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Abstract  

The limited supply of fossil fuels and the establishment of new environmental policies 

shifted research in industry and academia towards sustainable production of the 2nd 

generation of biofuels, with Methyl Ethyl Ketone (MEK) being one promising fuel 

candidate. MEK is a commercially valuable petrochemical with an extensive 

application as a solvent. However, as of today, a sustainable and economically viable 

production of MEK has not yet been achieved despite several attempts of introducing 

biosynthetic pathways in industrial microorganisms. We used BNICE.ch as a 

retrobiosynthesis tool to discover all novel pathways around MEK. Out of 1’325 

identified compounds connecting to MEK with one reaction step, we selected 3-

oxopentanoate, but-3-en-2-one, but-1-en-2-olate, butylamine, and 2-hydroxy-2-

methyl-butanenitrile for further study. We reconstructed 3’679’610 novel biosynthetic 

pathways towards these 5 compounds. We then embedded these pathways into the 

genome-scale model of E. coli, and a set of 18’925 were found to be most biologically 

feasible ones based on thermodynamics and their yields. For each novel reaction in 

the viable pathways, we proposed the most similar KEGG reactions, with their gene 

and protein sequences, as candidates for either a direct experimental implementation 

or as a basis for enzyme engineering. Through pathway similarity analysis we 

classified the pathways and identified the enzymes and precursors that were 

indispensable for the production of the target molecules. These retrobiosynthesis 

studies demonstrate the potential of BNICE.ch for discovery, systematic evaluation, 

and analysis of novel pathways in synthetic biology and metabolic engineering 

studies. 
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Introduction 

Limited reserves of oil and natural gas and the environmental issues associated with 

their exploitation in the production of chemicals sparked off current developments of 

processes that can produce the same chemicals from renewable feedstocks using 

microorganisms.1-3 A fair amount of these efforts focuses on a sustainable production 

of the 2nd generation of biofuels.  

Compared to the currently used fossil fuels and bioethanol, these 2nd generation 

biofuels should provide lower carbon emissions, higher energy density, and should be 

less corrosive to engines and distribution infrastructures. Recently, a large number of 

potential candidates has been proposed, such as n-butanol, isobutanol, 2-methyl-1-

butanol or 3-methyl-1-butanol4, C13 to C17 mixtures of alkanes and alkenes5, fatty 

esters, fatty alcohols1, and Methyl Ethyl Ketone (MEK) also referred to as 2-

butanone6. 

For many of these chemicals, natural microbial producers are not known and novel 

biosynthetic pathways for their production are yet to be discovered.7, 8 Even when 

production pathways for target chemicals are known, it is important to find 

alternatives in order to further reduce cost and greenhouse emissions, and as well to 

avoid possible patent issues.  

Computational tools are needed to assist in the design of novel biosynthetic pathways 

because they allow exhaustive generation of possible alternatives and evaluation of 

their properties and prospects for producing target chemicals.8 For instance, 

computational tools can be used to assess the performance of a production pathway 

operating in one organism in another host organism. They can also be used to predict, 

prior to experimental pathway implementation, the yields across organisms of a 

particular pathway in producing a target molecule. 
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There are different computational tools for pathway prediction available in the 

literature.9-19 An important class of these tools is based on the concept of generalized 

enzyme reaction rules, which were introduced by Hatzimanikatis and co-workers.20, 21 

These rules emulate the functions of enzymes, and they can be used to apply in silico 

biotransformations over a wide range of substrates.8 Most of the implementations of 

this concept appear in the context of retrobiosynthesis, where the algorithm generates 

all possible pathways from a target compound towards desired precursors in an 

iterative backward manner.3, 7-9, 14, 16, 19-25  

In this study, we used the retrobiosynthesis framework of BNICE.ch8, 9, 20-25 to explore 

the biotransformation space around Methyl Ethyl Ketone (MEK). Besides acetone, 

MEK is the most commercially produced ketone with broad applications as a solvent 

for paints and adhesives and as a plastic welding agent.26 MEK shows superior 

characteristics compared to the existing fuels in terms of its thermo-physical 

properties, increased combustion stability at low engine load, and cold boundary 

conditions, while decreasing particle emissions.27 There is no known native producer 

of MEK, but in the recent studies this molecule was produced in E. coli28, 29 and S. 

cerevisiae6 by introducing novel biosynthetic pathways. To convert 2,3-butanediol to 

MEK, Yoneda et al.30 introduced into E. coli a B-12 dependent glycerol dehydratase 

from Klebsiella pneumoniae. Srirangan et al.29 expressed in E. coli a set of 

promiscuous ketothiolases from Cupriavidus necator to form 3-ketovaleryl-CoA, and 

they further converted this molecule to MEK by expressing acetoacetyl-

CoA:acetate/butyrate:CoA transferase and acetoacetate decarboxylase from 

Clostridium acetobutylicum. In S. cerevisiae, Ghiaci et al.6 expressed a B12-

dependent diol dehydratase from Lactobacillus reuteri to convert 2,3-butanediol to 

MEK. Alternatively, hybrid biochemical/chemical approaches were proposed where 
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precursors of MEK were biologically produced through fermentations and then 

catalytic processes were used to produce MEK.30, 31  

We used the BNICE.ch algorithm to generate a network of potential biochemical 

reactions around MEK, and we identified 159 biochemical and 1’166 chemical 

compounds one reaction step away from MEK (Table S1 - Supporting Information). 

