Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The dynamics of preferential host switching: host phylogeny as a key predictor of parasite prevalence and distribution

Jan Engelstädter, Nicole Z. Fortuna
doi: https://doi.org/10.1101/209254
Jan Engelstädter
School of Biological Sciences, The University of Queensland, Brisbane, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: j.engelstaedter@uq.edu.au
Nicole Z. Fortuna
School of Biological Sciences, The University of Queensland, Brisbane, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

New parasites commonly arise through host-shifts, where parasites from one host species jump to and become established in a new host species. There is much evidence that the probability of host-shifts decreases with increasing phylogenetic distance between donor and recipient hosts, but the consequences of such preferential host switching remain little explored. We develop a mathematical model to investigate the dynamics of parasite host-shifts in the presence of this phylogenetic distance effect. Host trees evolve under a stochastic birth-death process and parasites co-evolve concurrently on those trees, undergoing host-shifts, co-speciation and extinction. Our model indicates that host trees have a major influence on these dynamics. This applies both to individual trees that evolved under the same stochastic process and to sets of trees that evolved with different macroevolutionary parameters. We predict that trees consisting of a few large clades of host species and those with fast species turnover should harbour more parasites than trees with many small clades and those that diversify more slowly. Within trees, large clades should exhibit a higher infection frequency than small clades. We discuss our results in the light of recent cophylogenetic studies in a wide range of host-parasite systems, including the intracellular bacterium Wolbachia.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted October 26, 2017.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The dynamics of preferential host switching: host phylogeny as a key predictor of parasite prevalence and distribution
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The dynamics of preferential host switching: host phylogeny as a key predictor of parasite prevalence and distribution
Jan Engelstädter, Nicole Z. Fortuna
bioRxiv 209254; doi: https://doi.org/10.1101/209254
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
The dynamics of preferential host switching: host phylogeny as a key predictor of parasite prevalence and distribution
Jan Engelstädter, Nicole Z. Fortuna
bioRxiv 209254; doi: https://doi.org/10.1101/209254

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4086)
  • Biochemistry (8761)
  • Bioengineering (6479)
  • Bioinformatics (23339)
  • Biophysics (11750)
  • Cancer Biology (9149)
  • Cell Biology (13247)
  • Clinical Trials (138)
  • Developmental Biology (7416)
  • Ecology (11369)
  • Epidemiology (2066)
  • Evolutionary Biology (15087)
  • Genetics (10398)
  • Genomics (14009)
  • Immunology (9121)
  • Microbiology (22040)
  • Molecular Biology (8779)
  • Neuroscience (47366)
  • Paleontology (350)
  • Pathology (1420)
  • Pharmacology and Toxicology (2482)
  • Physiology (3704)
  • Plant Biology (8050)
  • Scientific Communication and Education (1431)
  • Synthetic Biology (2208)
  • Systems Biology (6016)
  • Zoology (1249)