 111 

controls and 144 individuals with schizophrenia. Differentially expressed (DEX) genes were 

identified with DESeq2, using covariates to correct for sex, age, library batches and one 

surrogate variable component.  

RESULTS: 80 genes were DEX (FDR<10%), showing enrichment in cell migration, cell 

adhesion, developmental process, synapse assembly, cell proliferation and related gene 

ontology categories. Cadherin and Wnt signaling pathways were positive in overrepresentation 

test, and, in addition, many genes are specifically involved in Wnt5A signaling. The DEX genes 

were significantly, enriched in the genes overlapping SNPs with genome-wide significant 

association from the PGC GWAS of schizophrenia (PGC SCZ2).  We also found substantial 

overlap with genes associated with other psychiatric disorders or brain development, 

enrichment in the same GO categories as genes with mutations de novo in schizophrenia, and 

studies of iPSC-derived neural progenitor cells. 

CONCLUSIONS: CNON cells are a good model of the neurodevelopmental aspects of 

schizophrenia and can be used to elucidate the etiology of the disorder.  
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Introduction. 
Schizophrenia (SCZ) is a devastating psychiatric disorder with an estimated lifetime 

prevalence of 0.55% worldwide (1). With heritability of about 81% (2), genetics plays a critical 

role in the disease’s etiology, however the mechanism by which genetic variation contributes to 

the disease is unknown. Many direct and indirect pieces of evidence indicate that aberrations in 

brain development are major contributors (3–5). Post-mortem studies of the brains of adults with 

SCZ provide important information about functional changes associated with the disease, but it 

is highly unlikely that the gene expression profiles of differentiated cells can provide a full picture 

of changes in neurodevelopment. Different biological models, such as hiPSC-derived neural 

progenitor cells (6) and olfactory epithelium derived cells/tissue (7,8) have been suggested to 

study neurodevelopmental aberrations in schizophrenia. For this study, we have used Cultured 

Neural progenitor cells derived from Olfactory Neuroepithelium (CNON) of individuals with, and 

without, schizophrenia (9). These cells are not genetically modified neural progenitors, actively 

divide, and migrate in 2D and 3D cultures. Here we present a study of transcriptome expression 

profiles using RNA-Seq (strand-specific, rRNA-depleted total RNA) in CNON lines derived from 

144 SCZ and 111 control (CTL) individuals. 

Materials and Methods 
Recruitment and sample collection. 

This study was approved by the University of Southern California and SUNY Downstate 

IRBs. We collected samples from 144 patients with DSM-IV criteria for schizophrenia (SCZ) and 

111 controls. Most patients and control subjects were recruited from participants of the Genomic 

Psychiatry Cohort (GPC) study (1R01MH085548) (10), and a few patients were recruited 

through Los Angeles county/University of Southern California outpatient psychiatric clinic.  

Given the common variation overlap of SCZ and Major Depressive Disorder (MDD) (11), we 
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excluded controls that endorsed either MDD probe question on the GPC screener (10), 

effectively removing individuals with a potential history of MDD. 

Cell culture and transcriptome sequencing 

We developed cell cultures from olfactory biopsies (12) as described previously (9).  

In brief, each biopsy sample was dissected into pieces approximately 1mm3 in size, 

placed on the surface of a 60mm tissue culture dish coated by Matrigel basement membrane 

(MBM) (BD Bioscience, San Jose, California, USA) reconstituted in Coon’s medium (1:2), and 

then every piece of tissue sample was covered by a droplet of full-strength MBM. After MBM 

gelatinizes, 5 ml of medium 4506 (Ghanbari et al., 2004) was added. Within 1–4 weeks of 

culturing, CNON cells were observed to grow out of the embedded pieces of tissue. Due to 

unique ability to grow through Matrigel, neural progenitors often populate large areas without 

presence of other cell types (supplemental Figure S1). Outgrown cells with a neuronal 

phenotype were then physically isolated using cloning cylinders and dislodged using Dispase 

(BD Bioscience). Cells collected from inside the cloning cylinders were further grown on tissue 

culture Petri dishes covered by reconstituted MDM in 4506 medium. RNA was purified from 

~400,000 cells grown on 6 cm Petri dishes (~90% of confluence), using the Direct-Zol RNA 

MiniPrep kit (Zymo Research), according to manufacturer’s protocol. RNA libraries were 

prepared in batches of 24-48 samples with approximately equal numbers of cases and controls 

with TruSeq Stranded Total RNA LT Library preparation kits with Ribo-Zero Gold (Illumina) 

according to manufacturer’s protocol, using a Hamilton STARlet liquid handling robot to 

increase library preparation consistency. Equimolar pools of at least 4 libraries, containing both 

cases and controls, were constructed after quantification using the KAPA Library Quantification 

Kit (Kapa Biosystems), and sequenced together using HiSeq2000 DNA Sequencers (Illumina) 

with 100 bp single-end reads. On average, each sample was run in 3.93 lanes across 3.91 flow 

cells, to reduce potential channel and flow cell bias. 
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Mapping and assignment of reads to genes  

We performed pre-mapping QC, read trimming, mapping and assignment to the sense 

strand of gene models (GenCode v22, max mismatch=6) using GT-FAR v12 

(https://genomics.isi.edu/gtfar) (see Supplemental Materials for detail). The number of uniquely 

mapped reads uniquely assigned to each gene model was used as a proxy of gene expression 

in DEX gene analysis. 

