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Abstract	

FireCloud,	one	of	three	NCI	Cloud	Pilots,	is	a	collaborative	genome	analysis	platform	

built	on	a	cloud	computing	infrastructure.	FireCloud	aims	to	solve	the	many	challenges	

presented	by	the	increasingly	large	data	sets	and	computing	requirements	employed	in	

cancer	research.	However,	cost	uncertainty	associated	with	cloud	computing’s	pay-as-

you-go	model	is	proving	to	be	a	barrier	to	adoption	of	cloud	computing.	In	this	paper	we	

present	guidelines	for	optimizing	workflows	to	minimize	cost	and	reduce	latency.		Our	

guidelines	include:	(i)	dynamic	disk	sizing	to	efficiently	utilize	virtual	disks;	(ii)	tuned	

provisioning	of	virtual	machines	(VMs)	using	a	performance	monitoring	tool;	(iii)	taking	

advantage	of	steep	price	discounts	of	preemptible	VMs;	and	(iv)	utilizing	the	optimal	

parallelization	of	a	task’s	workload.			
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Introduction	

As	sequencing	costs	plummet	and	the	amount	of	genomic	data	generated	soars	[1],	the	

extraction	of	biological	insights	from	the	data	and	the	management	of	that	data	have	

emerged	as	significant	challenges	for	researchers.	The	maturation	and	availability	of	

large	public	data	sets	[2-5]	from	projects	such	as	The	Cancer	Genome	Atlas	(TCGA)	

(http://cancergenome.nih.gov/),	the	International	Cancer	Genome	Consortium	

(http://www.icgc.org/),	and	the	Genotype-Tissue	Expression	

(http://www.gtexportal.org/),	stand	to	provide	an	invaluable	opportunity	to	advance	

research,	if	the	data	can	be	made	widely	accessible	and	analyzable.	At	many	institutions	

the	challenges	of	reliably	and	cost-effectively	running	analyses	over	very	large	public	

and	private	datasets,	and	of	storing	these	vast	amounts	of	data,	are	pushing	local	

compute	and	storage	systems	to	their	limits	[1].	To	overcome	these	big	data	challenges	

as	a	community,	we	must	change	the	way	research	is	conducted.	We	need	to	replace	

redundant	and	costly	local	infrastructure	with	shared	resources	[6,	7],	provide	

infrastructure	to	reproducibly	analyze	and	securely	share	data	and	results,	make	public	

data	readily	accessible	to	researchers,	and	transition	to	parallelizable	and	elastic	

compute	and	storage	solutions.	The	National	Cancer	Institute’s	(NCI)	vision	for	the	

Genomic	Data	Commons	(GDC)	and	Cloud	Pilots[8]	sets	out	to	do	that.		

FireCloud	(firecloud.org),	one	of	the	three	NCI	Cloud	Pilots,	addresses	these	challenges	

with	the	creation	of	a	cancer	genome	analysis	platform	on	a	cloud	computing	
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environment	that	hosts	all	of	TCGA	data	and	is	loaded	with	state-of-the-art	tools	and	

workflows.	Using	the	elastic	compute	capacity	of	the	Google	Cloud	Platform	(GCP),	

FireCloud	makes	data	readily	accessible,	facilitates	collaboration	and	enables	

reproducible	science	by	providing	a	robust,	secure	and	scalable	platform	to	the	

community	at	large.	While	FireCloud	is	a	free	service,	compute	and	storage	costs	are	

charged	to	an	attached	Google	account	(for	available	credits,	see	Supplementary	Text	

S4).		FireCloud,	like	other	emerging	cloud-based	solutions	[9-11]	provides	analysts,	tool	

developers,	production	managers	and	the	broader	biomedical	research	community	with	

powerful	tools	and	extensive	resources	to	reliably	compute	across	the	increasingly	large	

data	sets.		

	

FireCloud	users	manage	and	perform	their	work	in	workspaces.	A	FireCloud	workspace	

is	a	computational	sandbox	that	holds	data,	method	configurations	(instructions	of	how	

to	run	a	workflow	on	the	workspace’s	data),	and	work	history.	Workspaces	can	be	

shared	with	other	users	to	facilitate	collaboration.	Central	to	the	workspace	is	the	data	

model	that	consists	of	entities	(e.g.	samples,	participants,	pairs,	and	groups	of	them),	

the	relationships	among	them,	and	attributes	attached	to	these	entities	(attributes	hold	

metadata	that	can	be	either	explicit	values	or	references	to	data	files	located	on	cloud	

storage).		Workflows	are	executed	on	entities	(or	groups	of	entities)	within	a	workspace,	

drawing	inputs	from	attributes	of	the	entities	and	writing	outputs	back	as	attributes,	

either	as	values	or	as	references	to	files	that	are	copied	to	the	cloud	storage	(i.e.,	Google	
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bucket)	that	is	associated	with	the	workspace.	Method	configurations	contain	the	

mappings	of	a	workflow’s	inputs	and	outputs	to	the	specific	attributes	in	the	data	

model.	Provenance	is	captured	and	managed	for	all	analyses	(executed	workflows)	run	

in	a	workspace.		

