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ABSTRACT

Network biology aims to understand cell behavior through the analysis of underlying complex biomolecular networks. Inference

of condition-specific interaction networks from epigenomic data enables the characterization of the structural plasticity that

regulatory networks can acquire in different tissues of the same organism. From this perspective, uncovering specific patterns

of variation by comparing network structure among tissues could provide insights into systems-level mechanisms underlying

cell behavior. Following this idea, here we propose an empirical framework to analyze mammalian tissue-specific networks,

focusing on characterizing and contrasting their structure and behavior in response to perturbations. We structurally represent

the state of the cell/tissue by condition specific transcription factor networks generated using chromatin accessibility data, and

we profile their systems behavior in terms of the structural robustness against random and directed perturbations. Using this

framework, we unveil the structural heterogeneity existing among tissues at different levels of differentiation. We uncover a

novel and conserved systems property of regulatory networks underlying embryonic stem cells (ESCs): in contrast to terminally

differentiated tissues, the promiscuous regulatory connectivity of ESCs produces a globally homogeneous network resulting in

increased structural robustness. Possible biological consequences of this property are discussed.

Introduction

A central tenet of systems biology is that cell behavior can be understood in terms of the structure and dynamics of underlying

complex molecular networks.1, 2 Under such paradigm, major efforts have been made to systematically map and characterize

the properties of molecular networks at different levels of organization. Reference protein-protein interaction, metabolic, and

transcriptional regulatory networks have been constructed and are being frequently updated in several model organisms.3–5

Initial efforts have largely focused on providing an organismal reference for the global network structure.

Network theory provides methods for the systemic description of a network’s structure and its dynamics.6–8 One of the
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major results of network biology is the discovery within the reference networks of apparently universal organizational properties

across the different types of complex biological networks.2 While the characterization of reference real-world complex networks

has uncovered structural similarities among complex networks that are believed to underly their systemic properties,2, 6 much

less is known about the degree of structural heterogeneity of condition-specific biomolecular networks, and how patterns of

variation promote or constrain systems-level behaviors. In cell biology, one intriguing hypothesis is that network heterogeneity

emanating from the normal process of development might result in differential behaviors underlying the contrasting cellular

phenotypes. In line with this idea, the field of network biology has recently started shifting towards the characterization of

condition-specific networks and analysis of circuitry dynamics,9, 10 presumably due to the increasing availability of functional

genomics and epigenomics assays. For example, Neph and collaborators put forward a methodology to assemble tissue-specific

transcription factor networks with the aid of available chromatin accessibility profiles from multicellular genomes.9, 11–13

The proposed networks connect each transcription factor (TF) to its incoming TF regulators, thus representing the regulatory

structure of the cell in terms of the main regulators (e.g. TFs) and the mutual regulatory interactions among them. More

specifically, using digital genomic footprinting (DGF) analysis, TF-TF interactions are established by integrating TF motif

matching with DNase I hypersensitive sites (DHS) and high-resolution genomic footprints. Tissue-specificity comes from the

condition-specific accessibility of cis-regulatory regions upstream a TF. Using this approach, tissue-specific TF networks have

been constructed for model organisms and for human.9, 14 Given that the observed TF interactions reflect tissue-specific activity

states, we reasoned that the structure and relative systems-level behavior displayed by these networks could provide insights

into the biology and differentiation potential of the corresponding tissues.

In order to begin understanding the link between network structure heterogeneity, behavior, and biological phenotypes,

here we put forward a computational framework to characterize the structural properties of mammalian tissue-specific TF

networks and their behavior, emphasizing the degree of deviation from theoretical expectations. We focus on one systems-

level behavior which is informative of the latter: the robustness of the networks to structural perturbations. To this end, we

profiled the structural properties of a broad set of TF networks in mouse and human, and we compared the observed behavior

across tissues and with expectations from theoretical models. Interestingly, we discovered that embryonic stem cells (ESCs)

posses a distinctive regulatory structure: its higher structural similarity to the topological properties expected from a homoge-

neous network theoretical model endows them with a remarkable resilient behavior. We discuss potential biological implications.

