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Abstract

Cell metabolism is characterized by three fundamental energy demands
to sustain cell maintenance, to trigger aerobic fermentation and to achieve
maximum metabolic rate. Here we report a physical model of cell metabolism
that explains the origin of these three energy scales. Our key hypothesis is
that the maintenance energy demand is rooted on the energy expended by
molecular motors to fluidize the cytoplasm and counteract molecular crowd-
ing. Using this model and independent parameter estimates we make pre-
dictions for the three energy scales that are in quantitative agreement with
experimental values. The model also recapitulates the dependencies of cell
growth with extracellular osmolarity and temperature. This theory brings
together biophysics and cell biology in a tractable model that can be applied
to understand key principles of cell metabolism.
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The basal metabolic state of a cell is characterized by a maintenance en-
ergy demand [33, 6]. It has been estimated from the extrapolation of the growth
dependence of the energy demand to the zero growth limit. For mammalian
cells it is particularly high, with values around 0.3 mol ATP/L/h [17]. When
cells grow, move or perform other functions the energy requirements increase be-
yond the basal maintenance demand. Cells utilize glycolysis and oxidative phos-
phorylation to satisfy these energetic demands. Glycolysis has a low yield of
2 mol ATP/mol glucose [47], but it is characterized by a high horsepower (en-
ergy produced per volume of enzymes) [17, 44]. Oxidative phosphorylation has
a higher yield of 32 mol ATP/mol glucose [47], but it is characterized by a lower
horsepower [17, 44]. The differences in yield and horsepower imply a metabolic
switch from pure oxidative phosphorylation at low energy demands to mixed ox-
idative phosphorylation plus obligatory fermentation (glycolysis + lactate release)
at high energy demands [46, 44]. For mammalian cells this takes place at an en-
ergy demand of about 2 mol ATP/L/h [46], 10 times the energy demand of cell
maintenance. Finally, there is the energy demand necessary to sustain the maxi-
mum growth rate, or a high metabolic rate in general. The maximum growth rate
energy demand can only be sustained by glycolysis [44] and therefore we can es-
timate the maximum energy requirements of cells from their maximum reported
rates of fermentation. For mammalian cells that gives us an estimate of about 8
mol ATP/L/h [46], close to an order of magnitude above the energy threshold for
obligatory fermentation.

These metabolic functions are fulfilled within the context of an intracellular
milieu crowded with macromolecules and organelles [43]. In fact, both the en-
ergy threshold of obligatory fermentation and maximum energy demand can be
deduced from molecular crowding constraints. A good order of magnitude can be
obtained using simple models focusing on energy and protein balance [4, 44].
More precise estimates can be achieved considering full scale models of cell
metabolism with annotations of enzyme kinetic parameters [45, 31, 1, 32, 41, 16].
Yet, no theory has been proposed to explain the origin and magnitude of the main-
tenance energy demand. Here we address this problem based on the hypothe-
sis that the maintenance energy demand corresponds to the energy expended by
molecular motors to fluidize the intracellular milieu. The incorporation of this
idea into a basic model of cell metabolism allows us to make quantitative predic-
tions of the three energy scales that are in agreement with measured values. We
discuss several implications of this theory to motivate further experimental work
for its verification.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209551doi: bioRxiv preprint 

https://doi.org/10.1101/209551
http://creativecommons.org/licenses/by/4.0/


Entropic pressure of molecular crowding
The machinery of life operates on the background of a gel like substance with
properties distinct from ideal solutions [5]. In turn, the properties of this back-
ground substance are affected by the molecular crowding of the cellular machin-
ery [14]. Molecular crowding hinders the diffusion of large macromolecules.
When a trace particle is confined by the surrounding molecules, impeding its
movement, a hole needs to be created to make space available for the trace molecule
to diffuse (Fig. 1, molecule A). However, the creation of a hole lowers the entropy
of the surrounding system, by reducing the number of microscopic configurations
of crowding molecules and free space. Given a regular lattice ofN spherical holes
and n hard spheres, the entropic pressure associated with the creation of a hole of
size equal to m spheres can be estimated as (assuming m� n),