FireCloud	hosts	predefined	read-only	workspaces	that	contain	TCGA	data;	both	Open	

(i.e.	unrestricted	data)	and	Controlled	Access	data	(i.e.	data	that	requires	dbGaP	

authorization).	FireCloud	is	a	Trusted	Partner	for	hosting	TCGA	data.	FireCloud	

authenticates	users	through	their	Google	(e.g.,	gmail)	accounts.		FireCloud	manages	

authorization	to	TCGA	controlled	access	data	by	requiring	users	to	link	their	FireCloud	

account	with	their	eRA	Commons	account	through	a	second	round	of	authentication	

with	NIH	iTrust.	Users	that	have	been	granted	access	to	TCGA	controlled	access	data	

through	dbGaP	will	then	be	able	to	enter	FireCloud	Workspaces	with	controlled-access	

data.	We	have	recently	expanded	the	available	data	sets	to	include	image	and	

proteomics	data	for	TCGA	samples	and	pediatric	cancer	data	from	the	Therapeutically	

Applicable	Research	to	Generate	Effective	Treatments	(TARGET	database;	

https://ocg.cancer.gov/programs/target).	Users	may	clone	these	predefined	workspaces	

to	conduct	their	analyses	on	the	data.		

	

FireCloud	is	designed	to	support	collaborative	science	with	specific	controls	on	who	can	

access	different	resources.	Creators	of	workspaces	can	grant	access	and	rights	to	run	

jobs	to	other	users.	Similarly,	the	ability	to	access	and	run	a	workflow	is	controlled	by	its	
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developer.	The	scalability	and	ability	to	securely	share	data,	tools	and	results	enables	

large-scale	multi-institutional	collaborations	that	were	nearly	impossible	to	perform	

otherwise.	This	collaborative	environment	will	undoubtedly	significantly	accelerate	

cancer	research,	which	is	often	delayed	by	cumbersome	exchange	of	partially	and	non-

homogeneously	processed	data.		

	

The	architecture	of	FireCloud	is	outlined	in	Figure	1	(a	detailed	description	of	the	

FireCloud	system	and	its	component	services	is	available	at	our	online	documentation	

site,	www.firecloud.org).		The	FireCloud	portal	is	designed	for	a	large	range	of	users,	

including	researchers	with	backgrounds	in	biology,	computational	biology	and	

bioinformatics,	with	a	simple	user	interface	that	holds	analysis	workflows	and	tools.	The	

site	includes	an	online	forum	for	the	FireCloud	user	community.		

	

As	the	research	community	transitions	from	the	traditional	on-premises	hardware	

solution	(common	in	most	research	institutions)	to	cloud-based	systems,	numerous	

challenges	have	emerged.		One	of	the	most	vexing,	and	perhaps	a	significant	barrier	to	

the	research	community’s	adoption	of	cloud	computing,	is	the	move	to	the	cloud’s	pay-

as-you-go	pricing	model.	The	cost	of	the	traditional	on-premises	hardware	model	

consists	of	a	clear	upfront	cost	for	computer	hardware	(compute	and	storage)	as	well	as	

an	often	ignored,	continuous	cost	for	technical	maintenance	and	IT	support.	While	

controlling	costs	is	straightforward	and	consistent	with	fixed	budget	grant	funding,	the	
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compute	power	is	limited	by	the	available	hardware	and	there	is	no	way	to	handle	

surges	in	demand,	which	often	occur	in	research	projects.	Hardware	must	be	added	

regularly	to	keep	up	with	the	rapid	escalation	in	data	set	sizes	and	related	compute	

requirements.	In	contrast,	cloud	solutions	do	not	require	any	capital	outlay,	and	are	

more	similar	to	a	utility	(pay-as-you-go)	in	that	as	much	compute	and	storage	as	you	

need	is	generally	available,	and	you	are	only	charged	for	what	you	use,	whether	it	is	10	

minutes	or	10	months.	In	our	experience,	capacity	is	not	infinite,	but	the	cloud	can	

generally	handle	large	surges	in	demand.	While	the	scalable	and	elastic	cloud	

environment	addresses	research’s	spiky	demand	for	compute	power,	and	provides	the	

ability	to	run	large-scale	analysis,	there	are	still	challenges	such	as	the	existence	of	caps	

and	quotas	on	usage,	difficulties	in	predicting	and	controlling	costs,	and	the	ease	with	

which	a	user	can	incur	cost	overruns.	