Results

Analysis framework

Networks provide a theoretical framework that allows a convenient conceptual representation of interrelations among a large

number of elements.6 Furthermore, it is usually possible to frame questions about the behavior of the underlying real system

by applying well-established measures and analyses over the network representing the empirical data.15 Here we focus on

tissue-specific networks where nodes represent TFs and links inter-regulatory interactions, and propose an analysis framework

with the goal of characterizing the commonalities and differences in behavior against structural perturbations across tissues.

We ask whether some tissues display extreme behaviors, and whether or not such deviations an extreme behaviors highlight

aspects of the underlying biology. We hypothesize that the differences to be discovered underlie aspects of the observed
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biological functionality and of the degree of differentiation of the tissues. The proposed framework includes the following

steps (see Figure 1). (1) The state of the cell is structurally represented by tissue-specific networks of regulatory interactions

among transcription factors as proposed in.9, 14 Briefly, a TF is considered regulator of another one when a motif instance of

the former TF occurs within a DNase I footprint contained in the proximal regulatory region of the latter TF (10 kb interval

centered on the transcriptional start site [TSS]). (2) The system’s behavior of a network is defined as the response of the network

against increasing structural perturbations,2, 16 and the response is measured by two metrics: the change in giant component

size, and the change in efficiency, both relative to the original, unperturbed network (see Methods). The complete behavior is

captured by the qualitative properties of the change from start until complete disruption, and we introduce a simple metric to

quantify it (Figure 1 a). (3) The structure of each network is numerically characterized by 11 topological measures (Figure 1

b). (4) The degree of deviation of each network relative to expectations from homogeneous (Erdős-Rényi) and heterogeneous

(Barábasi-Albert) random graph models is quantified (Figure 1 c).

After applying these steps to each tissue-specific network, we rank the networks based on the robustness of their behavior,

we identify those displaying the most extreme response, and we statistically explain the behavior in terms of predictive

topological features and relative deviation from analogous homogeneous and heterogeneous random models. Thus, starting

from an input set of tissue-specific networks, our framework produces a structural robustness ranking, a set of structural features

underlying the behavior, and a mapping of the networks into the homogeneous-heterogeneous network space.

Network structural differences reveal plasticity of systems behavior upon perturbation

It has been shown that a differential response to random structural perturbations (errors) and directed alterations (attacks)

enables a concrete distinction between homogeneous and heterogeneous networks in terms of systems behavior.16 A network

representing a real complex system is expected to tolerate random failures, but to be more vulnerable against directed attacks

targeting key, connected components. Taking this well-established framework, we evaluated the robustness behavior of TF

networks across tissues. The operational definition of structural robustness applied here is based on an intuitive idea: disabling

a substantial number of nodes will result in an inevitable functional disintegration of a network,2 but the degree of tolerance

will vary across tissues. We measured tolerance to random perturbations by randomly removing nodes from the networks and

quantifying the change in the size of the largest connected component (giant component), and the change in network efficiency –

an approximation to loss or gain of network connectivity (see methods). For directed attacks, we repeated the experiments but

sequentially removing node in deceasing order of connectivity (degree) (Figure 1 a). We profiled the response to perturbations

in 41 human and 25 mouse tissue networks.

Overall, all networks were found to be highly tolerant to random errors. In both mouse and human tissues, the size of the

giant component (S f /S0) decreases linearly with f without abrupt transitions (Figure 2 a and c, dashed lines). The efficiency of

the networks (E f /E0) also shows consistent behavior across all human and mouse tissues: it shows minimal decrease for a

large proportion of f until it falls abruptly around f = 0.8 ( Figure 2 b and d, dashed lines). The observed robustness to random

failures is consistent with predictions from percolation theory in complex random networks, as it is less likely to perturb key,

highly connected components in networks with long-tail degree distribution.6, 16 Also consistent with theory, TF networks were
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Figure 1. Structural profiling of cell type specific TF networks. a) Structural robustness was measured simulating attacks (removing high

degree nodes (red)) and errors (removing randomly selected nodes). b) Networks characterization was done measuring topological features of