PS =
T∆S

Vh

=
kB
Vh

[
ln

(
N

n

)
− ln

(
N −m

n

)]
≈ kB
Vc

ln
Φ

Φ − φ
(1)

where Vc is the typical volume of molecular crowders (the hard spheres), Vh =
mVc the hole volume, φ = nVc/V the excluded volume fraction by the molec-
ular crowders, Φ = NVc/V the maximum packing density and V the cell vol-
ume. For typical values of macromolecular volume fraction φ = 0.4 [48], max-
imum packing density of polydisperse spheres Φ = 0.8 [40] and protein volume
Vc = 135nm3 [29], we obtain an entropic pressure of about 0.2 atm (at a temper-
ature T = 25◦C). This pressure is within the order of the turgor pressure in E.
Coli [28] and, therefore, it is physiologically relevant. As expected the entropic
pressure diverges as φ approaches the maximum packing density Φ, indicating
that at maximum packing the creation of holes becomes unfeasible. We also note
that the entropic pressure is inversely proportional to the crowder volume Vc.

Molecular motors pressure
A fundamental question in cell biology is how cells can achieve high metabolic
rates in the context of the highly crowded cellular environment. The experimental
evidence tells us that high rates of metabolism coincide with a fluidization of the
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cytoplasm [34]. The fluidization of the cell milieu is most likely determined by the
activity of molecular motors that push macromolecules at the expense of ATP hy-
drolysis [9]. This observation prompted us to the hypothesis that the maintenance
energy demand may be rooted on the energy expended by molecular motors. To
put this hypothesis into a working model we postulate an ideal gas of molecu-
lar motors and determine the motors pressure (Fig. 1, red molecules). As in an
ideal gas, we assume the particles (motors) move in a straight line at constant
speed, which is a good approximation for the movement of motors along actin fil-
aments. The key difference is that the motors have low speeds compared to ideal
gas molecules. However, motors can apply significant forces (kicks) of the order
of pN. When motors get in contact with macromolecules they can transmit a large
impulse (Fig. 1, arrows). Introducing this modification to the classical kinetic
theory of gases we obtain the motors pressure (Supplementary Text),

PM =
pFd

12
nM (2)

where F and d are the motors force and displacement per kick, nM is the num-
ber of molecular motors per cell volume, and p is the motors persistence, a non-
dimensional parameter quantifying the motors tendency to maintain their direction
of motion upon contact with macromolecules.

The cell could tune the motors concentration in order to counteract the en-
tropic pressure of molecular crowding. The optimal motors concentration should
be a balance between the tendency of molecular motors to open holes and facili-
tate movement (Fig. 1, molecule B) and the energetic cost of motors activity. We
postulate that the optimal solution occurs when the motors pressure matches the
entropic pressure of molecular crowding PM = PS . From this postulate and equa-
tions (1) and (2) we obtain the volume fraction occupied by molecular motors,
φM = VMnM ,

φM = 12
VM
Vc

kBT

pFd
ln

Φ

Φ − φ
(3)

where VM is the typical volume of molecular motors. Within this framework, the
volume fraction of molecular motors is proportional to the ratio of the thermal
energy kBT to the motors energy per kick Fd. It is also evident that the vol-
ume fraction of molecular motors is a monotonically increasing function of the
macromolecular fraction φ.
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Basic model of cell metabolism
Now we are ready to investigate a model of cell metabolism where the main-
tenance energy demand represents the energy expended by molecular motors to
counteract molecular crowding. Since proteins are the major component of cell
biomass, we will focus on protein metabolism for the sake of simplicity. We divide
proteins/organelles in five classes based on their function. Background proteins
(with volume fraction φ0), ribosomes (φR), molecular motors (φM ), fermentation
enzymes (φF ) and oxidative phosphorylation machinery (φO). We further assume
that cells are in an exponential growth phase, with growth rate µ, and that they
have an excess supply of carbon sources for energy production and amino acids
for protein synthesis. This simplified model is governed by the equations,