			

Moving	to	a	cloud-	computing	environment	brings	with	it	a	host	of	new	issues	and	

complexities	for	the	users.	For	example,	on	most	commercial	clouds,	upload	of	data	to	

cloud	storage	is	free,	storage	and	compute	are	inexpensive,	however,	downloading	data	

is	relatively	more	expensive.	This	changes	the	way	users	need	to	think	about	and	

manage	their	data.	Data	that	is	readily	retrieved	from	the	source	(for	example,	the	GDC)	

can	be	deleted	after	the	analysis	is	complete,	leaving	only	the	smaller	(less	expensive)	

analysis	results	files	that	can	be	downloaded,	if	needed.	In	addition	to	adjustments	to	

data	management,	users	will	need	to	become	familiar	with	the	new	cost	model	and	the	
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types	of	charges	that	can	be	accrued	in	running	analysis	on	the	cloud:	hourly	rates	for	

the	different	VM	types	and	associated	virtual	disk,	costs	for	cloud	storage	options	

(ranging	from	$0.007	to	$0.26	per	GB/month),	and	data	egress	costs	which	vary	by	zone	

and	volume.		It	is	also	important	to	understand	where	cost	savings	are	available.	For	

example,	Google	offers	volume	discounts	for	high-volume	users,	and	also	makes	

Preemptible	VMs	readily	available	at	a	steep	discount	(~80%	discount).	All	major	cloud	

providers	offer	similar	pricing	and	discounts	(AWS	offers	Spot	Market	at	similar	saving	as	

Google	Preemptibles).		

	

Given	that	FireCloud	enables	the	running	of	large-scale	analysis	on	hundreds,	or	even	

hundreds	of	thousands	of	entities	with	the	launch	of	a	single	command,	it	is	possible	to	

accumulate	significant	charges	very	quickly.	For	example,	running	the	mutation	calling	

workflow	used	in	our	testing	for	this	paper	(5	tasks,	plus	one	25-way	scattered	task;	an	

overall	of	30	tasks)	across	our	test	set	of	100	TCGA	Breast	Cancer	patients	(100	patient-

pairs	of	tumor	and	normal	WES	=	200	BAMs)	requires	storage	for	4Tb	(200	x	~18Gb	=	

3.6Tb)	and	requires	3,000	VMs	(100	patient-pairs	x	30	tasks	=	3000)	and	3,000	attached	

virtual	disks.	Time	to	process	the	100	patient-pairs	(wall	clock	time)	is	the	time	of	the	

longest	running	patient	tumor/normal	pair	(between	1	and	4	hours),	whereas	total	

(non-concurrent)	time	is	closer	to	1,000	hours.	Currently	there	are	only	2	caps	on	costs,	

a	7-day	runtime	limit	on	VMs,	and	a	24-hour	limit	on	preemptible	(see	below)	VMs,	

leaving	much	room	for	cost	overruns.	Although	running	on	the	cloud	can	decrease	
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overall	costs	for	the	typical	user,	the	difficulties	of	estimating	and	managing	costs	may	

deter	researchers	from	migrating	to	the	cloud.	From	the	overall	NCI	perspective,	storing	

the	data	in	a	small	number	of	accessible	cloud	environments,	rather	than	the	current	

practice	of	storing	many	copies	on	different	local	systems,	will	provide	substantial	cost	

savings.		Therefore,	detailed	understanding,	control	and	management	of	costs	in	cloud-

environments	are	key	for	enabling	greater	adoption	of	this	new	model.	

To	address	these	challenges,	we	have	undertaken	an	evaluation	and	optimization	effort	

with	the	goal	of	exploring	different	cost-performance	tradeoffs	and	developing	

guidelines	to	assist	FireCloud	researchers,	analysts	and	workflow	developers	in	

optimizing	their	workflows	for	cost	as	well	as	latency.	

	

Methods	

For	the	purposes	of	this	paper,	we	chose	to	analyze	and	optimize	the	performance	of	a	

version	of	the	somatic	mutation	calling	workflow	available	in	FireCloud	(called	

MutationCalling_MuTect).	The	test	data	is	comprised	of	TCGA	Breast	Cancer	(BRCA)	

data,	both	whole-exome	sequencing	(WES)	and	whole-genome	sequencing	(WGS)	data	

(i.e.	BAM	files	[https://github.com/samtools/hts-specs]).	This	workflow	runs	on	a	

patient-matched	tumor/normal	pair,	or	a	set	of	pairs,	and	consists	of	6	separate	tasks:	

(i)	Prepare,	(ii)		MuTectSNV,	(iii)		MuTectFC,	(iv)	GatherAndOncotate,	(v)	

VariantEffectPrediction	and	(vi)	Report	(see	Supplementary	Text	S1	for	more	details).		
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MuTectSNV	(running	the	MuTect	[12]	somatic	mutation	caller),	the	most	resource-

expensive	of	these,	is	configured	to	be	scattered	25	ways	(i.e.,	the	genomic	coordinate	

space	is	split	into	25	equally-sized	intervals	which	are	analyzed	in	parallel),	and	the	

GatherAndOncotate	task	merges	the	results.		

Currently	Google	Cloud	Platform	does	not	report	costs	at	the	job	level.	However,	we	

needed	job-level	cost	reporting	to	optimize	workflow	and	task	costs	and	therefore	

found	it	necessary	to	develop	our	own	cost	estimation	tools.	For	this	analysis,	we	

estimated	costs	by	running	a	collection	of	tools	(Supplementary	Text	S2)	designed	to	

gather	job	information	(including	job	identifier,	job	runtime,	virtual	machine	type,	

virtual	disk	size	and	type)	and	estimate	runtime	costs	based	on	Google	Cloud	Platform	

pricing	information.		