every network. c) Each network was compared to random model networks by measuring its dissimilarity to an analogous ensemble of

homogeneous and scale-free networks.
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found to be much more vulnerable to directed attacks. Interestingly, however, we observed a high degree of variability in the

behavior upon attacks across networks. Both measures (giant component size and efficiency) revealed transitions at different

fractions f of attacked nodes (see Figure 2 a, b, c, and d, solid lines). Interestingly, we found that in both human and mouse

the TF networks of embryonic stem cells (ESCs) displayed, relative to other differentiated tissues, an extremely robust be-

havior against both failure and attack perturbations, the latter being much more pronounced (see Figure 2 a, b, c, and d, red lines).

With the goal of quantitatively describing and to analyze the discovered patterns of heterogeneity among tissues, we define

the metric error-attack deviation (∆ea), which simply quantifies the degree of deviation of a given network’s behavior upon

directed attack perturbations from that stemming from random errors. We use this metric here as a measure of the structural

robustness of complex networks to perturbations, as it reflects the degree to which attacks and errors are tolerated (see Methods).

Intuitively, the smaller the value of ∆ea the closer the global response of the network against attacks relative to that against

error, indicating a higher degree of robustness. We performed the calculation individually for the two damage measures used in

this study: S f /S0 and E f /E0. Based on this measure, we can quantitatively compare the differential structural robustness to

attacks displayed by the networks. The error-attack deviation of human and mouse cell types corroborates the heterogeneity of

structural robustness among cell types, and the extremely deviating behavior of ESCs (Figure 2). ESCs have an error-attack

deviation significantly lower than other cell types, highlighting their significantly higher robustness against attacks relative to

more differentiated tissues.

Network structural network rearrangement during differentiation

The observed differences in structural robustness among tissues point to the existence of patterns of variation in global network

structure. In order to characterize the structural heterogeneity of TF networks, we analyzed their topology and asked whether

specific topological features more predominantly explain the observed robustness patterns. In particular, what structural features

underlie the extreme robust behavior of ESCs? As a first approximation we simply asked how similar are the networks to

each other? Using a recently published approach to measure network structural dissimilarity (D) (see methods), we computed

pair-wise dissimilarity scores for all pairs of TF networks, independently for mouse and human. Network dissimilarity is a

useful method for network comparison as it quantifies structural topological differences based on distance probability distribu-

tions, capturing nontrivial structural differences17 – as opposed to the intuitive counting of presence or absence of common links.

Despite the fact that all TF networks are relatively similar – having average D values of 0.040 and 0.064 in human and

mouse, respectively – there is variation in the structural similarity among them. D ranges from 0.003 to 0.160 in human, and

from 0.003 to 0.184 in mouse. Considering pair-wise comparisons in human networks, the ESC is the most dissimilar network

for 24 (58.5%) of the tissues. For the remaining 17 tissues, the most dissimilar network corresponds to Astrocyte. These two

tissues also have the highest D median scores: ESC (0.090) and Astrocyte (0.077). Interestingly, these two networks are also

the most dissimilar between one another. Thus, the undifferentiated ESC localizes at one extreme of the topological space

while the highly differentiated Astrocyte localizes at the other.
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Figure 2. TF networks structural robustness. The behavior against errors (dashed) and attacks (solid) of every cell type is shown, red lines

correspond to the ESCs behavior and blue lines to other cell types. a) Human giant component size decrease. b) Human efficiency decrease.

c) Mouse giant component size decrease. d)Mouse efficiency decrease. Error-attack deviation measured for each TF network. Human e) giant

component and f) efficiency. Mouse h) giant component and i) efficiency. g) Human and j) mouse ∆ea distributions, red dots correspond to

ESC measurements.
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Examining human networks, ESC is clearly different from the other tissues as it is placed in a single branch at the bottom

of the distance dendrogram, separated from all the other cell types (Figure 3 a). Mouse networks show a similar pattern

to that found in human cell types. Pair-wise comparisons show that the most dissimilar networks are ESCs and the highly

differentiated Brain, with these two tissues occupying the extremes in the dissimilarity distribution (Figure 3 b). The mouse