RT-qPCR 

Reverse transcription quantitative Polymerase Chain Reaction (RT-qPCR) was 

performed in duplicates using the Biomark HD (Fluidigm) on a Flex Six Gene Expression IFC 

(Integrated Fluidic Circuit), according to manufacturer’s protocols and using the recommended 

reagents. Normalized relative expression (to ACTB) was calculated using the ΔΔCt method (13), 

and log-transformed expression values were analyzed by ANOVA controlling for sex. 

Differential gene expression analysis 

We performed main differential gene expression (DEX) analysis between SCZ and 

controls using DESeq2 v1.16.1 (14) in R v3.4.1, an algorithm assessing difference between 

mean gene expression in groups using a generalized linear model and assuming a negative 

binomial distribution of RNA-Seq reads. The analysis used covariates of sex, age, 4 library 

batches and 1 surrogate variable (SVA v3.24.4). Procedures used to arrive at this covariate set 

are further described in Supplemental Materials. DESeq2's built-in normalization process was 

used. 

The analysis was done on 23,920 expressed genes, defined as having on average at 

least 3.5 reads per sample, based on the density plot of log-transformed baseMean for all genes 

(Supplemental Figure S2). Resulting p-values were adjusted for multiple comparisons based on 

the Benjamini-Hochberg False Discovery Rate (FDR) using the p.adjust function in R. 
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Transcripts Per Million transcripts (TPM) values were calculated by dividing the mean number of 

unnormalized reads uniquely mapped to a gene by the median transcript length (15) in Gencode 

22 for that gene and normalizing the resulting values so they sum to one million (16). 

Hierarchical clustering analysis was done in R using the 'hclust' function where the distance is 

calculated as one minus the Pearson correlation coefficient and using average linkage. 

 

Permutation analysis 

To test that our findings are not due to random variation we performed two forms of 

permutation analysis.  First, 1,000 analyses were run under the same conditions as the main 

analysis, except with labels for diagnosis randomly permuted for all samples. Second, 250 

analyses each of random subsets in 4 different configurations were analyzed: random half of 

cases vs. other half of cases, and random half of controls vs. other half of controls (null 

comparisons); and, due to the difference in number of cases and controls, random half of cases 

vs. random same number of controls, and random half of controls vs. random same number of 

cases (case/control comparisons). The numbers of differentially expressed (DEX) genes in the 

permuted analyses were compared to the number seen in the original, unpermuted analysis by 

Wilcoxon test. The number of DEX genes in the null comparisons was compared to the number 

DEX in the case/control comparisons by Mann-Whitney test. 

GWAS enrichment analysis 
We identified GWAS variants’ p-values within a given gene based on the PGC SCZ2 

dataset (https://www.med.unc.edu/pgc/results-and-downloads) and Gencode 22 annotation 

back-ported to human reference genome GRCh37 (hg19) to match coordinates used in GWAS. 

Fisher’s Exact Test was used to test for enrichment of genes co-localized with genome-wide 

significant (p<5x10-8) GWAS peaks and calculate estimated odds-ratio. Due to a very broad 
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peak in the HLA region (25 - 34 Mb of chromosome 6 in GRCh37 coordinates), genes from this 

region were removed from the analysis, as were genes from the Y chromosome. 

WGCNA 

Weighted Gene Correlation Network Analysis (WGCNA) (17) was performed for all 

expressed genes on residuals after correction for effects of three explicit batches as well as one 

surrogate variable, with a soft-threshold power of 5 to achieve approximate scale-free topology 

(SFT R2>0.85; truncated R2>0.95), and a minimum module size of 50 genes. Modules of co-

expressed genes produced by the algorithm were tested for enrichment of DEX genes by 

Fisher's exact test and for correlation of the eigengene with diagnosis (SCZ vs. control), after 

controlling for sex and age (linear model, no interactions); the p-value cutoff was adjusted for 

multiple comparisons. Gene set enrichment analysis was applied to modules that had a 

significant p-value on the aforementioned statistical tests. 

Results 
We collected samples of olfactory neuroepithelium and established CNON cell lines from 

144 individuals with DSM-IV SCZ and 111 CTL (Supplemental Table S1) (9,12). Strand-specific 

RNA-Seq of total RNA was performed, resulting in an average of 23.38 million (7.1 – 106.7 

million) uniquely mapped reads per sample, after exclusion of rRNA and mitochondrial genes.  

DESeq2 was used to normalize the read counts assigned to expressed genes and perform 

differential gene expression analysis. 

Characterization of CNON cells. 

The RNA-Seq data in this study are consistent with our previous observations using 

Affymetrix Human Exon 1.0 ST arrays (9) that CNON lines are neural progenitors 

(Supplemental table S2).  In order to determine the period of human brain development the 

CNON lines most resemble, we compared RNA-Seq data from CNON to 647 poly-A RNA-Seq 
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76 bp datasets from post-mortem human brain samples across 41 individuals, 26 brain regions 

and 10 developmental stages (from "Early Fetal" to "Middle Adulthood") (www.brainspan.org, 

(18)). To mitigate the differences in RNA-Seq methodology, we transformed the gene 

expression values of each CNON sample using the coordinates described by the principal 

components of the BrainSpan data. The first principle component of the BrainSpan data roughly 

corresponds to developmental age and separates the pre- and post-natal samples 

(Supplemental Figure S3). The CNON samples form a tight cluster within the prenatal samples, 

particularly those from the mid fetal period (weeks 13-24, second trimester). 