In	order	to	analyze	the	performance	and	cost	of	a	workflow	in	FireCloud,	one	needs	to	

understand	how	workflows	are	defined	and	executed.	FireCloud	workflows	are	

comprised	of	one	or	more	executable	tasks	stitched	together	into	computational	

pipelines.	Workflows	are	described	in	the	Workflow	Description	Language	(WDL)	

(https://software.broadinstitute.org/wdl)	which	is	a	domain-specific,	human-readable	

language	for	describing	workflows	and	their	component	tasks.		Task	definitions	include	

specifications	of	their	inputs,	outputs	and	runtime	attributes	(e.g.,	Docker	image,	CPU,	

disk	and	memory	requirements).		Workflow	definitions	include	specifications	of	

workflow-level	inputs	and	outputs,	mappings	of	those	inputs	and	outputs	to	task	inputs	

and	outputs,	and	inter-task	“wiring”	(declaring	how	the	outputs	of	upstream	tasks	feed	
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into	the	inputs	of	downstream	tasks).	Each	executable	task	is	run	within	a	Docker	

container	(https://www.docker.com/)	hosted	by	a	virtual	machine	running	on	the	

Google	Cloud.	The	Docker	container	packages	all	of	the	code	and	system	environment	

required	to	run	a	task	as	a	single	executable	unit,	enabling	portability	of	task	

applications	onto	virtual	machines	running	anywhere	(either	on	the	cloud	or	on	a	

developer’s	laptop).		Docker	images	are	snapshots	of	Docker	containers,	and	are	

typically	stored	in	Docker	image	repositories	such	as	Docker	Hub	

(https://hub.docker.com).	

FireCloud	uses	GCP	to	run	its	workflows	(Supplementary	Figure	S1).	When	a	workflow	is	

launched,	FireCloud	submits	each	of	the	workflow’s	tasks	to	the	Google	Genomics	API	

Service	(v1alpha2	REST	API,	https://cloud.google.com/genomics/reference/rest/)	for	

execution	when	the	task’s	inputs	are	available	(inputs	may	be	drawn	from	both	the	

workflow’s	inputs	and	upstream	tasks’	outputs).	The	cost	of	a	workflow	is	the	total	cost	

of	all	jobs	(executed	instances	of	a	task)	run	in	a	workflow.		The	cost	of	a	job	is	the	sum	

of	its	charges	for	the	virtual	machine	it	runs	on	and	the	virtual	disks	attached	to	that	

machine.	All	VM	instances	are	charged	for	a	minimum	of	10	minutes,	and	after	10	

minutes,	they	are	charged	in	1-minute	increments,	rounded	up	to	the	nearest	minute.		

Disk	charges	are	prorated	based	on	a	granularity	of	seconds,	with	rates	per	Gigabytes	of	

provisioned	storage	per	month.	
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Results	

As	somatic	mutation	calling	is	an	essential	part	in	the	analysis	of	cancer	samples	and	is	

typically	run	across	a	large	number	of	tumor/normal	pairs	(in	particular	in	large-scale	

sequencing	projects),	cost	savings	is	our	primary	consideration	in	optimizing	the	

MutationCalling_MuTect	workflow.	In	some	applications,	for	example	in	clinical	settings,	

minimizing	latency	is	of	higher	priority.	Following	are	the	steps	we	have	taken	to	achieve	

cost	savings	with	some	considerations	for	latency	reduction.		

Use	dynamic	disk-sizing	to	provision	persistent	storage	(virtual	disk)	

In	testing	our	mutation	calling	workflows	on	large	cohorts,	we	found	a	low	frequency	of	

failures	caused	by	insufficient	disk	space.		Input	files	(e.g.,	BAM	files)	residing	on	cloud	

storage	need	to	be	copied	onto	a	VM’s	attached	virtual	disk	(i.e.,	localized,	which	does	

not	incur	a	charge)	in	order	for	a	job	to	process	the	files.		We	had	been	statically	

provisioning	the	size	of	the	attached	virtual	disk,	and	upon	examination,	saw	that	the	

failures	were	from	the	few	outsized	BAMs	in	the	cohort.	While	our	first	impulse	was	to	

increase	the	statically	specified,	one-size-fits-all	disk	size,	we	realized	that	the	

incorporation	of	dynamic	disk-sizing	into	our	Prepare	task,	in	addition	to	increasing	fault	

tolerance,	had	cost	saving	implications.	The	workflow’s	Prepare	task	now	receives	as	

input	the	sizes	of	all	workflow	input	files	and	calculates	the	virtual	disk	size	

requirements	for	each	of	the	down-stream	tasks,	thus	ensuring	that	there	are	no	

oversized	(and	thus	wasted)	disks	or	undersized	disks	leading	to	failures.				
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Tune	provisioning	of	VMs	with	aid	of	a	performance-monitoring	tool		

We	struggled	with	higher-than-expected	costs	as	we	ran	our	mutation	calling	workflow	

on	increasingly	larger	data	sets,	and	we	recognized	the	value	of	measuring	the	resource	

utilizations	of	each	task	in	the	workflow,	especially	MuTect,	the	most	time	consuming	

and	thus	costly	task	in	our	workflow.	Accordingly,	we	incorporated	dstat,	

(http://dag.wiee.rs/home-made/dstat/)	a	tool	for	runtime	monitoring	of	utilization	of	

CPU,	memory	and	disk	read	and	write,	into	each	of	the	workflow’s	tasks.	Dstat-graph	

(http://lamada.eu/dstat-graph/)	a	companion	tool,	can	present	the	results	of	dstat’s	

output	logs	in	useful	graphs	that	are	easily	interpretable.		

