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Abstract  22 

1. Estimating biodiversity and its changes in space and time poses serious methodological 23 

challenges. First, there has been a long debate on how to quantify biodiversity, and second, 24 

measurements of biodiversity change are scale-dependent. Therefore comparisons of biodiversity 25 

metrics between communities are ideally carried out across scales. Simulation can be used to study 26 

the utility of biodiversity metrics across scales, but most approaches are system specific and plagued 27 

by large parameter spaces and therefore cumbersome to use and interpret. However, realistic spatial 28 

biodiversity patterns can be generated without reference to ecological processes, which suggests a 29 

simple simulation framework could provide an important tool for ecologists. 30 

2. Here, we present the R package mobsim that allows users to simulate the abundances and 31 

the spatial distribution of individuals of different species. Users can define key properties of 32 

communities, including the total numbers of individuals and species, the relative abundance 33 

distribution, and the degree of spatial aggregation. Furthermore, the package provides functions that 34 

derive biodiversity patterns from simulated communities, or from observed data, as well as functions 35 

that simulate different sampling designs. 36 

3. We show several example applications of the package. First, we illustrate how species 37 

rarefaction and accumulation curves can be used to disentangle changes in the fundamental 38 

biodiversity components: (i) total abundance, (ii) relative abundance distribution, (iii) and species 39 

aggregation. Second, we demonstrate how mobsim can be used to assess the performance of species-40 

richness estimators. The latter indicates how spatial aggregation challenges classical non-spatial 41 

species-richness estimators.  42 

4. mobsim allows the simulation and analysis of a large range of biodiversity scenarios and 43 

sampling designs in an efficient and comprehensive way. The simplicity and control provided by the 44 

package can also make it a useful didactic tool. The combination of controlled simulations and their 45 

analysis will facilitate a more rigorous interpretation of real world data that exhibit sampling effects 46 

and scale-dependence.  47 
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Introduction  58 

Understanding how biodiversity varies in space and time poses one of the greatest challenges in 59 

ecology. One reason this challenge is difficult to overcome is that observed biodiversity changes 60 

depend on spatial scale (Rosenzweig 1995; Rahbek 2005) and on the specific biodiversity measure used 61 

(reviewed in Magurran & McGill 2011).  Reasons for the complexity in measuring biodiversity across 62 

scales are twofold. First, any measure of biodiversity (e.g., species richness, Shannon, or Simpson 63 

diversity) transforms the numbers of individuals and species in a given sample into a single univariate 64 

metric that necessarily only captures a portion of information about the underlying abundances and 65 

spatial distribution. Second, biodiversity measures vary non-linearly with spatial scale and thus any 66 

comparisons among two or more sites will typically be highly scale-dependent (i.e., their difference or 67 

ratio will depend on the scale in which it is measured) (Chase & Knight 2013). Despite continued 68 

discussion approaches for estimating and comparing diversity measures (e. g. Jost 2006; Colwell et al. 69 

2012), no single measure can capture all of the relevant information and multiple measures and 70 

approaches will provide more complete information about biodiversity and its change. All biodiversity 71 

patterns, including local and regional measures of diversity (α, γ-diversities) and their scaling 72 

relationships (measures of β-diversity) depend on three biodiversity components, namely (i) the total 73 

abundance of individuals, (ii) relative species abundance distribution, and (iii) the spatial distributions 74 

of individuals and species (He & Legendre 2002; McGill 2011). Although we focus on taxonomic 75 

diversity measures here, the same issues apply for measurements of functional and (phylo-)genetic 76 

diversity (Chao, Chiu & Jost 2014). 77 

Here, we introduce the software package mobsim to facilitate understanding and 78 

interpretation of biodiversity changes across scales. mobsim includes spatially explicit simulation 79 

tools, which allow user-defined manipulations of the three biodiversity components. Of course, in 80 

nature the components emerge from species traits and dynamic ecological processes such as 81 