Genes differentially expressed in neural progenitor cells in SCZ 

Using our analysis model (see Supplemental Materials for details), 80 genes were DEX 

between SCZ and CTL at a false discovery rate (FDR) of 10%, corresponding to a maximum p-

value of 3.3x10-4 (Table 1; complete gene list in Supplemental Table S3). The average fold 

change was 1.8 (range 1.08 to 9.09) (Figure 1) at expression levels of 0.07 to 552 TPM.  

Table 1. Genes significantly DEX between SCZ and Control at FDR < 0.1. To facilitate the 
comparison of expression of each gene, normalized read counts were transformed to transcripts 
per million transcripts (TPM) (16), using the median transcript length (15) in Gencode release 22 
for each gene as gene length. Gene symbols and gene types are taken from Gencode release 
27 where available. Notes: 1) Gene lies under genome-wide significant PGC SCZ2 GWAS peak 
(19); 2) De novo non-silent mutations in the gene has been identified in patients with SCZ; 3) De 
novo missense mutation(s) in the gene has been identified in patients with autism spectrum 
disorder; 4) CNVs were identified in multiple patients with SCZ, 5) gene found significantly 
associated with psychiatric disorder or related traits (other than PGC SCZ2 GWAS). 

Ensembl ID 
Gene 

Symbol 
Gene Type TPM 

Log2 

Fold-

Change 

FDR Notes  

ENSG00000278099 U1 snRNA 4.84 3.184 9.77x10
-10

   

ENSG00000170627 GTSF1 protein_coding 0.362 2.162 5.50x10
-07

   

ENSG00000149564 ESAM protein_coding 0.347 -1.423 3.79x10
-06

  1, 2, 5 

ENSG00000115461 IGFBP5 protein_coding 552 1.045 5.54x10
-04

   

ENSG00000124749 COL21A1 protein_coding 0.926 1.184 2.31x10
-03

   

ENSG00000180447 GAS1 protein_coding 24.3 0.842 2.47x10
-03

   

ENSG00000157766 ACAN protein_coding 0.217 -1.232 5.69x10
-03

   

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2019. ; https://doi.org/10.1101/209197doi: bioRxiv preprint 

https://doi.org/10.1101/209197
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

ENSG00000164532 TBX20 protein_coding 0.115 -1.509 5.77x10
-03

   

ENSG00000135914 HTR2B protein_coding 2.74 1.169 5.77x10
-03

   

ENSG00000008517 IL32 protein_coding 2.33 1.044 5.77x10
-03

  

ENSG00000165197 VEGFD protein_coding 0.614 1.125 6.66x10
-03

   

ENSG00000141469 SLC14A1 protein_coding 7.48 -1.679 6.66x10
-03

   

ENSG00000260604 AL590004.4 lincRNA 0.602 0.813 9.83x10
-03

   

ENSG00000114251 WNT5A protein_coding 186 0.521 9.83x10
-03

   

ENSG00000184731 FAM110C protein_coding 0.591 -1.003 2.71x10
-02

  5 

ENSG00000162434 JAK1 protein_coding 81.7 0.180 2.98x10
-02

  3 

ENSG00000143631 FLG protein_coding 0.127 -1.248 3.41x10
-02

  3 

ENSG00000133048 CHI3L1 protein_coding 1.036 1.513 3.49x10
-02

 

ENSG00000118689 FOXO3 protein_coding 9.45 0.207 3.49x10
-02

 1, 5 

ENSG00000226237 GAS1RR lincRNA 0.719 0.503 3.49x10
-02

   

ENSG00000172156 CCL11 protein_coding 1.45 1.426 3.67x10
-02

   

ENSG00000230552 AC092162.2 lincRNA 0.460 0.707 4.12x10
-02

   

ENSG00000203648 AC007618.1 
processed_ 

pseudogene 
0.662 0.522 4.53x10

-02
 

  

ENSG00000076706 MCAM protein_coding 15.52 -1.012 4.53x10
-02

  5, 3 

ENSG00000109819 PPARGC1A protein_coding 2.09 0.715 4.53x10
-02

   

ENSG00000188227 ZNF793 protein_coding 8.96 0.244 4.61x10
-02

   

ENSG00000145819 ARHGAP26 protein_coding 16.85 0.324 4.61x10
-02

  3 

ENSG00000120324 PCDHB10 protein_coding 0.096 0.914 4.64x10
-02

   

ENSG00000135250 SRPK2 protein_coding 63.78 0.107 4.91x10
-02

 1, 5 

ENSG00000233476 EEF1A1P6 
processed_ 

pseudogene 
0.550 0.382 4.91x10

-02
   

ENSG00000112852 PCDHB2 protein_coding 1.22 0.647 4.91x10
-02

   

ENSG00000189058 APOD protein_coding 3.91 0.885 4.91x10
-02

   

ENSG00000120337 TNFSF18 protein_coding 3.05 1.216 4.91x10
-02

   

ENSG00000197181 PIWIL2 protein_coding 0.520 -0.718 4.91x10
-02

   

ENSG00000279118 AC093535.2 TEC 7.38 0.454 4.91x10
-02

   

ENSG00000277232 GTSE1-AS1 lincRNA 0.858 -0.423 4.91x10
-02

   

ENSG00000235531 MSC-AS1 antisense_RNA 36.55 0.343 5.50x10
-02

   

ENSG00000170921 TANC2 protein_coding 19.16 0.213 5.71x10
-02

  2, 5 

ENSG00000154721 JAM2 protein_coding 7.324 0.712 5.92x10
-02

   