Our	examination	of	the	dstat	output	(Figure	2)	of	the	MuTect	jobs	showed	that	the	CPU	

utilization,	except	for	a	few	brief	spikes,	was	just	under	50%.	We	determined	that	

FireCloud	was	requesting	as	its	default	VM	type	(n1-standard-2)	Google	Compute	

Engine’s	standard	machine	type	with	2	virtual	CPUs	and	7.5	GB	of	memory,	but	MuTect	

is	a	single-threaded	application	that	can	only	utilize	a	single	CPU	per	application	

instance.		By	adding	runtime	attributes	that	directed	FireCloud	to	request	a	standard	

machine	type	with	1	virtual	CPU	and	3.75	GB	of	memory,	excess	CPU	capacity	was	

eliminated	and	the	compute	costs	associated	with	the	MuTect	task	were	halved	with	no	

impact	on	task	latency.		Prior	to	this	change	VM	costs	for	running	MuTect	on	a	single	

WES	pair	averaged	$0.86;	after	moving	to	the	single-CPU	machine	type,	MuTect	costs	

averaged	$0.43	per	WES	pair	(Table	1).	
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Use	of	preemptible	virtual	machines	

FireCloud	users	can	take	advantage	of	the	Google	Cloud’s	Preemptible	VMs	and	

potentially	realize	substantial	reduction	in	workflow	compute	costs.	Preemptible	VM	

instances	are	excess	compute	capacity	that	Google	makes	available	at	a	steep	discount	

(up	to	80%	less	expensive	than	normal	instances).	However,	Google	may	terminate	

(preempt)	these	instances	if	it	needs	those	resources	for	other	uses	and	will	always	

terminate	preemptible	instances	after	they	run	for	24	hours.		Users	are	charged	for	

preemptible	VMs,	regardless	of	whether	or	not	the	VMs	are	preempted.		(Users	are	not	

charged	if	preemption	occurs	within	the	first	10	minutes	of	a	job.)	

One	of	the	benefits	of	cloud	computing	is	the	seemingly	infinite,	‘elastic’	compute;	

however,	in	running	large-scale	analysis,	it	is	not	uncommon	to	encounter	congestion	

on	the	cloud	platform.	Furthermore,	cloud-based	platforms	are	not	designed	to	provide	

100%	reliability.		A	goal	of	analysis	platforms	like	FireCloud,	therefore,	are	to	create	

fault-tolerant	computational	services	for	users	on	top	of	cloud-based	infrastructures.	

This	relieves	analysts	from	building	error	recovery	logic	into	their	workflows	and	

operations,	and	provides	resilience	in	the	presence	of	transient	errors.		

FireCloud’s	workflow	execution	service	(called	Cromwell)	is	designed	to	be	fault-tolerant	

to	preemptions.		It	employs	a	simple	retry	policy	when	jobs	running	on	preemptible	VMs	

fail	due	to	preemption:	a	task	runtime	parameter	(defined	in	the	WDL)	indicates	the	

maximum	number	of	attempts	Cromwell	can	make	to	run	a	task	on	a	preemptible	VM	
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before	running	it	on	a	full	price	non-preemptible	machine.		(If	this	parameter	is	set	to	0,	

its	default	value,	Cromwell	makes	no	attempts	to	run	the	task	on	a	preemptible	VM	and	

immediately	runs	it	on	a	normal	VM	instance.)	

While	the	cost	savings	achieved	by	running	jobs	on	preemptible	VMs	can	be	

considerable	(Table	1),	those	savings	are	subject	to	the	varying	workload	on	the	GCP.	

The	probability	that	the	Cloud	Platform	will	terminate	a	preemptible	VM	instance,	while	

generally	low,	will	vary,	and	can	spike	during	times	of	congestion	within	the	Cloud.		

We	developed	a	simple	stochastic	model	(Supplementary	Text	S3)	for	the	compute	costs	

(and	latency)	of	tasks	configured	to	run	on	preemptible	VMs.		Employing	the	model,	we	

derived	a	formula	for	the	expected	cost	ratio:	the	ratio	of	the	expected	cost	of	running	a	

task	on	preemptible	VMs	and	the	cost	of	running	the	same	task	on	a	non-preemptible	

VM.		We	conducted	thousands	of	runs	of	tasks	with	known	execution	times	and	

calibrated	our	model	with	data	collected	from	those	runs.		Having	observed	preemption	

rates	within	10-minute	intervals	no	greater	than	5%,	we	set	our	simple	model’s	

constant-valued	hazard	function	λ(t)	=		λ	to	be	~0.3,		where	the	unit	of	time	is	hours.		

