Abstract
Kinesin-2 motors power the anterograde intraflagellar transport (IFT), a highly ordered process that assembles and maintains cilia. It remains elusive how kinesin-2 motors are regulated in vivo. Here we perform forward genetic screen to isolate suppressors that rescue the ciliary defects in the constitutive active mutation of OSM-3-kinesin (G444E) in C. elegans sensory neurons. We identify the C. elegans DYF-5 and DYF-18, which encode the homologs of mammalian male germ cell-associated kinase (MAK) and cell cycle-related kinase (CCRK). Using time-lapse fluorescence microscopy, we show that DYF-5 and DYF-18 are IFT cargo molecules and are enriched at the distal segments of sensory cilia. Mutations of dyf-5 and dyf-18 generate the elongated cilia and ectopic localization of kinesin-II at the ciliary distal segments. Genetic analyses reveal that dyf-5 and dyf-18 are also important for stabilizing the interaction between IFT particle and OSM-3-kinesin. Our data suggest that DYF-5 and DYF-18 act in the same pathway to promote handover between kinesin-II and OSM-3 in sensory cilia.