ENSG00000137558 PI15 protein_coding 0.147 1.091 5.92x10
-02

 2 

ENSG00000124107 SLPI protein_coding 1.241 -2.265 5.92x10
-02

   

ENSG00000109158 GABRA4 protein_coding 0.362 0.483 5.92x10
-02

   

ENSG00000154229 PRKCA protein_coding 89.5 0.191 5.92x10
-02

  3 

ENSG00000113205 PCDHB3 protein_coding 0.136 0.846 5.92x10
-02

  5 

ENSG00000255583 AC084357.3 

transcribed_ 

unprocessed_ 

pseudogene 

0.819 -0.824 5.92x10
-02
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ENSG00000183690 EFHC2 protein_coding 0.162 0.908 5.92x10
-02

   

ENSG00000176896 TCEANC protein_coding 1.374 0.226 5.92x10
-02

   

ENSG00000021645 NRXN3 protein_coding 0.615 -0.797 6.20x10
-02

   

ENSG00000258071 ARL2BPP2 
processed_ 

pseudogene 
2.53 0.300 6.42x10

-02
   

ENSG00000104903 LYL1 protein_coding 0.485 -0.502 6.93x10
-02

  5 

ENSG00000169122 FAM110B protein_coding 17.59 0.387 7.28x10
-02

   

ENSG00000245680 ZNF585B protein_coding 30.62 0.194 7.28x10
-02

   

ENSG00000169306 IL1RAPL1 protein_coding 0.074 -0.899 7.28x10
-02

  3, 4 

ENSG00000068305 MEF2A protein_coding 24.27 0.212 7.81x10
-02

   

ENSG00000234155 LINC02535 lincRNA 0.797 -0.376 7.93x10
-02

   

ENSG00000272674 PCDHB16 protein_coding 0.648 0.610 7.93x10
-02

  3 

ENSG00000111371 SLC38A1 protein_coding 137 0.273 7.93x10
-02

   

ENSG00000236535 RC3H1-IT1 sense_intronic 2.202 0.334 7.93x10
-02

   

ENSG00000164265 SCGB3A2 protein_coding 5.455 0.395 7.93x10
-02

   

ENSG00000163815 CLEC3B protein_coding 6.303 0.691 7.93x10
-02

   

ENSG00000223361 FTH1P10 

transcribed_ 

processed_ 

pseudogene 

0.732 -0.906 8.33x10
-02

   

ENSG00000139508 SLC46A3 protein_coding 4.206 0.302 8.33x10
-02

   

ENSG00000173947 PIFO protein_coding 0.142 0.517 8.52x10
-02

   

ENSG00000146453 PNLDC1 protein_coding 0.181 1.274 8.52x10
-02

   

ENSG00000182240 BACE2 protein_coding 32.35 0.304 8.58x10
-02

   

ENSG00000113269 RNF130 protein_coding 24.13 0.173 8.78x10
-02

   

ENSG00000139926 FRMD6 protein_coding 284 0.263 8.81x10
-02

   

ENSG00000260522 AC106785.1 

processed_ 

pseudogene 2.283 0.385 8.83x10
-02

   

ENSG00000279250 AC022919.1 TEC 1.262 0.419 9.29x10
-02

   

ENSG00000226261 AC064836.1 

processed_ 

pseudogene 3.389 -0.519 9.88x10
-02

   

ENSG00000189067 LITAF protein_coding 452 0.250 9.88x10
-02

   

ENSG00000164244 PRRC1 protein_coding 34.65 0.131 9.88x10
-02

   

ENSG00000272769 AC097532.2 lincRNA 0.237 0.476 9.88x10
-02

   

ENSG00000174697 LEP protein_coding 1.893 1.342 9.88x10
-02

   

ENSG00000157216 SSBP3 protein_coding 4.987 0.264 9.88x10
-02

  2 

ENSG00000261824 LINC00662 lincRNA 21.58 0.205 9.88x10
-02

   

ENSG00000106459 NRF1 protein_coding 8.061 -0.142 9.88x10
-02

   

ENSG00000162383 SLC1A7 protein_coding 0.142 0.828 9.88x10
-02

   

ENSG00000228495 LINC01013 lincRNA 1.26 0.921 9.90x10
-02

   

ENSG00000197928 ZNF677 protein_coding 20.20 0.171 9.92x10
-02
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Figure 1. Volcano plot for SCZ vs. CTL DEX comparison. Genes with raw p < 10-5 are 

labeled. Red line indicates FDR < 10%. 

To evaluate the accuracy of RNA-Seq gene quantification and DEX analysis, we 

compared results with RT-qPCR. For that purpose, we used a subset of 146 samples and 

performed DEX analysis on RNA-Seq data on only these samples. From this list of DEX genes 

we selected 5 genes (CCL8, HTR2B, PLAT, PPARGC1A, and VAV3) to include genes with fold 

change differences in both directions and spanning a range of gene expression levels. 

Expression of these genes and ACTB (used for normalization) was assessed by RT-qPCR on 

the same set of 146 samples. Expression data from RT-qPCR and RNA-Seq were highly 

correlated within each gene (mean r=0.75, range 0.63 - 0.90, all p-values <2x10-15) 

(Supplemental Figure S4A-E), and mean expression of all six genes had correlation r=0.943 

(p=0.0047) (Supplemental Figure S4F). DEX of 4 of 5 genes was replicated, while one gene 
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(PLAT) did not reach significance (p=0.15) but shows a trend in the same direction as that seen 

in RNA-Seq (Supplemental Figure S4GH). 