competition, dispersal limitation, or habitat filtering. However, we suggest that direct simulations and 82 
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manipulations of the emerging biodiversity components provide generality that embraces different 83 

taxa and ecosystems.   84 

Often, when discussing processes of sampling and resulting biodiversity measurements, 85 

analogies such as pulling jellybeans from a jar are used (e.g., Gotelli & Colwell 2001). These analogies 86 

also provide useful pedagogical tools for teaching biodiversity concepts (e.g., Heard 2016).  mobsim 87 

simulates individuals of different species (i.e., the proverbial “jelly beans”) in a spatially explicit 88 

landscape and thus allows studying the influence of sampling and scale, as well as the interrelatedness 89 

between different biodiversity descriptors and patterns in a comprehensive and efficient way. The 90 

package provides functions for three purposes (1) the simulation of communities in space, (2) the 91 

analysis of biodiversity patterns, and (3) the simulation and assessment of different sampling designs 92 

(Fig. 1, Table 1).  93 

Specifically, in spatially-explicit simulations users define the total number of individuals, the 94 

species richness, the shape and evenness of the relative species-abundance distribution, and the 95 

intraspecific aggregation of species. Functions for the analysis of biodiversity patterns, such as 96 

rarefaction-curves (Gotelli & Colwell 2001)  and species-area relationships (Rosenzweig 1995) allow 97 

users to assess how different biodiversity indices vary with spatial scale and/or sampling effort. Finally, 98 

the package provides functions to simulate sampling processes and to convert the spatially-explicit 99 

simulated data into classical community matrices (i.e. sites-by-species abundances matrices). These 100 

matrices can then be analysed using standard analytical tools (Legendre & Legendre 2012) to assess 101 

how the simulated changes are expressed in measures of biodiversity and influenced by the sampling 102 

design. The package is currently available on GitHub (https://github.com/MoBiodiv/mobsim) and also 103 

as interactive shiny application with graphical user interface 104 

(https://github.com/KatharinaGerstner/mobsim_app). We also plan to publish the package on CRAN 105 

(https://cran.r-project.org). 106 
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Package description 107 

Simulation of community data 108 

An ecological community is characterised by its species-abundance distribution (SAD) and by the 109 

spatial distribution of individuals. In mobsim, users can use a predefined SAD and add simulated 110 

positions of individuals, or simulate both the SAD and the positions (Table 1). For the simulation of 111 

SADs, a wrapper around the function rsad from the R package sads is provided, which offers many 112 

options for the underlying statistical distribution (Prado, Miranda & Chalom 2016). In contrast to 113 

sads::rsad, the function mobsim::sim_sad allows the simultaneous specification of the 114 

simulated number of individuals and the number of species in the pool. Due to random sampling, there 115 

can be fewer species in the simulated community than in the user-defined species pool, but we also 116 

provide an argument in sim_sad to allow the number of simulated species equal that of the pool 117 

size. In this case there can be deviations from the underlying statistical distribution, because rare 118 

species are added until the required species richness is reached, leading to a longer tail than expected 119 

from the underlying statistical SAD model.  120 

 The spatial coordinates of individuals are simulated as 2-dimensional point processes in 121 

mobsim following Wiegand & Moloney (2014) either using a Poisson process, where individuals are 122 

placed randomly, or a Thomas process, where individuals of the same species are clustered. For the 123 

Thomas process, users define the numbers and sizes of the clusters, and the number of individuals per 124 

cluster, either independently or jointly for all species. The Thomas-process only considers intraspecific 125 

aggregation. Individuals of different species are distributed randomly with respect to each other 126 

(McGill 2010).  127 

Analysis of community data 128 

mobsim offers several functions to derive spatial and non-spatial patterns from simulated or empirical 129 

spatial data. Conversion of empirical data to the format required by mobsim is facilitated by auxiliary 130 

functions. The function spec_sample_curve derives the expected number of species given a 131 
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certain number of sampled individuals. Individuals are sampled either randomly, giving the well-known 132 

species rarefaction-curve (Gotelli & Colwell 2001), or sampling proceeds always from a focal individual 133 

to the nearest neighbour, which results in the spatial species-accumulation curve (spatial SAC) 134 