With	this	calibrated	hazard	function	value,	our	model	led	to	the	following	guidelines	for	

use	of	preemptibles:	

1. For	jobs	with	(un-preempted)	runtimes	up	to	8	hours	in	length,	we	recommend	

employing	preemptible	VMs.				

2. For	jobs	with	runtimes	less	than	4	hours,	use	preemptible	VMs	with	N=5,	where	
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N	is	the	runtime	parameter	specifying	the	maximum	number	of	attempts	

Cromwell	makes	before	running	the	job	on	a	normal	VM		

3. For	jobs	with	runtimes	between	4	and	8	hours,	use	preemptible	VMs	with	N	=	2.	

Note	that	these	guidelines	are	based	on	the	preemption	rates	we	observed	on	the	

Google	Cloud	Platform	when	our	experiments	were	conducted.		Those	rates	are	subject	

to	change.			

Leveraging	multiprocessing	to	reduce	task	latencies	in	FireCloud	workflows	

Workflow	latency	(e.g.,	“wall	clock	runtime”	includes	both	processing	time	and	the	time	

it	takes	to	copy	files	to	the	virtual	disk)	can	be	reduced	by	parallelizing	the	processing	

activities	required	by	the	workflow.		While	inter-task	dependencies	constrain	the	level	

of	parallelism	amongst	a	workflow’s	tasks,	workflow	developers	can	distribute	an	

individual	task’s	workload	across	multiple	instances	of	that	task	to	reduce	workflow	

latency.		For	many	tasks,	input	data	can	be	divided	into	smaller	slices	that	can	be	

processed	in	parallel.	After	all	slices	have	been	processed,	the	outputs	can	be	assembled	

into	a	single	output.	

Currently	there	are	two	general	approaches	for	leveraging	multiprocessing	to	reduce	

task	latencies	in	FireCloud	workflows.		The	first	is	to	employ	WDL’s	scatter	clause	to	

scatter	an	individual	task’s	workload	across	multiple	instances	of	that	task,	each	running	

on	its	own	VM	instance	(each	with	an	attached	virtual	disk)	on	the	cloud;	we	will	refer	to	

this	as	an	N-way	scatter.		The	second	is	to	run	multiple	instances	of	the	same	task	on	a	
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single,	large	multi-core	VM	(with	a	single	attached	virtual	disk)	capable	of	running	

multiple	processes	in	parallel;	we	will	refer	to	this	as	M-way	multiprocessing.		Both	

approaches	yield	similar	savings	in	overall	task	latency.		In	both	cases,	the	latency	is	that	

of	the	longest	running	process.		The	question	becomes	which	of	the	two	is	the	most	cost	

effective.	

There	are	multiple	factors	impacting	the	relative	costs	of	the	two	approaches:	(i)	the	

relative	pricing	of	the	small	VM	used	in	N-way	scattering	and	the	large	VM	used	in	M-

way	multiprocessing;	(ii)	the	relative	utilizations	of	the	available	CPU	capacity	for	each	of	

the	two	approaches;	and	(iii)	the	costs	of	persistent	storage	(i.e.,	attached	disk).		The	

majority	of	our	somatic	mutation	calling	workflow’s	workload,	and	thus	cost,	is	

attributable	to	the	running	of	the	MuTect	task.		We	compared	the	costs	of	scattering	

MuTect	across	25	single-CPU	virtual	machines	(N-way	scatter,	N=25)	vs.	the	cost	of	

running	32	instances	of	MuTect	on	a	single	32-CPU	virtual	machine	(M-way	

multiprocessing,	M=32).		We	assessed	the	impact	each	of	the	above	factors	had	on	the	

relative	costs	of	the	two	approaches.			We	ran	the	mutation	calling	workflow	on	both	

WES	and	WGS	data	sets.			

Machine	Pricing	

Because	Google’s	per-CPU	pricing	($0.04	per	CPU	core	hour)	is	the	same	for	all	standard	

machine	types,	as	long	as	standard	machine	types	are	used	in	both	parallelization	

approaches,	VM	pricing	differences	alone	cannot	introduce	a	cost	differential	(32-CPU	
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machine	is	32	times	more	costly	than	a	1-CPU	machine,	but	it	can	also	process	32	times	

the	workload).		However,	if	the	adoption	of	M-way	multiprocessing	requires	the	use	of	a	

“high-memory”	machine	type,	the	price	differential	(the	per	CPU	pricing	for	a	high-

memory	machine	is	$0.063	per	CPU	core	hour)	will	make	M-way	multiprocessing	more	

expensive	than	N-way	scatter.		