φ =
∑

i=0,M,R,F,O

φi

C =
∑

i=0,M,R,F,O

ciφi

hRφR = (kP + µ)C

hFφF + hOφO = mMφM + hRφR (4)

where i = 0,M,R, F,O is the compartment index, C the protein concentration
in the cell (mol of amino acids/cell volume), ci the protein concentration in com-
partment i (mol of amino acids/compartment volume), kP the protein turnover
rate (amino acids/unit of time), hR the ribosome horsepower (moles of amino
acid added to new proteins/volume of ribosome/unit of time), hF and hO the fer-
mentation and oxidative phosphorylation horsepowers (moles of ATP/volume of
enzyme/unit of time), mM the maintenance energy rate per motor volume (moles
of ATP consumed/volume of motor/unit of time), and eP the energy demand of
protein synthesis (molecules of ATP consumed per amino acid). The first two
equations in (4) are composition equations, encoding the proper bookkeeping of
volume and protein. The last two equations are metabolic balance equations for
proteins and energy production/consumption.

The system of equations (4) can be solved to determine the growth rate. The
solution can be written in a compact form (see Supplementary text),

µ =
1

µ−1
B + µ−1

C

− kP (5)
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where

µB =
hR
cR

1

1 + αB

, µC = φg
hR
Cng

1

1 + αC

,

φg = φ− φ0 − (1 +mM/hE)φM ,

Cng = c0φ0 + (cM + cEmM/hE)φM (6)

and αB = eP (cEhR)/(cRhE) and αC = ePhR/hE are the biosynthetic and molec-
ular crowding costs, respectively. Equation (5) indicates that the growth rate is the
harmonic mean between the biosynthetic and molecular crowding growth rates.
The biosynthetic growth rate (µB), when neglecting molecular crowding, is basi-
cally dictated by the ribosome efficiency hR/cR (amino acids added to new pro-
teins per ribosome). The molecular crowding growth rate (µC), when neglecting
the biosynthesis cost, is proportional to the volume fraction of growth-associated
components φg and the ribosomes horsepower hR and it is inversely proportional
to the growth-independent component of the protein content Cng. The biosyn-
thetic and crowding costs αB and αC are corrections taking into account the pro-
tein content and volume fraction, respectively, that are not available to the ribo-
somes because of they are reserved for the energy producing machinery. The
index E stands for the energy generation pathway, including pure fermentation
E = F , pure oxidative phosphorylation E = O, or mixed fermentation/oxidative
phosphorylation.

Osmolarity dependency of the growth rate
Figure 2A shows the dependency of the growth rate with the excluded volume
fraction φ, for the case when energy is produced by pure oxidative phosphoryla-
tion (blue line) or fermentation (black line). At any given φ the fermentation line
exhibits a higher value, indicating that fermentation can sustain higher growth
rates than oxidative phosphorylation. This is explained by the fact that fermen-
tation has a higher horsepower (hF > hO), i.e. it can produce more energy per
volume of enzyme than oxidative phosphorylation. We also note that the plot of
µ vs. φ follows a bell like shape. A similar behavior has been observed for the
growth rate dependency with medium osmolarity [10, 39, 7, 23, 36, 27]. The ideal
osmotic response of cells from a reference state (∗) to a new external osmolarity
follows the Boyle–van’t Hoff relation Π(V − b) = Π∗(V ∗ − b) [25], where Π∗

and Π are the osmotic pressures at the reference and new states, V ∗ and V are
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the corresponding cell volumes, and b is the solvent excluded volume occupied by
macromolecules. b is assumed to be constant between the two conditions as ob-
served experimentally. The Boyle–van’t Hoff relation can be rewritten to obtain
a relationship between φ = b/V and the osmotic pressure, φ = Π/(Π50 + Π),
where Π50 = Π∗φ∗/(1 − φ∗) is the osmotic pressure where macromolecules oc-
cupy 50% of the cell volume. Substituting latter equation into the growth rate
equation (5) we can plot the growth rate as a function of the relative osmotic pres-
sure Π/Π50 (Figure 2B). The resulting behavior explains the observed bell shape
plot of growth rate vs. osmolarity.