Permutation analysis of differential expression 

To assess the probability that DEX findings could be due to random statistical variation, 

we performed two forms of permutation analysis. In the first, we randomly permuted the 

diagnosis labels, but held all other factors constant. We found a median of 11 differentially 

expressed genes at FDR<10%, which is significantly lower (p<2x10-16, Wilcoxon signed rank 

test) than in the unpermuted data. In the second permutation analysis, where we permute 

subsets of the data to compare case-control comparisons to null comparisons (SCZ vs. SCZ 

and CTL vs. CTL) (see Methods for detail), the null comparisons resulted in significantly fewer 

differentially expressed genes at FDR<10% (median=4, mean=38.45), as compared to 

case/control comparisons (median=9, mean=152.98); p<3.6x10-15 by Mann-Whitney test 

(Supplemental Figure S5 and Supplemental Materials). These permutation analyses strongly 

suggest that the majority of genes found to be DEX are not likely to be false positives.  

GWAS enrichment analysis 

It is thought that causal variants in SCZ GWAS loci regulate expression of genes 

involved in the etiology of SCZ (20,21). Previous studies have shown that regulatory variants 

are likely to be localized near to or within the genes they directly regulate (22), we tested the 

hypothesis that DEX genes are more likely to be co-localized with genome-wide significant 

(p<5x10-8) variants from the PGC SCZ2 GWAS (19), excluding the HLA region of chromosome 

6. Three DEX genes (ESAM, FOXO3, and SRPK2) were found to overlap independent genome-

wide significant variants (Fisher's exact test, odds-ratio=3.8, p=0.049) (Supplemental Figure 

S6).  Two other genes just missed being overlapped with genome-wide significant peaks.  DEX 

gene IL1RAPL1 is almost genome-wide significant (p=5.3x10-8), and AC007618.3 sits within an 

intron of CACNA1C, in which another intron contains one of the most significant GWAS signals 
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(19). For comparison, genes that were DEX (FDR<10%) based on either sex or age were not 

found to be enriched for overlap with SCZ GWAS variants (p>0.05). 

The index SNP of another GWAS-significant locus (rs56972983, chromosome 5) is an 

eQTL for PCDHB16, in GTEx v7 (aorta). Three other DEX protocadherin genes, PCDHB10, 

PCDHB2 and PCDHB3, also have eQTLs within a broader region of this GWAS peak. It is 

noteworthy that all 48 protocadherin genes transcribed in CNON from the alpha, beta and 

gamma clusters, are expressed at a higher level in SCZ. 

Gene set enrichment, pathway and network analyses of DEX genes 

Gene set enrichment analysis (GSEA) shows significant (corrected p<0.05) enrichment 

of the DEX genes in 47 GO terms from 10 categories (related groups of terms) (Table 2, 

Supplemental Table S4), including cell migration, cell adhesion, developmental process, cell 

proliferation, synapse assembly and PANTHER pathway analysis (23) shows over-

representation of DEX genes involved in the cadherin and Wnt pathways (FDR=1.39% and 

1.91% respectively). Hierarchical clustering of DEX genes further supports the finding of 

involvement of Wnt signaling (Figure 2). The most prominent cluster of correlated genes 

includes: WNT5A, the most expressed Wnt ligand gene in CNON; Leptin and JAK1, which 

regulate WNT5A expression; MCAM, which encodes a strong WNT5A receptor; PRKCA, which 

encodes protein kinase C, a protein involved in non-canonical Wnt/calcium pathways; 

PPARGC1A and FOXO3, which interact with β-catenin, a key molecule in Wnt signaling (Figure 

3). All together these results strongly indicate alteration of WNT5A signaling as one of potential 

causes of SCZ. 

Table 2: Gene Ontology enrichment results based on 80 DEX genes (FDR < 10%). GSEA 
done by g:Profiler (24) using the ordered query option that takes into account which genes are 
more significant. Hierarchical filtering was applied to produce only the most significant term per 
parent term. Complete table of significant terms is presented in Supplemental Table S4. P-
values were corrected for multiple comparisons by algorithm g:SCS, the default option in 
g:Profiler.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 4, 2019. ; https://doi.org/10.1101/209197doi: bioRxiv preprint 

https://doi.org/10.1101/209197
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

GO Term Name GO Term ID Corrected p-
value 

DEX Genes 

Angiogenesis GO:0001525 3.53E-06 11 genes 

Cell migration GO:0016477 9.48E-06 15 genes 

Cell adhesion GO:0007155 0.000125 16 genes 

Synapse assembly GO:0007416 0.00031 7 genes: IL1RAPL1, NRXN3, 
PCDHB2, PCDHB3, PCDHB10, 
PCDHB16, WNT5A 

Positive regulation of 
endothelial cell 
proliferation 

GO:0001938 0.000864 5 genes: CCL11, HTR2B, PRKCA, 
VEGFD, WNT5A 

Calcium-dependent 
cell-cell adhesion via 
plasma membrane 
cell adhesion 
molecules 

GO:0016339 0.00283 4 genes: PCDHB2, PCDHB3, 
PCDHB10, PCDHB16 

Regulation of cell 
proliferation 

GO:0042127 0.00291 12 genes 

Striated muscle 
hypertrophy 

GO:0014897 0.0094 5 genes: HTR2B, IGFBP5, LEP, 
MEF2A, PRKCA 

Regulation of 
lipoprotein lipid 
oxidation 

GO:0060587 0.0425 2 genes: APOD, LEP 

Mammary gland 
morphogenesis 

GO:0060443 0.05 3 genes: CCL11, IGFBP5, WNT5A 
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Figure 2. Heatmap and hierarchical clustering of DEX genes. Clustering was performed 

using average linkage and a distance of one minus the absolute value of the Pearson 

correlation coefficient. Lighter color indicates higher correlation. Genes were assigned to a 

group (colors in bar above heatmap) based on a cutoff at clustering distance of 0.6. 