Utilizations	of	the	available	CPU	capacity		

Idle	VM	CPU	capacity	on	a	running	VM	incurs	wasted	charges,	increasing	the	cost	of	

running	a	workflow	on	the	cloud.		We	encountered	this	when	employing	M-way	

multiprocessing	for	the	MuTect	task	in	our	somatic	mutation	calling	workflow.		The	

reads	were	divided	across	32	equal-size	genomic	intervals,	and	each	interval	had	a	single	

MuTect	process	dedicated	to	it.		Because	the	task	loads	are	not	equal	despite	the	evenly	

sized	genomic	intervals,	the	processes	ended	at	different	times,	with	the	dstat	logs	and	

graphs	revealing	a	long	“tail”	where	all	32	of	the	VM’s	CPUs	were	not	fully	utilized.		This	

inefficiency	is	avoided	with	N-way	scatter	because	VMs	are	terminated	as	soon	their	

respective	processes	are	completed.	This	was	borne	out	in	cost	comparisons	of	N-way	

scatter	and	M-way	multiprocessing	(Figure	3).		One	way	to	remedy	this	issue	and	still	

employ	M-way	multiprocessing	on	the	large	32-CPU	VM	is	to	divide	a	BAM’s	reads	

across	a	larger	number	of	genomic	intervals.		A	single	dedicated	MuTect	process	will	still	

process	each	interval,	but	as	each	process	completes,	a	new	MuTect	process	is	launched	

to	process	the	next	genomic	interval.		The	VM’s	32	CPUs	will	be	kept	busy	as	long	as	

there	are	additional	intervals	to	be	processed.		This	will	reduce	the	length	of	the	tail,	but	
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not	fully	eliminate	it	(supplementary	Figure	S2).	

Costs	of	persistent	storage	(i.e.,	attached	virtual	disk)	

If	the	persistent	storage	requirements	for	a	single	VM	in	the	N-way	scatter	is	1/N	that	of	

the	single	VM	in	M-way	multiprocessing,	then	the	two	approaches	will	have	similar	

persistent	storage	costs.		In	our	current	system	and	design	of	the	workflow,	however,	

the	persistent	storage	requirement	of	a	single	small	VM	is	identical	to	that	of	the	large	

VM	because	each	VM	instance	requires	a	complete	copy	of	both	tumor	and	normal	

BAMs,	despite	the	fact	it	is	only	operating	on	a	slice	of	those	BAMs.		Thus,	the	aggregate	

cost	of	persistent	storage	for	the	N-way	scatter	is	N	times	that	of	M-way	

multiprocessing,	making	the	persistent	storage	costs	of	the	N-way	scatter	significantly	

greater	(by	a	factor	of	N)	than	the	storage	costs	for	M-way	multiprocessing.		For	WES	

analysis	(with	typical	BAM	file	sizes	in	the	range	of	15-25	GB)	VM	costs	outweigh	the	

costs	of	persistent	storage	attached	to	VMs	(9%	of	the	total	costs	are	attributable	to	

storage);	even	with	the	factor	of	N	difference	in	storage	costs	between	the	two	

parallelization	approaches,	we	found	that	N-way	scatter’s	larger	persistent	storage	costs	

did	not	tip	the	cost-efficiency	balance	towards	M-way	multiprocessing.		For	WGS	

analysis	(with	typical	BAM	file	sizes	often	exceeding	150	GB)	persistent	storage	costs	in	

an	N-way	scatter	accounted	for	a	much	larger	percentage	of	overall	costs	(at	least	40%),	

making	M-way	multiprocessing	at	least	as	cost	efficient	at	N-way	scattering,	and	

definitely	less	costly	when	working	with	high-coverage	WGS	BAMS	(300	GB	or	larger).		
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Regardless	of	whether	one	chooses	N-way	scatter	or	M-way	multiprocessing,	we	

recommend	employing	preemptible	VMs,	subject	to	the	preemptible	guidelines	we	

presented	earlier.		Note,	however,	that	the	preemption	of	the	large	VM	used	in	M-way	

multiprocessing	leads	to	a	greater	amount	of	work	being	lost	and	can	lead	to	costs	

greater	than	those	of	running	on	non-preemptible	VMs.		The	risks	of	this	can	be	limited	

by	keeping	the	preemptible	parameter	low	(e.g.,	N	≤	2).	

	

Discussion	

For	this	paper,	we	set	out	to	optimize	a	somatic	mutation-calling	workflow	primarily	for	

cost,	but	also	for	latency.	From	this	effort,	we	gained	insights	into	the	sources	that	

contribute	to	the	cost	and	were	then	able	to	develop	generalizable	approaches	that	are	

applicable	to	other	workflows.	By	increasing	the	visibility	of	cost	contributors	and	

providing	approaches	for	managing	them,	we	hope	to	help	lower	the	barriers	to	the	

adoption	of	FireCloud	and	cloud	computing	in	general.			

General	guidelines	for	optimizing	workflows	follow:	i)	use	dynamic	disk	sizing	to	

accurately	size	virtual	disk;	ii)	tune	provisioning	of	task	VMs	with	aid	of	a	performance	

monitoring	tool	like	dstat	to	eliminate	wasted	CPU	and	memory	resources;	iii)	take	

advantage	of	steep	price	discounts	of	preemtible	VMs;	iv)	utilize	the	optimal	

parallelization	of	a	task’s	workload,	either	across	multiple	VMs	or	multiple	processes	

within	a	single	large	VM.	With	the	exception	of	the	recommendations	for	use	of	
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Google’s	Preemtible	machines,	our	guidelines	are	generalizable	to	other	commercial	

clouds.		