Energy scales of cell metabolism
At a given growth rate, the total energy demand and maintenance energy demand
can vary significantly depending of the excluded volume fraction (Fig. 3A,B).
However, solutions that are further constrained to satisfy some optimality crite-
ria (e.g., maximum yield or minimum carbon consumption) are concentrated on
the lower φ range of the feasible space. As expected the overall energy demand
increases with increasing the growth rate for the optimal solutions (Fig. 3A). In
contrast, it is not clear a priori whether the maintenance energy demand changes
or not with the growth rate. From equation (3) it follows that solutions where φ
is constrained to be a constant are characterized by a constant φM and, therefore,
a growth independent maintenance energy demand. We also take a closer look to
the maintenance energy demand for the solution maximizing growth yield (Fig.
3B, orange line). In this case, the maintenance energy demand remains approxi-
mately constant relative to the total energy demand, except for the extreme values
close to zero and maximum growth rate. This implies that the energy of cell main-
tenance may appear to be independent of the growth rate even though we have not
imposed such a constraint.

An important question in cell metabolism is why cells exhibit active fermenta-
tion even under conditions where oxygen is present and oxidative phosphorylation
should be the pathway of choice. This problem can be addressed within our model
by analyzing its solution when both fermentation and oxidative phosphorylation
can be active. Because of their redundant nature for energy generation, the volume
fractions occupied by the oxidative phosphorylation and fermentation machiner-
ies vary widely (Fig. 3C and D). Since the maximum growth rate sustained by
oxidative phosphorylation is smaller than that sustained by fermentation, it is ev-
ident that there is a threshold growth rate above which fermentation is obligatory
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(Fig. 3C). In compensation the maximum rate of oxidative phosphorylation goes
down with increasing proliferation rate (Fig. 3D). The later behavior is in agree-
ment with the observed decrease of mitochondria protein mass in yeast [27] and
mammalian cells [46] at higher growth rates.

Taking all this evidence together we provide an explanation for the three key
energy scales of cell metabolism. From the quantitative point of view we focus
on values for mammalian cells. The maintenance energy demand is represented
by the energy expend by molecular motors. Provided that the motors persistence
parameter p is of the order of 1, the energy demand of cell maintenance predicted
from this model (∼ 0.5 mol/L/h, Fig. 3B, I) is in the range of what is observed ex-
perimentally (around 0.3 mol ATP/L/h [17]). This is a striking observation given
that our estimate is based on microscopic parameters characterizing molecular
motors (Methods). The energy demarking the switch to obligatory fermentation
is simply a consequence of fermentation having a larger horsepower than oxida-
tive phosphorylation. This result in an energy demand to switch to obligatory
fermentation of ∼ 3 mol/L/h (Fig. 3A, II) in the range of experimental observa-
tions (∼ 2 mol ATP/L/h [46]). Finally, the energy demand at maximum growth
rate is simply determined by the energy demand at the maximum growth rate that
can be achieved using fermentation (∼ 8 mol/L/h, Fig. 3A, III), again in very
good agreement with the maximum fermentation rates reported for mammalian
cells (∼ 8 mol ATP/L/h [46]).

Background proteins reduce the metabolic capacity
Another important observation is the dependency of the model solution with the
volume fraction of background proteins φ0. The solutions described above were
obtained assuming a typical value of φ0 = 0.2 as observed for mammalian cells
(Methods). However, changing φ0 can have a big quantitative impact on the model
solution. Reducing φ0 by half we obtain a significant increase in the maximum
growth rate and the range of φ with feasible solutions (Fig. 4). In contrast,
doubling φ0 reduces the maximum growth rate and constraints the solutions to
a smaller φ range concentrated near the maximum packing density (Fig. 4). For
a healthy organism, we think there is not much flexibility on the φ0 values. First,
the background protein content is constrained by the actin cytoskeleton that is re-
quired to support the molecular motors activity. Just to get an order of magnitude,
the rate of ATP hydrolysis by myosin is characterized by a half saturation con-
stant for actin of the order of 40 µM [42, 2]. That value multiplied by a typical
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molar mass of 500 kDa and a specific excluded volume of 2 mL/g yields a volume
fraction of 0.04. On top of that we need to add the volume of the nuclei (eukary-
otes) or nucleoid regions (prokaryotes). The nucleus occupies a volume fraction
of 0.06 to 0.1 in mammalian cells [3, 29, 28], bringing the lower bound of φ0 to
about 0.15. Third, there are other metabolic enzymes associated with lipid and nu-
cleotide metabolism that can occupy a significant volume fraction. For example,
fatty acid synthase alone occupies a typical volume fraction of 0.007 (Methods).
Therefore, a value of φ0 = 0.2 is about what we expect for mammalian cells.
However, φ0 takes different values in other organisms. For yeast cells φ0 ≈ 0.1,
and that may explain why yeast cells can grow faster than mammalian cells (Fig.
4, φ0 = 0.1 vs 0.2). It is also worth noticing that φ0 could increase above 0.2 in
pathological conditions where protein aggregation occurs. In such instances there
can be a dramatic reduction in the metabolic capabilities of cells (Fig. 4, φ0 = 0.4
vs 0.2).