WGCNA analysis 

WGCNA identified 23 gene expression modules containing 78.0% of expressed genes 

(18,636 genes). Module size ranged from 3,934 to 64 genes. Only module #3, containing 32 

DEX genes (out of 2,675 genes in the module), showed significant enrichment of DEX genes 

(Fisher’s exact test; OR=3.6; raw p=4.0x10-11). This enrichment was driven by genes that were 

in the main cluster of DEX genes seen in the hierarchical clustering (Figure 2), including 
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WNT5A, GAS1, and FOXO3. Based on GSEA, this module shows extremely significant 

enrichment for GO terms "cell cycle process", "chromosome segregation", and "DNA replication" 

(corrected p<5x10-18 for all), among others. Additionally, the module eigengene showed a 

significant correlation with SCZ status (p=0.004). 

Hierarchical clustering of samples based on the expression of genes in WGCNA module 

#3 shows a clear separation into two groups, an effect further supported by examination of the 

heatmap (Figure 4A). The same separation is apparent when SCZ and CTL samples are 

examined separately (Figure 4BC). The smaller subgroup shows an enrichment of SCZ 

samples as compared to controls (Fisher's exact test, p=3.6x10-05, OR=4.76). 

 

Figure 3.  Wnt signaling branches involving genes with differential expression between 

SCZ and control groups. Light green: DEX (FDR<10%), over-expressed in SCZ; light blue: 

DEX (FDR<10%), over-expressed in SCZ; dark-green: over-expressed in SCZ, p<0.05 

(nominally significant); dark-blue: under-expressed in SCZ, p<0.05; grey: not differentially 

expressed (p>0.05); empty box: unknown genes. (A) Regulation of WNT5A expression. 

WNT5A is regulated by JAK1, LEP, STAT3, IL6ST, and IL6, which are known as the STAT3-
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WNT5A signaling loop (25). All genes corresponding to these proteins have higher expression 

in SCZ group (p<0.05), the first two genes being DEX, pointing to specific mechanism of 

elevated WNT5A expression in SCZ. IL32, another DEX gene, may regulate IL6 production (26) 

and/or directly contribute to increased expression of WNT5A through activating STAT3. (B) Wnt 

signaling pathways. The information about involvement of WNT5A in induction of canonical 

signaling is conflicting, but it is generally agreed that it is mostly involved in non-canonical 

signaling. Three genes involved in canonical pathway show changes in expression in line with 

enhanced signaling. LRP5, co-receptor of fizzled, has higher expression in SCZ, while TLE, 

repressor of β-catenin target genes, has lower expression (p<0.05). GSK3B was previously 

implicated in bipolar disorder (27), another psychiatric disease which shares some genetic 

susceptibility with SCZ. GSK3B did not reach the level of transcriptome-wide significance in our 

study (#294 in rank of significance, p=0.002), but direction of expression change is in line with 

increased Wnt signaling. DEX gene FOXO3 encodes a transcription factor, which interferes with 

transcription factors of canonical Wnt signaling (28), is over-expressed in SCZ and its 

expression highly correlates with WNT5A expression in CNON. PPARG coactivator 1 alpha, 

also encoded by a DEX gene, alters expression of transcription factors involved in canonical 

Wnt signaling (29). Non-canonical WNT5A signaling pathways. Frizzled, Dishevelled, 

VANGL and PRICKLE are core proteins of the Planar Cell Polarity pathway, activated by 

WNT5A, with ROR2 (p<0.05) and PTK7 (p<0.05) being significant co-receptors (25,30). 

Complexes of Frizzled and Dishevelled are localized on the opposite side of cells from VANGL 

and PRICKLE, polarizing cells and playing a role in polarized movement (31). In CNON VANGL 

proteins are presented almost exclusively by under-expressed VANGL1 (p<0.05), while both 

PRICKLE1 and PRICKLE2 genes are expressed comparably, with PRICKLE2 being over-

expressed in SCZ (p<0.05).  MCAM, a DEX gene with lower expression in SCZ, encodes 

CD146, a strong WNT5A receptor for a different non-canonical signaling pathway that regulates 
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cell migration (32).  Over-expression of DEX gene protein kinase C could result from both Ca2+ 

and planar cell polarity (PCP) non-canonical Wnt signaling pathways. 

 

Figure 4. Heatmaps of sample-sample correlation based on genes from WGCNA module 

#3. (A) Heatmap for all samples. Color bar at top indicates SCZ (red) or CTL (blue) status. (B) 

Heatmap for only CTL samples. (C) Heatmap for only SCZ samples. Color bar at top indicates 

membership in a SCZ-enriched subset of samples (purple) or the main group of samples 

(yellow). 