ESC ZhBTc-6h has the highest D value for 16 of the 25 cell types (64%), while the other two ZhBTc ESCs also rank among

the most different networks, and in the remaining 9 cell types the highest D value corresponds to Brain. Unbiased hierarchical

clustering aggregates the three ESC lines (ZhBTc, ZhBTc-6h, and ZhBTc-24h) in a separate basal branch, together with Genital

Adipose Tissue and Fetal Brain. Fetal tissues are expected to display some degree of similarity with ESCs, due to overlap of

developmental processes during fetal development. Adipose is an heterogeneous tissue, possibly including undifferentiated

adipose stem cells. Overall, the topology of ESCs networks in mouse and human is clearly distinct from adult differentiated

tissues such as brain and liver (Figure 3). To further explore the topological differences among tissues, we characterized the

structure of every network using 11 standard measures for network topology description (Table 1, see Methods).6, 7 These

measures capture important characteristics of global structure, which in part determines its functionality. In particular, we seek

to dissect the structural heterogeneity among tissues, identify features associated with the observed robustness, and finally map

those structural features that discriminate ESCs networks from those of more differentiated tissues.

In order to explore network aggregation behavior in the feature space, while at the same avoiding collinearity, we performed

principal components analysis (PCA), considering the measured topological features. For both human and mouse data, the

features with highest contribution for the first principal component (PC) are efficiency, density, maximum degree, and modu-

larity. The features contributing to the second PC are clustering coefficient, assortativity, and degree entropy. Projecting the

networks to a 2d space based on PCs, we found no apparent clustering (Figure 3 c and e). However, a closer examination

evidences that, as expected, ESCs are separated from the other tissues, having higher values for the second PC. We also

highlighted the position of the Astrocyte and Brain networks, considering that these highly specialized tissues are the most

structurally different from ESCs. These differentiated networks localize at the other extreme and are characterized for having

extremely low values for the first PC. Considering these patterns, ESCs are characterized for having high values of degree

entropy, assortativity, and size, but low clustering coefficient. On the other hand, Brain and Astrocyte networks have high modu-

larity, but small density, efficiency, and maximum degree. This pattern is confirmed by the features distribution (Figure 3 d and f).

The topological characterization corroborates the high plasticity of network topologies among tissues, specially an extreme

network topology from undifferentiated and highly differentiated tissues. Features analysis shows that tissues spread through

features space following two main axes, one going from highly modular to highly efficient networks, and another ranging from

highly degree entropic and assortative structures to those with high global clustering. ESCs are among the tissues with more

interacting TFs, and these are globally connected in a more promiscuous way, as evidenced by higher levels of entropy in the

degree distribution. In contrast, differentiated networks of the Brain and Astrocyte are more structured, as evidenced by low

levels of efficiency and density, yet with high modularity. Taking into account the existence of a trade-off between network

efficiency and modularity,18 this observation hints to a possible path of developmental dynamics of TF network structure in

which the system transits from a configuration promoting efficiency in information flow and robustness to a highly modular
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Human Networks Mouse Networks

Feature Range Average Standard

Deviation

Range Average Standard

Deviation

Size [493, 533] 521 9.27 [555, 583] 574 7.21

Diameter [5, 8] 6.19 0.81 [5, 7] 5.76 0.66

Density [0.34, 0.68] 0.051 0.007 [0.47, 0.10] 0.07 0.14

Clique number [14, 27] 19.39 2.68 [19, 34] 26.44 3.31

Clustering

Coefficient

[0.24, 0.38] 0.29 0.035 [0.25, 0.36] 0.30 0.026

Assortativity [-0.21, -0.12] -0.17 0.022 [-0.18, -0.13] -0.15 0.014

Efficiency [0.47, 0.54] 0.51 0.016 [0.50, 0.59] 0.54 0.024

Modularity [0.10, 0.17] 0.12 0.014 [0.06, 0.11] 0.09 0.012

Degree

Entropy

[5.69, 5.94] 5.80 0.052 [5.79, 6.09] 5.93 0.078

Reciprocity [0.03, 0.06] 0.05 0.006 [0.04, 0.09] 0.06 0.01

Maximum degree [266, 416] 348.2 35.6 [334, 574] 436.9 65.2

Table 1. Topological features measured for every human and mouse network.

topology suggestive of functional specialization.