Temperature dependency of the growth rate
The molecular motors fraction that is required to counteract molecular crowding
is proportional to the temperature (3). This implies that the cost associated with
molecular motors is higher with increasing temperature and should result in a drop
of metabolic rate at high temperatures. That together with the Arrhenius-like in-
crease of enzyme rates with temperature, e−Ea/kBT , would result in a maximum
growth rate at some intermediate temperature. Figure 5 shows the temperature
dependence of the growth rate, after accounting for the Arrhenius temperature de-
pendencies of the horsepower of ribosomes and fermentation and the kicking rate
of molecular motors. The qualitative shape of the curve is strikingly similar to
what is observed experimentally [30]. The precise temperature where the max-
imum growth rate is achieved is in part determined by the actual values of the
activation energies. It is quite impressive that this simple model can reproduce the
temperature dependency of the growth rate without taking into consideration the
propensity of proteins to denature at high temperatures.

Conclusions
We have investigated a physical model of cell metabolism where the energy de-
mand of cell maintenance represents the energy expended by molecular motors
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to counteract the entropic forces associated with molecular crowding. The model
predicts an energy demand for cell maintenance that is in the range of what is
observed experimentally. More importantly, the model exhibits a rich behavior
depending on the macromolecular volume fraction and growth rate. It predicts the
growth rate threshold for the metabolic switch to obligatory fermentation and the
maximum growth rate. The model also explains the bell shape curve of growth
rate as a function of osmolarity and temperature.

There are several predictions that will require further testing for verification.
The model predicts that the maintenance energy demand is not necessarily inde-
pendent of the growth rate. Therefore we cannot assume a linear extrapolation of
the energy demand to the zero growth rate. Based on our analysis this would be
valid only if cells operate at constant macromolecular volume fraction. There are
however other scenarios where the maintenance energy demand is a function of
the growth rate, even through it may appear linear for a certain range of growth
rates.

Further work is also required to understand the impact of protein denaturation.
The increasing demand of molecular motors at higher temperatures together with
the Arrhenius dependency of reaction rates is sufficient to explain the existence of
an optimal temperature where growth rate is maximum. Protein denaturation will
introduce further corrections due to a reduction of enzymes efficiency and due to
the formation of protein aggregates. Which of these factors dominate is not clear
at this point.

It is also evident that a metabolic switch to obligatory fermentation can be ob-
tained in many ways. We have discussed the metabolic switch with increasing the
growth rate. The same behavior can be achieved by increasing the rate of protein
turnover, effectively modeling the impact of protein secretion on cell metabolism.
That may explain why non-growing fibroblasts with high rates of protein secretion
exhibit high rates of fermentation [24]. A metabolic switch to obligatory fermen-
tation could be also achieved at constant growth rate and going from low to high
macromolecular excluded volume fraction.

Finally, the model introduced here can be extended to more comprehensive
representations of cell metabolism. To this end we can introduce the more gen-
eral formulation of metabolic balance Sf = 0, with f representing the vector of
steady state reaction rates and S the stoichiometric matrix of the metabolic net-
work. These metabolic fluxes would be further constrained by the reaction rate
capacities fi ≤ hiφi, with hi representing reaction horsepowers and φi enzyme
volume fractions. This generalization will allow us to understand the impact of
molecular crowding and the counteracting motors activity on metabolic pathways
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beyond energy and protein metabolism.