We	have	optimized	our	publicly	available	best	practice	workflows	in	FireCloud	(see	

Supplementary	Text	S5)	in	accordance	with	the	guidelines	above	for	the	use	of	analysts	

and	researchers.	These	workflows	are	publicly	available	for	the	FireCloud	user	

community	in	the	Method	Repository.		For	pipeline	developers,	we	have	created	a	

workspace	(see	Supplementary	Text	S5)	that	contains	the	methods	that	were	used	for	

the	work	on	this	paper.	We	recommend	using	these	workspace	methods	as	models	for	

implementing	the	guidelines	in	this	paper.	To	estimate	workflow	costs,	we	recommend	

running	the	optimized	workflow	on	a	small	subset	of	data	to	capture	costs	first	(charges	

can	be	viewed	at	console.developers.google.com).	Users	can	then	infer	the	costs	of	

running	the	workflow	on	the	larger	dataset.		

We	believe	that	a	cloud	provider	agnostic	system	is	in	the	best	interests	of	the	

community,	however,	for	expediency	we	built	FireCloud	leveraging	as	many	Google	

services	as	needed.	We	expect	that	future	versions	of	FireCloud	will	be	enabled	to	utilize	

other	commercial	clouds.				

We	anticipate	that	future	technical	innovations	will	further	reduce	the	cost	of	running	

computational	workflows	on	the	cloud.	For	example,	data	streaming	from	cloud	storage	

will	avoid	data	localization	and	the	resulting	costs	for	virtual	disk	storage.	In	addition,	

we	expect	the	development	of	useful	tools	to	manage	costs;	for	example,	GCP	or	third	

party	tools	for	more	granular	cost	reporting,	or	real-time	reporting	of	charges	
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(metering).	As	new	technologies	for	distributed	computing	are	emerging,	Spark	

(http://spark.apache.org/)	for	example,	they	will	be	incorporated	into	FireCloud.	Further	

cost	and	latency	reductions	may	be	possible	through	the	adoption	of	these	new	

technologies.	
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Figures	
Figure 1:	

 
Figure	1	FireCloud	schematic.	FireCloud	is	a	collaborative	platform	for	genomic	analysis	that	
runs	on	the	Google	Cloud	Platform.		User	interfaces	are	a	Web	GUI	and	a	RESTful	API	for	
programmable	access. 
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Figure 2:  	

 
	

 

Figure	2	CPU	utilization	plot.	Plot	generated	by	applying	dstat-graph	(http://lamada.eu/dstat-
graph/)	on	logs	from	the	dstat	resource-monitoring	tool.		MuTect	task	utilized	only	50%	of	its	
VM’s	total	CPU	capacity	(top).	FireCloud,	by	default,	was	requesting	the	standard	virtual	
machine	with	2	virtual	CPUs	and	7.5	GB	of	memory.		MuTect	is	a	single-threaded	application	
that	uses	only	a	single	CPU	per	instance.		Requesting	a	virtual	machine	with	1	virtual	CPU	and	
3.75	GB	of	memory,	excess	CPU	capacity	was	eliminated	(bottom)	and	the	compute	costs	
associated	with	the	MuTect	task	were	halved	with	no	impact	on	task	latency. 
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Figure 3: 	

Figure	3	Comparing	costs	of	running	N-way	scatter	and	M-way	multiprocessing.	Cost	for	the	
VMs	and	virtual	disks	are	plotted	for	N-way	scatter	and	M-way	multiprocessing	of	the	Mutect	
task.	The	N-way	scatter	runs	25	instances	of	the	Mutect	task,	each	on	its	own	dedicated	single-
cpu		n1.standard.1	VM.		The	M-way	multiprocessing	runs	32	instances	of	the	Mutect	application	
on	a	single	large	32-cpu	n1.standard.32	VM.		We	display	box	plots	for	both	whole	exome	(red)	
and	whole	genome	analyses	(blue).		For	whole	exome	analyses,	the	N-way	scatter	is	less	costly	
due	to	the	immediate	termination	of	VMs	once	their	processing	of	the	task	load	is	complete.		As	
file	sizes,	and	thus	required	disk	sizes,	grow,	N-way	scatter’s	cost	advantages	shrink.		For	high-
coverage	whole	genome	files,	M-way	multiprocessing	is	more	cost	effective. 
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Tables 

Table	1:	Costs	for	running	WES	and	WGS	on	Preemptible	Machines	

	

	
	
	
Table	1	Costs	for	running	WES	and	WGS	on	Preemptible	Machines.	The	mutation	calling	
workflow	was	run	on	both	WES	and	WGS	data	sets.		For	each	data	set,	average	cost	per	
tumor/normal	pair	is	reported	for	running	MuTect	on	full	price	VMs	and	preemptible	
VMs.	Costs	are	broken	down	into	charges	for	the	VM	(CPU)	and	the	virtual	disk	attached	
to	the	VM.		Using	preemptible	VMs	provided	significant	savings	for	both	WES	and	WGS	
samples,	but	the	savings	were	more	pronounced	for	the	WES	cases,	which	had	shorter	
processing	times,	and	thus	less	chance	of	preemption.	
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