Interpretation in terms of theoretical network models

As mentioned above, robustness to directed attacks has been linked to homogeneous network topologies, in contrast to the

”robust yet fragile” behavior characteristic of heterogeneous (scale-free) networks.16 Considering this result, we compared

each TF network to analogous ensembles of random homogeneous and scale-free networks generated using the Erdős-Rényi

(E-R) and the Barabási-Albert (B-A) models, respectively (see Methods). E-R networks with high number of nodes approach a

Poisson degree distribution, symmetric for relatively high average degrees. On the contrary, B-A networks have a characteristic

right skewed power-law degree distribution. We compared the real world networks with the theoretical models, with the goal of

placing them within a heterogeneity axis by quantifying deviations. Given the discovered high robustness to directed attacks

and high degree entropy of ESCs, we reasoned that such a contrast will help clarify the global structural features underlying

such behavior.
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Figure 3. Networks structural profiling. a) and b) Dissimilarity among cell types, heatmaps of scaled D values among a) human and b)

mouse cell types. c) Human and e) mouse networks topological features PCA. d) Human and f) mouse topological features distribution,

colored dots show the value for each feature of the indicated cell type.
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Figure 4. Networks comparison with E-R and B-A model networks. Heatmaps of a) human and b) mouse cell types dissimilarity to model

networks. c) Scatterplot of cell types dissimilarity to model networks, dashed lines in both axis correspond to the 25, 50 and 75 percentiles of

both measurements. d) and e) Distribution of D values for ESCs and other cell types in human and mouse, respectively. Distributions
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We measured network structural dissimilarity between each network and its E-R (DE−R) and B-A equivalents (DB−A). As

expected, all networks are significantly more similar to B-A than to E-R networks. DE−R ranges from 0.191 to 0.285 and from

0.139 to 0.287; whereas DB−A ranges from 0.019 to 0.047 and from 0.013 to 0.055, in human and mouse respectively (Figure 4 d

and e). The fact that B-A networks are more similar to the TF networks is consistent with discoveries of other real world complex

networks having scale-free topologies.19 Interestingly, however, we found clear differences among the networks regarding their

relative similarity to each theoretical model. For instance, ESCs have the lowest DE−R in both human and mouse (Figure 4). In

mouse Adipose Tissue and Fetal Brain networks also show low values of DE−R, and ESC line mCJ7 has a DE−R value higher

than the other ESC lines, a pattern already observed in the network topological comparison. In the case of DB−A, a contrasting

pattern emerges: ESCs are among the tissues with higher values. Nevertheless, ESC DB−A values are not significantly different

from those of other tissues, falling within the observed distribution of DB−A (Figure 4 d and e). Considering DE−R and DB−A

together, ESCs are separated from the other cell types, as shown in Figure 4. A conserved pattern in both human and mouse

emerges in which ESCs have a relatively lower dissimilarity to E-R networks and a relatively higher dissimilarity to B-A than the

other tissues. Interestingly, mouse ESC line mCJ7, which was separated from the other mouse ESC lines in the cell type dissimi-

larity histogram (Figure 3 b), clusters together with the other ESC cell lines when taking both DE−R and DB−A into consideration.

For every model network we measured the same 11 topological properties we used to characterize cell type networks, and

performed a PCA of their features including the real and model networks. In both human and mouse networks, the PCA shows

a common pattern. The first component separates three clusters corresponding to each model network and the real networks,

situating B-A and E-R networks in the extremes and the real networks between them, closer to the B-A cluster (Figure 4 f and

g). As shown in the structural dissimilarity analysis, this pattern confirms that real networks resemble scale-free networks more

than homogeneous networks. Real TF networks are situated in between B-A and E-R clusters, thus creating a n space between

the two model networks in which real networks can be situated. In both human and mouse, the topological variables with

highest contribution to the first PC are degree entropy, assortativity, diameter, and clustering coefficient; together accounting for

more than 60% of the variance explained by that component. The pattern shows that E-R networks tend to have higher degree

entropy and assortativity, while B-A networks tend to have higher diameter and clustering coefficient (Figure 4 f and g).