Convergence with other genetic studies 

Although SCZ GWAS is considered the most general and direct way to identify causative 

common genetic variants, consideration of other related phenotypes, and other types of genetic 

studies, such as de novo mutations, mutations segregating with psychiatric disorders in 

multigeneration families, and gene expression studies in relevant models also provide 

information about genes likely involved in SCZ. We found that many genes identified in these 

studies are also DEX in our study.  FOXO3, SRPK2, BACE2, GABRA4, RC3H1, NRXN3, 

TANC2 and LYL1 are genome-wide significant in DEPICT-based association in GWAS meta-

analysis of intelligence and associated traits (33). SNP within PRKCA is significant in GWAS of 

neuroticisms (34). Four DEX genes have been reported to have de novo non-silent mutations in 

individuals with SCZ (PI15, TANC2 - (35), ESAM, SSBP3 - (36)), four have been reported to 

have de novo missense mutation(s) in patients with autism spectrum disorder (MCAM, PRKCA -
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(37), FLG (38), PCDHB16 (39)), copy number variations of IL1RAPL1 have been identified in 

multiple patients with SCZ (40) and multiple mutations in the same gene have been observed in 

individuals with autism spectrum disorders and intellectual disability (reviewed in (41)).  An 

exonic deletion in NRXN3 was found to segregate with neurodevelopmental and 

neuropsychiatric conditions in a three-generation Chinese family (42). Moreover, among 19 

genes most correlated with WNT5A (R>0.6) nine have de novo mutations in either SCZ, autism 

spectrum disorder or developmental disorder, demonstrating striking convergence between 

gene expression data and de novo mutation studies of SCZ on a pathway level.  In total, 18 of 

the 80 genes overlap with previously published results from genome-wide studies of psychiatric 

disorders, and some of them have supported evidence from several independent studies 

(ESAM, FOXO3, SRPK2, IL1RAPL1, TANC2, PRKCA, NRXN3). 

The largest transcriptome study of SCZ was performed by the CommonMind Consortium 

(CMC) using post-mortem adult dorsolateral prefrontal cortex (258 SCZ vs. 279 CTL) (43), 

which has a very different pattern of gene expression than CNON or the fetal brain 

(Supplemental Figure S3, and (18)). Only two genes showed significant differences after 

correcting for multiple comparisons in both studies (FAM110C and CLEC3B) and the 

differences were in opposite directions in both cases. However, correlation of test statistics for 

genes expressed in both studies was highly significant (r=0.174; p<2.2x10-16, n=14924 genes); 

this correlation increased to r=0.42 (p<2.2x10-16, n=453 genes) on the set of genes that were 

nominally significant in both studies.  

We also compared our results with data from studies of iPSC-derived neural progenitor 

cells, which are most similar to the first trimester samples in BrainSpan (44). We found three 

DEX genes, all changed in the same direction, in common with a study based on microarray 

expression profiling of 4 SCZ and 4 CTL individuals (ARHGAP26, NRXN3, LRRC61) (44), and 

there was a significant positive correlation in z statistics testing for differential expression 

between SCZ and CTL groups for genes with publicly available data (Pearson's r=0.117, 
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p=0.025, n=367 genes). This work was extended using RNA-Seq and two additional controls 

(4SCZ/6CTL) (45) and shared 5 genes with our DEX list (GAS1, WNT5A, BACE2, FRMD6, 

PRKCA); all genes except PRKCA, had the same direction of effect. As before, the overall 

comparison of test statistics with our study was significant (r=0.15, p=4.26x10-5, n=724 genes).  

This latter study implicated Wnt signaling in schizophrenia, which agrees with our findings of 

involvement of WNT5A in etiology of the disease. 

However, the largest SCZ study using iPSC-derived NPCs (10SCZ/9CTL) from the 

same group is significantly negative correlated in test statistics with our data for all genes (r=-

0.08, p<2.2x10-16, n=15,862).  The results of this latest study are also significantly negatively 

correlated with two previous studies from the same group (r=-0.33, p=7.87x10-12, n=412 with 

microarray study and r=-0.19, p=1.13x10-6, n=654 with RNA-seq study). 

Discussion 
Schizophrenia is a complex genetic disorder that originates during fetal development, 

typically manifests symptoms in adolescence and early adulthood, and persists throughout adult 

life.  While post-mortem brain transcriptome studies assess changes in gene expression of 

differentiated neuronal and glial cells in the adult brain, we developed a genetically unmodified 

cell-based system, CNON, to study the neurodevelopmental component of the disorder.  These 

cells, developed from olfactory neuroepithelium, are neural progenitors, and express a 

transcriptome most similar to the mid-fetal period of the brain (Supplemental Figure S3), a time 

of increased risk for the development of schizophrenia (46,47).  We examined differences in 

mean gene expression between SCZ and CTL groups, but other approaches for finding 

biologically important differences are also possible (48). We identified 80 DEX genes at 

FDR<10% and found an overrepresentation of genes annotated with gene ontology terms 

related to processes of cell proliferation, migration and differentiation, all fundamental aspects of 

neurodevelopment. 
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We looked for convergence of our transcriptome data analysis with results of other types 

of genomic or transcriptomic studies of SCZ or related psychiatric diseases that were performed 

on a comprehensive, genome-wide or transcriptome-wide basis. GWAS is considered the most 

general way to identify causative genomic loci associated with common variants. The main 

mechanistic explanation for involvement of GWAS loci in disease etiology is through altering 

gene expression (20,21). However, the specific causal SNPs are generally not known, and 

neither are the genes which they regulate, or the developmental stage or type of cells where the 

regulation is important for the development of the disease. Despite these complexities, our 

study shows a significant agreement between our DEX gene list and genome-wide significant 

loci in the PGC SCZ2 GWAS (odds-ratio=3.8, p=0.049). Other genomic approaches, such as 

identification of de novo non-synonymous mutations in psychiatric disorders, also provide 

independent evidence for involvement of some DEX genes with SCZ or neurodevelopment in 

general, suggesting that alterations in expression of some genes and changes in gene function 

could result in similar phenotype. Finally, a transcriptome study (45) of iPSC-derived NPCs, a 

similar cellular model of SCZ, agrees with our conclusion of involvement of Wnt signaling in 

SCZ etiology. 