Methods

Parameter estimation
Proteins specific excluded volume. The average specific excluded volume of macro-
molecules in cells is vs = 2 mL/g for proteins (Figure A2c in Ref. [48]). Since
cells are made mostly made of proteins, 2 mL/g can be taken as an estimate of
the typical specific excluded volume of proteins in cells. An independent estimate
has been obtained by electrospray ionization mass spectrometry, which results in
an average effective protein density of 0.58 g/mL [21], or equivalently a specific
excluded volume of 1.7 mL/g, close to the 2 mL/g value reported for cell extracts.

Volume fraction of fatty acid synthase. Using publicly available data [19],
we calculated an average mass fraction of fatty acid synthase in the proteome of
the NCI60 panel of cancer cell lines of 0.02. Multiplying by the average protein
density of 0.15 g/mL [13] and dividing by the protein excluded volume, 2 mL/g,
yields the estimated volume fraction of 0.007.

Volume fraction of background proteins. Following the same procedure as
in the estimation of the volume fraction of fatty acid synthase, we estimated the
volumetric fraction of background proteins by computing the fraction left after
excluding fermentation enzymes, molecular motors, mitochondrial and ribosome
proteins. Protein localization and function were distinguished following anno-
tations from the Gene Ontology database [12]. The estimated volume fraction
occupied by background proteins varies from 0.1 up to 0.4 in the panel of NCI60
cell lines [19, 13], with an average value of 0.2.

Compartmental protein concentrations. The compartmental protein concen-
trations of fermentation, motors and background proteins was calculated using
ci = ma/vs = 4.6 mol/L, where i = F,M, 0, ma = 109 g/mol is the average
molar mass of amino acids and vs = 2 mL/g is the protein specific excluded vol-
ume. Using the eukaryotic ribosome volume of 4000 nm3 and a composition of
11590 amino acids/ribosome [26, 22], we calculated cR = 4.8 mol/L. The specific
volume of mitochondria in mammalian cells is ∼ 2.6 mL of mitochondria/g of mi-
tochondrial protein. Multiplying by ma we obtain aO ≈ 3.5 mol/L.

Fermentation horsepower. Reference [38] reports the rate of fermentation
between 0 and 40C from an in vitro reconstitution of glycolysis enzymes with
40 mg/mL of total glycolytic protein concentration. This data is well fitted to

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209551doi: bioRxiv preprint 

https://doi.org/10.1101/209551
http://creativecommons.org/licenses/by/4.0/


the Arrhenius law of the rate of a biochemical reaction fF = f0e
−Ea/RT , with

f0 = 33 µmol/min/mL and Ea = −77 kJ/mol. Using this Arrhenius law we ob-
tain the fermentation rate at 37◦C to be 47 µmol/min/mL. Dividing by a protein
excluded volume of 2 mL/g we obtain a fermentation horsepower of hF = 35 mol
ATP/L/h. A theoretical estimate can be obtained under the assumption that all
enzymatic steps of glycolysis are at saturation, resulting in hF = 1/vs

∑
i(si/ki),

where vs is the proteins specific excluded volume, the sum run over all glycolysis
enzymes, si is the stoichiometric coefficient of reaction i relative to lactate release
and ki is the specific turnover rate of the enzyme catalyzing step i. Based on spe-
cific turnover data from BRENDA [37], k = 36.5, 620, 90, 22.3, 8000, 68.1, 600,
1.5, 70, 400, and 106 µmol/mg/min for the enzymes hexokinase, phosphoglucose
isomerase, phosphofructose kinase, alodolase, glyceraldehyde-3-phosphate dehy-
drogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, pyru-
vate kinase and lactate dehydrogenase, respectively. Furthermore, si = 1/2
from the hexokinase to the aldolase step and si = 1 from glyceraldehyde-3-
phosphate dehydrogenase to lactate dehydrogenase. Using these enzyme specific
turnovers, stoichiometric coefficients, and a protein specific excluded volume of
2 mL/g we obtain hF = 40 mol ATP/L/h. This theoretical estimate is in ex-
cellent agreement with the experimentally measured value. The calculations and
figures reported in the main text were obtained using the experimental value of
hF = 35 mol ATP/L/h.