We further examined the topological features, looking for those creating an axis between E-R and B-A networks and placing

the tissues there. We kept only seven features with the highest contribution to the first two PCs: degree entropy, assortativity,

efficiency, clustering coefficient, maximum degree, diameter, and modularity (4 h and i). The feature profile of E-R networks

shows high values for efficiency, assortativity, and degree entropy; and relatively low values for diameter, clustering coefficient,

and maximum degree. Comparing among tissues, we found that the topological feature profile of ESCs resembles that of E-R

networks.

Network homogeneity predicts structural robustness

The topological analyses we performed show that the topological plasticity of tissue-specific TF networks can be characterized

by comparing them to model networks. As mentioned before, this structural differences are associated with the networks’

response to random and directed perturbations. To further understand the structural features underlying the observed structural
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Figure 5. Linear regression. Network vulnerability predicted by networks similarity to Erdős-Rényi model network.

robustness pattern, we fitted statistical models in an attempt to further uncover explanatory topological features. We defined

network structural vulnerability (∆̂ea) as the mean of the networks’ ∆ea for giant component size and efficiency. Using ∆̂ea

as the response variable, we fitted two statistical models: a linear regression using DE−R as predictor and a random forest

regression using the 11 topological features as predictors. We evaluated each model’s accuracy through five-fold cross validation.

The linear regression model has a high predictive power, with cross-validation mean square error of 0.00014. It shows a positive

relationship between DE−R and ∆̂ea (Figure 5), meaning that the more a network resembles a homogeneous network, the higher

its structural robustness. The random forest model also shows high accuracy, with a cross validation mean square error of

0.00025. The most informative topological features are degree entropy and efficiency. Comparing between the models, we see

that a simple linear regression has a higher predictive accuracy than the random forest model including 11 topological features.

This is reinforced by the fact that the most influential feature of the random forest model is degree entropy, a feature correlated

with a network similarity to a homogeneous network, and discovered to characterize ESCs networks. Thus, dissimilarity to E-R

model network DE−R, a measure quantifying the degree of homogeneity of a real-world network, is predictive of its structural

robustness.
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Discussion

It has been pointed out that insights into the interplay between network structure and dynamics are needed in order to ultimately

understand the cell’s functional organization.2 Here we studied TF networks’ structure with the goal of better understanding the

global behavior of different tissues. As a simple operational approximation, we represented the cell using tissue-specific TF

networks. We then analyzed the networks structurally, with the hypothesis that systemic structural differences could provide

insights into discriminating systems-level properties ultimately associated with cell behavior. We frame the problem in terms

of global structural robustness, a systemic behavior approximated by the vulnerability of networks to both random failure of

and directed perturbations.2, 16 We found that structural robustness varies significantly across tissues with different levels of

differentiation. Interestingly, within the datasets analyzed in both human and mouse, the most robust tissue was also the least

differentiated: the embryonic stem cells. Complex network theory has shown the coexistence of extremes in robustness and

fragility (”robust yet fragile”) in real-world networks, due to the widespread power-law connectivity distribution associated

with complex networks.16, 20 The networks underlying ESCs are the most robust against random failure as well as the least

fragile against directed attacks, somehow being able to negotiate the observed trade-off between robustness and fragility.

It is known that deviation from the long-tail of theoretical networks with power-law degree distribution reduces the

effectiveness of an attack strategy based on targeting the highly connected nodes.16 Although all the TF networks analyzed

here do have a long-tailed degree distribution, they deviate from theoretical power-law degree distributions (see Supplementary

Figures 6 and 7). We analyzed this deviation from a canonical scale-free network by measuring each network’s similarity

to theoretical model networks with homogeneous and scale-free topologies. This comparison further exposed the structural

heterogeneity among tissues, and the deviating behavior of both undifferentiated (i.e., ESCs) and highly differentiated tissues

(i.e., brain tissue and Astrocytes). Furthermore, within the proposed analysis framework, the relative (dis)similarity between a

target network and analogous theoretical networks provides insights into the topological characteristics underlying its robustness.