(Chiarucci et al. 2009). Note that this is different from the sample-based accumulation curve described 135 

in Gotelli & Colwell (2001), which considers the distribution of individuals among plots, but not the 136 

spatial location of plots. 137 

 The function divar (diversity-area relationships) estimates several diversity indices for 138 

sampling plots of user-defined areas. Accordingly, this function can be used to derive the species-area 139 

and endemics-area relationships (Rosenzweig 1995; Harte & Kinzig 1997). In addition, divar 140 

estimates the Shannon- and Simpson-diversity indices, and their corresponding effective numbers of 141 

species (ENS) (Jost 2006). 142 

 The function dist_decay estimates the distance decay of community similarity (Nekola & 143 

White 1999; Morlon et al. 2008). The calculation is based on pairwise similarity indices of species 144 

composition in square sampling plots using the function vegdist from the R package vegan 145 

(Oksanen et al. 2017). mobsim includes standard plotting functions for community data and for all the 146 

biodiversity patterns introduced. See the online documentation for detailed information on all main 147 

and auxiliary functions. 148 

Sampling of community data 149 

mobsim also provides functionality to simulate sampling processes by distributing square plots in a 150 

community. The data type provided by the sampling is a sites-by-species matrix, which is a classical 151 

data type in community ecology (Legendre & Legendre 2012). Users can choose the size and number 152 

of sampling quadrats, as well as the spatial design. 153 

  154 
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 155 

Table 1: List of main functions in mobsim 156 

Function name Category  Description 

sim_sad simulation Simulate species-abundance distributions 

(SADs) 

sim_poisson_coords simulation Add spatially random coordinates to a SAD 

sim_thomas_coords simulation Add coordinates with intraspecific 

aggregation to an SAD 

sim_poisson_community simulation Simulate a community with certain SAD and 

spatially random coordinates 

sim_thomas_community simulation Simulate a community with certain SAD and 

intraspecific aggregation 

spec_sample_curve analysis Derive rarefaction and individual-based 

species-accumulation curves 

divar analysis Derive diversity-area relationships from 

square sampling plots of different sizes. 

Diversity indices include species richness, no. 

of endemics, Shannon index, Simpson index 

and the effective numbers of species based 

on Shannon and Simpson indices 
dist_decay analysis Derive the distance-decay function from 

pairwise community similarity measures of 

square sampling plots 

sample_quadrats sampling Virtual sampling of different communities 

using square plots of user-defined sizes. 

Users can choose different sampling designs, 

including random sampling, transect and 

lattice designs. 

  157 
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 158 

 159 

Figure 1: General overview on the purposes of mobsim. The package provides functions to simulate 160 

species abundances and spatial distributions based on user-defined parameters, including the 161 

numbers of species and individuals, the species-abundance distributions, and the aggregation of 162 

conspecific individuals. Simulated or observed distributions can be analysed and visualised using 163 

mobsim functions. Alternatively, sampling processes can be simulated using mobsim and the analysis 164 

can be done with additional software for classical site-by-species abundance matrices. 165 

  166 
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Example applications 167 

Here we present two example applications of mobsim: (i) on changes of biodiversity components 168 

and (ii) an assessment of species richness estimators. A third example, on extinctions due to habitat 169 

loss is provided in the online supporting information. 170 

Changes of single biodiversity components 171 

The biodiversity in a sampled area depends on three components that can vary independently: (1) the 172 

total number of individuals, (2) the SAD of the species pool, and (3) the spatial distribution of 173 

individuals and species (McGill 2011; Chase & Knight 2013). Using simulations, we show how the 174 

combination of rarefaction and accumulation curves can be used to disentangle changes in these three 175 

biodiversity components (Fig. 2). The key point is that the shape of the rarefaction curve only depends 176 

on the underlying SAD, but not on the spatial distribution (Gotelli & Colwell 2001), while the shape of 177 

the accumulation curve depends on both the SAD and the spatial distribution. First, we randomly 178 

removed 50% of all individuals. This does not affect the underlying SAD, as indicated by overlapping 179 

rarefaction and accumulation curves that end at different numbers of individuals (Fig. 2a, b). Second, 180 

we simulated communities with lower evenness by increasing the variation of species abundances. 181 