Oxidative phosphorylation horsepower. The oxidative phosphorylation horse-
power in mammalian cells can be estimated from experimental reports of the max-
imum capacity for ATP production by isolated mitochondria [44]. The average
value is hO = 10 ATP mol/L of mitochondria/h for mitochondria isolated from
healthy mammalian cells. For mitochondria isolated from cancer cells it goes
down to 3 mol ATP/L of mitochondria/h. A theoretical estimate was obtained us-
ing a mathematical model of mitochondrial oxidative phosphorylation [20]. Con-
straining the total enzymatic mass of oxidative phosphorylation and then maxi-
mizing the rate of ATP production, we obtain a theoretical oxidative phosphoryla-
tion horsepower of 19 mol ATP/L of mitochondria/h. This value closely matches
the maximum mitochondrial horsepower reported across multiple cell types [44].
The calculations and figures reported in the main text were obtained using the
average experimental report for healthy mitochondria of hO = 10 ATP mol/L of
mitochondria/h.

Ribosomes horsepower. The horsepower of mammalian ribosomes is hR =
8.4 mol of amino acid incorporated/L of ribosome/h [44].

Motors parameters. Molecular motors exert forces of the order of F = 5 pN
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per kick moving for about d = 10 nM [11, 18]. The motors kicking rate is ∼
κ = 5s−1, while the duration of a kick is τ ∼ 0.5 s [35, 29]. This results in a
persistence parameter, p = rκτ , where r is the number of repeated kicks upon
contact with a macromolecule. The average repeated kicks r ≈ 5 was estimated
so as to match a maintenance demand of ≈ 1 mol/L/h at a typical macromolecular
volume fraction of φ = 0.4 [48]. The motors maintenance energy per motor
volume was calculated as mM = κ/(MMvs), where MM is the motors molar
mass and vs is the protein specific excluded volume. We use the molar mass of
Myosin Va, MM = 215405 g/mol (UNIPROT:Q9Y4I1) as a typical value. This
results in mM = 42 mol/h/L.

Activation energies. The biochemical horsepowers were assumed to follow an

Arrhenius dependence on the temperature, hi = hi0e
Ei
RT0

− Ei
RT , where i = R,F , T0

is the reference temperature where the horsepower equals hi0 and Ei is the activa-
tion energy. Since the motors kicking is also an activated process, the maintenance

requirement of motors was assumed to follow a similar law, mE = mE0e
EM
RT0

−EM
RT .

The activation energies were estimated from the literature: ribosomes 80 kJ/mol
[15], glycolysis 77 kJ/mol [38], and myosin 125 kJ/mol [8].
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Figures

A

B

Figure 1: Molecular motors counteracting molecular crowding. Molecular
crowders (gray) impede cellular processes such as protein synthesis. (A) A ribo-
some (blue) translating a mRNA strand must displace the crowders before it can
move to the next codon. (B) Molecular motors (red) increase the propensity of
cavities with lower density of molecular crowders where processes like transla-
tion can proceed freely.
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(A) (B)

Figure 2: Osmolarity dependency of the growth rate. (A) Maximum growth
rate as a function of the excluded volume fraction, when energy is produced by
fermentation (black line) or oxidative phosphorylation (blue line). (B) Maximum
growth rate as a function of external osmolarity. These plots were obtained using
parameters for mammalian cells.
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Figure 3: Energy balance as a function of growth rate. (A,B) Energy demand
of all metabolism (A) and cell maintenance (B) as a function of the growth rate.
The arrows indicate the three energy scales of metabolism: I. maintenance, II.
switch to fermentation, and III. maximum growth rate. (C,D) Volume fractions
of fermentation enzymes (C) and oxidative phosphorylation machinery (D) as a
function of growth rate. The shaded area represents the range of feasible values
corresponding to different values of φ. The dashed lines show the trajectories
corresponding to lowest carbon consumption (purple) and maximum growth yield
(orange). These plots were obtained using parameters for mammalian cells.
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Figure 4: Impact of the volume fraction of background proteins. The space of
feasible solutions in the µ, φ plane for different values of φ0.
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Figure 5: Temperature dependency of the maximum growth rate. This plot
was obtained using parameters for mammalian cells.
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