For example, the higher structural robustness of ESC networks is explained by its topological resemblance to an Erdős-Rényi

homogeneous random network.

In terms of biological properties, our results suggest that the ESC state might be able to withstand more and different

kinds of errors, due to a more homogeneous network topology. This topological arrangement implies that its main regulator

TFs act upon a less constrained chromatin landscape, allowing them to explore it more freely than in differentiated cell types.

Consistently, high chromatin accessibility is commonly thought of as a state of loose regulation, and it is associated with stem

and dedifferentiated cells – differentiation being considered as a process of increasing chromatin repression.21 Another fact

adding up to this idea is that ESC have also the highest values of maximum degree among networks, which indicates that the

ESC state has more chromatin sites available for a given TF to bind.

In this study we proposed an empirical framework to characterize different networks in terms of their behavior upon

structural perturbations and degree of similarity relative to homogeneous and heterogeneous complex networks. It is well know,

however, that network topology plays a central role in dynamical behavior. In the cellular context, gene regulatory networks

orchestrate cellular behavior.22 Theoretical studies have previously analyzed the interplay between structure and dynamics

using random Boolean networks.23 Networks with a homogeneous topology and relatively high connectivity require fine tuned

activation parameters in order to have a stable behavior, and to avoid chaotic dynamics.23, 24 This result seems inconsistent with
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the nature of real biological systems, which have a stable behavior despite fluctuations in surrounding environmental parameters.

In other words, resilience is a characteristic of biological systems. Interestingly, for networks with a scale-free topology

stable behavior emerges without the fine tunning requirement.23, 24 Considering our results in this structure/dynamics context,

similarity to homogeneous networks found in the ESC networks analyzed here is likely to produce less ordered dynamics than

more differentiated tissues, which, at the same time would allow them to explore more freely the state space and to reach

multiple different network states. Interestingly, this view is consistent with the observed high heterogeneity in gene expression

and the balance between robustness and plasticity characteristic of ESCs.25–28 Although we did not consider dynamical analysis

in this study, but rather limited ourselves to the structural characterization of the networks and their behavior, disentangling

structure and dynamics will be the focus of future work.

Summarizing, in light of the amount of data on biological interactions being generated in the post-genomic era, a systems

level perspective is required to gain understanding of the biological systems as a whole. Our structural analysis of tissue specific

TF networks aims at that objective, trying to find the connections between transcriptional networks structural heterogeneity

and biological phenotypes. Our treatment of structural robustness as a network systems-level behavior revealed differences

among cell types that could be furthered dissected through topological analyses. We want to stress the applicability of our

comparison of real world complex networks not only for a structural characterization, but also as an approximation to their

possible dynamic behaviors. Finally, the empirical analysis framework proposed here can be applied to any set of related

networks whose structural heterogeneity is suspected to underly differential real life behavior.

Methods

Transcription Factor Networks

Human and mouse transcription factor networks (TFNs) were constructed based on DNase-seq data and digital genomic

footprinting as shown in.9, 14 Human networks set include 41 distinct cell and tissue specific networks composed of 493 to 533

sequence-specific transcription factors. Mouse networks set include 25 cell and tissue specific networks composed of 555 to

583 sequence-specific transcription factors. For simplicity, we use the term tissue-specific through the text to refer to both cell

type and tissue. Network data were downloaded from http://www.regulatorynetworks.org/. Most current versions for human

(v09162013) and mouse (v12032013) were used.