This resulted in changes in both the rarefaction and the accumulation curves (Fig. 2c, d). Here, the 182 

difference (or ratios) between the curves changes with sampling effort, which indicates scale and/or 183 

sampling effort dependent effect sizes (Chase & Knight 2013). Despite having the same number of 184 

species in the pool, the simulated communities differ in species richness even for the maximum 185 

number of individuals, because the rarest species are not sampled into the local community. See Fig. 186 

S1 for the same figure that used a fixed species richness of the simulated community, where the curves 187 

converge at the largest number of individuals. Third, we add intraspecific aggregation by using a 188 

Thomas-process instead of a Poisson-process, which does not affect the rarefaction curve, but leads 189 

to lower expected species richness in the spatial species-accumulation curve (Fig. 2e,f). 190 
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 191 

Figure 2: Simulated species rarefaction- and accumulation-curves for changes of three different 192 

biodiversity components. The black lines and intervals show the reference community with 2,000 193 

individuals and 100 species in the species pool, a log-normal species-abundance distribution (SAD) with 194 

meanlog = 3 and sdlog = 1, and spatially random positions (Poisson distribution). The red lines 195 

show changed communities for half the number of individuals (first column), a decrease in evenness 196 

(second column), simulated as higher variation in abundances with sdlog = 1.5, and a higher 197 

intraspecific aggregation (third column), simulated with a Thomas-process with cluster extent 198 

sigma = 0.02. Ribbons indicate 95% confidence intervals derived from 1,000 replicate simulations. 199 

 200 

Testing species-richness estimators  201 

We are often interested in inferring biodiversity and/or its change in a larger region based on a limited 202 

amount of samples. Species-richness estimators offer approaches for estimating the biodiversity of a 203 

large community based on local samples (Colwell & Coddington 1994; Chiu et al. 2014). However, it 204 

remains an open question of how well these estimators perform for different communities and for 205 
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different sampling strategies (Colwell & Coddington 1994; ter Steege et al. 2017). The simulation tools 206 

of mobsim are well-suited to address this issue. 207 

 We used mobsim to assess the performance of a bias-corrected version of the well-known 208 

Chao1-estimator (Chiu et al. 2014), in the face of spatial aggregation and different sampling designs. 209 

We simulated a community with 1,000 species and 1,000,000 individuals. Then we used the function 210 

sample_quadrats to sample from the community. We varied the proportion of total area sampled 211 

between 0.01% - 1% as well as the number of sampling quadrats (1 – 100) that jointly represent the 212 

total sampling effort. These combinations of sampling strategies were applied to communities with 213 

the same SAD, but with different intraspecific aggregations. We examined four scenarios for 214 

aggregation: (1) a random distribution; (2) several large clusters per species; (3) several small clusters 215 

per species; (4) one large cluster per species. We used the function vegan::estimateR to calculate 216 

the species-richness estimator of Chiu et al. (2014). 217 

 For the community with a random distribution we found no influence of whether a single large 218 

or several small quadrats were sampled (Fig. 3a). However, the estimated richness and its uncertainty 219 

strongly varied with total sampling effort. The bias of the estimator decreased with increasing sampling 220 

effort, but the estimated and true values only converged at the highest effort. At the same time, the 221 

uncertainty decreased drastically with sampling effort (Fig. 3a). 222 

 For aggregated distributions, the spatial configuration of sampling mattered and a sampling 223 

strategy with several small quadrats was less biased than few large quadrats (Fig. 3b-d). For high 224 

aggregation, species richness and its uncertainty were strongly underestimated (Fig. 3c, d). This is an 225 

important finding, because aggregated species distributions tend to be the rule in nature (McGill 2010, 226 