Analysis of the DEX genes provides insight into the neurodevelopmental processes 

altered in SCZ.  These genes appear to function in a number of biological pathways and 

functions, with the largest group being involved in Wnt signaling in general, and WNT5A 

signaling in particular. Most DEX genes in this group (co-expressed with DEX gene WNT5A), as 

observed in both the hierarchical clustering of DEX genes (Figure 2) and the WGCNA analysis 

(Figure 4), have known functions in Wnt signaling.  The Wnt signaling pathway was also found 

to be over-represented in the PANTHER pathway analysis.  

Wnt signaling is one of the most versatile signaling mechanisms involved in regulation of 

different cellular and organismal functions, including development of organs and tissues, 

balance between cell proliferation and differentiation, cell migration, and stem and progenitor 
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cell maintenance. These functions are critical for proper brain development; for example, a 

crucial role of Wnt signaling in the developing cerebellum has been demonstrated (49).  Our 

finding of a perturbation in Wnt signaling is consistent with previous studies (reviewed in (50–

52), (53)).  As presented above, Brennand and colleagues found a gene expression signal of 

altered Wnt signaling, using both microarrays (6) and RNA-Seq (45). Genomic disruption of 

Disc1 (disrupted in schizophrenia 1), which segregates with psychiatric disorders including 

schizophrenia, results in an increased level of canonical Wnt signaling in neural progenitor cells 

(54). Gene expression in blood cells shows alterations in Wnt signaling in SCZ and BD, and 

plasma level of dickkopf 1 and sclerostin, known inhibitors of Wnt signaling, are decreased in 

patients (53). These studies and our results agree that Wnt signaling is enhanced in SCZ. 

In CNON lines, WNT5A has the highest expression of Wnt ligand genes (TPM=185.5) 

and is DEX (FDR=1.9%, SCZ>CTL).  Transcription of WNT5A is regulated by a JAK-STAT3 

signaling pathway, which includes DEX genes JAK1 (FDR=3%, SCZ>CTL) and Leptin (LEP, 

FDR=9.9%, SCZ>CTL) (Figure 3A) (25). Additionally, IL-32 (FDR=0.58%, SCZ>CTL) has been 

shown to increase the expression of IL-6, another JAK-STAT3 ligand (26), and may increase 

WNT5A through IL-6 or via STAT3.  Lastly, PI15 (FDR=0.059, SCZ>CTL), has been shown to 

induce WNT5A (55). We also observe two DEX genes in the downstream canonical signaling 

pathway of WNT5A; PGC1-alpha (FDR=4.5%, SCZ>CTL) and FOXO3 (FDR=3.5%, SCZ>CTL), 

the latter is a product of one of the three DEX genes that lies under a PGC SCZ2 GWAS peak 

(Figure 3B), providing convergence between the results of the two types of studies at the level 

of signaling pathways.  WNT5a is also involved in multiple interrelated non-canonical Wnt 

signaling pathways. There are two DEX genes whose products are involved in non-canonical 

Wnt signaling: MCAM (FDR=4.5%, CTL>SCZ), encoding cell surface glycoprotein CD146, and 

PRKCA (FDR=5.9%, SCZ>CTL), encoding protein kinase C alpha (PKC). CD146 is a high 

affinity receptor for WNT5A (32) and in conjunction with PKC regulates localized membrane 

retraction, establishing directionality of locomotion (32,56). 
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The DEX gene with the highest correlation with WNT5A is GAS1, growth arrest-specific 

protein 1. Transcription of this gene is induced by several Wnt ligands (57). Among the functions 

of GAS1 is attenuation of SHH signaling (57), one of key pathways in neurodevelopment. GAS1 

is known to regulate the proliferation of the external germinal layer and Bergmann glia, 

influencing the size of the cerebellum (58), which has been observed to be altered in SCZ (59). 

Analysis of individuals by hierarchical clustering and heatmap analysis for WGCNA 

module #3, which showed a significant enrichment of DEX genes, identifies a group of 

individuals with abnormal expression of genes involved either in WNT5A regulation or 

downstream Wnt signaling. This subset is significantly enriched for individuals with SCZ and 

may represent a molecular subtype. 

In summary, our results show that DEX analysis of CNON cells produces biologically 

meaningful results, demonstrates convergence with other genome- and transcriptome-wide 

studies of SCZ and related traits, and provides insight into specific mechanisms of 

developmental aspects of the disease. We also show that CNON are a good cellular model to 

study developmental aspects of brain disorders. Further studies using this model will improve 

the mechanistic view of SCZ etiology with finer detail. CNON cells are derived from living 

individuals, providing numerous opportunities for personalized medicine at a substantially lower 

cost than the development of iPSCs. Cell lines provide additional opportunities to test 

hypotheses using molecular tools such as CRISPR, siRNA and miRNA knock-down. These 

technologies can be combined with our ongoing epigenetic studies (60) and functional tests for 

proliferation, migration, cell adhesion, and to evaluate cellular phenotypes in 2D and 3D 

cultures. 
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