Modeling topological robustness

Topological robustness was approximated by profiling the network’s behavior in response to random and directed structural

perturbations. Site percolation was used as a process to model component failure using computer simulations.6 Increasing

fractions of a network’s vertices were removed, along with the edges connected to those vertices. Following6, 29 a percolation

process was considered in the general sense – i.e., including different ways of vertex removal. The error experiments performed

correspond to the simplest percolation process where a fraction of vertices was chosen uniformly at random and removed. For

every network, error experiments were repeated 1000 times and the mean error behavior was calculated. Directed (Attack)

experiments were simulated by removing vertices in decreasing order of centrality based on vertex degree. Nodes were

progressively removed from one to a hundred percent of nodes.
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Quantifying network structural robustness

Two quantitative measures of network damage were used to characterize the phenomenology associated to the damage process

applied to each TF network. As a first approximation, the macroscopic (systemic) behavior of the networks in response to

damage was characterized by the evolution of the giant component size relative to its initial value as a function of the fraction

of removed vertices f (S f /S0). As an additional approximation, the global efficiency E of a network was used to quantify how

communication becomes less efficient as damage increases, this measure was also calculated relative to its initial value and as a

function of the fraction of removed vertices f . The latter measure assumes that the efficiency for sending information between

two vertices i and j is proportional to the reciprocal of their distance, and is calculated as follows:7, 8

E =
1

N(N−1) ∑
i 6= j

1
di j

. (1)

The measure E corresponds to the average inverse geodesic length – i.e., the harmonic mean of the geodesic distances:7

h =
1
E
. (2)

Error-Attack Deviation

The measure error-attack deviation ∆ea introduced herein, was used to quantify the degree of robustness to attacks relative to

that against errors. The metric is simply the root mean square deviation between the observed error and the attack behaviors:

∆ea =

√
1
n ∑

f
(e f −a f )2 (3)

where e f (a f ) represents the a normalized measured of damage behavior under the random or (directed) removal of a

fraction f of nodes. In this study S f /S0 and E f /E0 were used as damage measures (see Results).

Networks Topological Characterization

Networks’ topology was analyzed by quantifying topological dissimilarity and measuring 11 structural features commonly used

in complex network theory.6, 7

Network dissimilarity

Network dissimilarity measurement was done following the approach proposed by Shieber et al.17 This method compares

networks topology based on quantifying differences among node distance probability distributions, representing all nodes

connectivity distances, extracted from the networks. It returns non-zero values only for non-isomorphic graphs, and quantifies

structural topological differences that have an impact on information flow through the network. We measured network

dissimilarity following the algorithm proposed in,17 using the suggested parameters.
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Networks structural characterization

We described networks’ topology by measuring 11 features: number of nodes, diameter, maximum degree, density, clustering

coefficient, assortativity, efficiency, modularity, degree entropy, clique number, and reciprocity. Following the measurement

definitions in.7

Null models

To compare cell type networks with random models, we generated random networks with the same number of nodes and links.

Two sets of random networks were created: one set following Erdős-Rényi model (E-R networks) with exponential degree

distribution, and the second set following Barabási-Albert model of growing networks with power-law degree distribution (B-A

networks). In order for the B-A networks to have an equivalent number of edges to its real counterpart, the number of outgoing

edges added to each new node in the network was taken from the out degree distribution of the real network.

For each real network, 100 E-R and B-A random networks were created. Every random network was structurally

characterized measuring the 11 topological features measured in the real networks, and dissimilarity to its real equivalent

was quantified. Mean values for the dissimilarity and topological features were estimated for each ensemble of random networks.

Predictive modeling

Predictive models were fitted using networks’ vulnerability as a response variable and structural features as predictors. We

defined network vulnerability (∆̂ea) as the mean between error-attack deviation to giant component size and efficiency:

∆̂ea =
∆eaS f/S0 +∆eaE f/E0

2
(4)

The first model we fitted was a linear regression predicting ∆̂ea from the network’s mean dissimilarity to its E-R analogs

(DE−R). The second model we fitted was a random forest regression, predicting ∆̂ea from the 11 topological features measured

above, this model was was created with 1000 trees. Features’ influence on the random forest model was measured by the mean

decrease in mean square error. As a way to evaluate the models’ accuracy, we performed a five-fold cross validation of both

models, keeping the test mean square error as accuracy measurement.

Implementation

All the methods presented here were implemented using the R statistical programming environment (www.R-project.org) and

the igraph package.30
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Figure 6. Supplementary 1. Human cell types degree distribution.
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Figure 7. Supplementary 2. Mouse cell types degree distribution.
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