2011). 227 

 Our simulation results underline the recommendation by developers of species-richness 228 

estimators, that the estimated values should be only interpreted as lower bounds (Chao 1987; Chiu et 229 

al. 2014). Furthermore, our findings indicate that for aggregated species distributions, both sampling 230 

design and sampling effort have a large influence. 231 
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 232 

 233 

Figure 3: Performance of an asymptotic species-richness estimator for communities with different 234 

intraspecific aggregation and for different sampling strategies. The panels show the estimated species 235 

richness (chao1 from function vegan::estimateR) vs. the proportion of total area sampled. The 236 

colour indicate different numbers of randomly distributed sampling quadrats that together form the 237 

total amount of sampled area. The different panels show results for communities with the same SAD 238 

but different intraspecific aggregation. The points and error bars represent means and 95% confidence 239 

intervals from 1,000 replicate simulations. The horizontal lines indicates the true species richness. The 240 

following parameter values were used for the simulations: species pool richness: s_pool = 1000; 241 

number of individuals: n_sim = 1,000,000; a log-normal species-abundance distribution (SAD) 242 

with meanlog = 3 and sdlog = 1; large cluster size: sigma = 0.05, small cluster size: 243 

sigma = 0.01; one cluster per species: mother_points = 1. 244 
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Conclusions 245 

The total number of individuals, the distributions of species relative abundances, and intraspecific 246 

aggregation are key components of community structure and any changes in biodiversity are mediated 247 

through changes in these components. Furthermore, biodiversity changes are scale-dependent. The 248 

combination of tools for simulation and analysis of biodiversity patterns provided in mobsim is well-249 

suited to foster understanding on the emergence and consequences of scale-dependent biodiversity 250 

changes. The package integrates key tools of community ecology so that ecologists can derive valid 251 

and robust interpretations of biodiversity patterns and changes observed in real-world data. We also 252 

believe that the use of controlled simulation experiments is highly beneficial for education in 253 

biodiversity science. 254 

Acknowledgements 255 

We gratefully acknowledge the support of the German Centre for Integrative Biodiversity 256 

Research (iDiv) Halle-Jena-Leipzig funded by the German Research Foundation (FZT 118). 257 

Authorship statement 258 

FM and JMC conceived the package concept and structure. FM implemented the first package version. 259 

KG, XX, and DM contributed code and supported the package revision. KG implemented the shiny 260 

online application. FM wrote the first manuscript draft and all authors critically revised the text and 261 

gave final approval for publication.  262 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209502doi: bioRxiv preprint 

https://doi.org/10.1101/209502
http://creativecommons.org/licenses/by-nc/4.0/


 The R package mobsim  

15 

 

References 263 

Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. 264 

Biometrics, 4, 783–791. 265 

Chao, A., Chiu, C.-H. & Jost, L. (2014). Unifying Species Diversity, Phylogenetic Diversity, Functional 266 

Diversity, and Related Similarity and Differentiation Measures Through Hill Numbers. Annual 267 

Review of Ecology, Evolution, and Systematics, 45, 297–324. 268 

Chase, J.M. & Knight, T.M. (2013). Scale-dependent effect sizes of ecological drivers on biodiversity: 269 

why standardised sampling is not enough. Ecology Letters, 16, 17–26. 270 

Chiarucci, A., Bacaro, G., Rocchini, D., Ricotta, C., Palmer, M. & Scheiner, S. (2009). Spatially constrained 271 

rarefaction: incorporating the autocorrelated structure of biological communities into sample-272 

based rarefaction. Community Ecology, 10, 209–214. 273 

Chiu, C.-H., Wang, Y.-T., Walther, B.A. & Chao, A. (2014). An improved nonparametric lower bound of 274 

species richness via a modified good–turing frequency formula. Biometrics, 70, 671–682. 275 

Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.-Y., Mao, C.X., Chazdon, R.L. & Longino, J.T. (2012). Models 276 

and estimators linking individual-based and sample-based rarefaction, extrapolation and 277 

comparison of assemblages. Journal of Plant Ecology, 5, 3–21. 278 

Colwell, R.K. & Coddington, J.A. (1994). Estimating terrestrial biodiversity through extrapolation. 279 

Philosophical Transactions of the Royal Society of London B: Biological Sciences, 345, 101–118. 280 

Gotelli, N.J. & Colwell, R.K. (2001). Quantifying biodiversity: procedures and pitfalls in the 281 

measurement and comparison of species richness. Ecology letters, 4, 379–391. 282 

Harte, J. & Kinzig, A.P. (1997). On the implications of species-area relationships for endemism, spatial 283 

turnover, and food web patterns. Oikos, 80, 417–427. 284 

He, F. & Legendre, P. (2002). Species diversity patterns derived from species-area models. Ecology, 83, 285 

1185–1198. 286 

Heard, M.J. (2016). Using a Problem-Based Learning Approach to Teach Students about Biodiversity, 287 

Species Distributions &amp; the Impact of Habitat Loss. The American Biology Teacher, 78, 288 

733–738. 289 

Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375. 290 

Legendre, P. & Legendre, L.F.J. (2012). Numerical Ecology, Volume 24, Third Edition, 3 editionn. 291 

Elsevier, Amsterdam; Boston. 292 

Magurran, A.E. & McGill, B.J. (2011). Biological Diversity: Frontiers in Measurement and Assessment, 1 293 

editionn. Oxford University Press, Oxford. 294 

McGill, B.J. (2011). Linking biodiversity patterns by autocorrelated random sampling. American Journal 295 

of Botany, 98, 481–502. 296 

McGill, B.J. (2010). Towards a unification of unified theories of biodiversity. Ecology Letters, 13, 627–297 

642. 298 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209502doi: bioRxiv preprint 

https://doi.org/10.1101/209502
http://creativecommons.org/licenses/by-nc/4.0/


 The R package mobsim  

16 

 

Morlon, H., Chuyong, G., Condit, R., Hubbell, S., Kenfack, D., Thomas, D., Valencia, R. & Green, J.L. 299 

(2008). A general framework for the distance–decay of similarity in ecological communities. 300 

Ecology letters, 11, 904–917. 301 

Nekola, J.C. & White, P.S. (1999). The distance decay of similarity in biogeography and ecology. Journal 302 

of Biogeography, 26, 867–878. 303 

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, 304 

R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner, H. (2017). vegan: 305 

Community Ecology Package. 306 

Prado, P.I., Miranda, M.D. & Chalom, A. (2016). sads: Maximum Likelihood Models for Species 307 

Abundance Distributions. 308 

Rahbek, C. (2005). The role of spatial scale and the perception of large-scale species-richness patterns. 309 

Ecology Letters, 8, 224–239. 310 

Rosenzweig, M. (1995). Species diversity in space and time. Cambridge University Press. 311 

ter Steege, H., Sabatier, D., Mota de Oliveira, S., Magnusson, W.E., Molino, J.-F., Gomes, V.F., Pos, E.T. 312 

& Salomão, R.P. (2017). Estimating species richness in hyper-diverse large tree communities. 313 

Ecology, n/a-n/a. 314 

Wiegand, T. & Moloney, K.A. (2014). Handbook of Spatial Point-Pattern Analysis in Ecology, 1 editionn. 315 

Chapman and Hall/CRC, s.l. 316 

 317 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209502doi: bioRxiv preprint 

https://doi.org/10.1101/209502
http://creativecommons.org/licenses/by-nc/4.0/