We considered as biochemical compounds the ones that we found in the KEGG32, 33 

database, and as chemical compounds the ones that we found in the PubChem34, 35 but 

not in the KEGG database. A set of 154 compounds appeared in both databases. Out 

of these 1’325 compounds, 2-hydroxy-2-methyl-butanenitrile (MEKCNH) was the 

only KEGG compound connected to MEK through a KEGG reaction (KEGG 

R09358). For further study, we chose MEKCNH along with three KEGG compounds: 

3-oxopentanoate (3OXPNT), but-3-en-2-one (MVK) and butylamine (BuNH2), and 

one PubChem compound: 1-en-2-olate (1B2OT). The latter four compounds were 

chosen based on two important properties: (i) their simple chemical conversion to 

MEK, e.g., 3OXPNT spontaneously decarboxylates to MEK; and (ii) their potential 

use as precursor metabolites to further produce a range of other valuable chemicals.36-

38 MVK can be converted to MEK by a 2-enoate reductase from Pseudomonas putida, 

Kluyveromyces lactis or Yersinia bercovieri,39 however, these reactions are not 

catalogued in KEGG. Similarly, 3-OXPNT can be decarboxylated to MEK by 

acetoacetate decarboxylase from Clostridium acetobutylicum.29 In contrast, there are 

no known enzymes that can convert 1B2OT and BuNH2 to MEK. 

We have reconstructed all possible novel biosynthetic pathways (3’679’610 in total) 

up to a length of 4 reaction steps from the central carbon metabolites of E. coli 

towards the 5 compounds mentioned above. We evaluated the feasibility of these 

3’679’610 pathways with respect to the mass and energy balance, and we found 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 2, 2018. ; https://doi.org/10.1101/209569doi: bioRxiv preprint 

https://doi.org/10.1101/209569
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

18’925 thermodynamically feasible pathways which we further ranked with respect to 

their carbon yields. We identified the metabolic subnetworks that were carrying 

fluxes when the optimal yields were attained, and we determined the minimal sets of 

precursors and the common routes and enzymes for production of the target 

compounds.  

 
Results and Discussion 
 
Generated metabolic network around Methyl Ethyl Ketone 

We used the retrobiosynthesis algorithm of BNICE.ch to reconstruct the biochemical 

network around MEK. BNICE.ch8, 9, 20-25 is a computational framework that takes 

advantage of the biochemical knowledge derived from the thousands of known 

enzymatic reactions to predict all possible biotransformation pathways from known 

compounds to desired target molecules. We applied BNICE.ch and generated all 

compounds and reactions that were up to five generations away from MEK (Figure 

1).  

To start the reconstruction procedure, we provided the initial set of compounds that 

contained 26 cofactors along with MEK (Table S2 - Supporting Information). In the 

first BNICE.ch generation, we produced 6 biochemical and 25 chemical compounds 

connected through 48 reactions to MEK. Interestingly, among these reactions were 

also the ones proposed by Yoneda et al.30, Srirangan et al.29 and Ghiaci et al.6  

After five generations, a total of 13’498 compounds were generated (Figure 1.a). Out 

of these, 749 were biochemical and the remaining 12’749 were chemical compounds. 

We could also find 665 out of the 749 biochemical compounds in the PubChem 

database. All generated compounds were involved in 65’644 reactions, out of which 

560 existed in the KEGG database and the remaining 65’084 were novel reactions 

(Figure 1.b). A large majority of the discovered reactions (67%) were 
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oxidoreductases, 15.4% were lyases, 8.6% were hydrolases, 4.3% transferases, 3.6% 

isomerases and only 0.72% ligases (Figure 1.c). Out of 361*2 bidirectional 

generalized enzyme reaction rules of BNICE.ch, 369 were required to generate the 

metabolic network around MEK with the size of 5 reaction steps. As expected from 

the statistics on the discovered reactions, most of these rules (38%) described the 

oxidoreductase biotransformation (Figure 1.d). 

Although MEK participated in a total of 1’551 reactions only one reaction was 

catalogued in the KEGG database (KEGG R09358) which connected MEK to 

MEKCNH. The generated reactions involved 1’325 compounds (159 biochemical and 

1’166 chemical) that could be potentially used as MEK precursors.  

 

Figure 1. Growth of the BNICE.ch generated metabolic network over 5 generations. 

Compounds: biochemical (Panel a, blue) and chemical (Panel a, red). Reactions: 

KEGG (Panel b, blue) and novel (Panel b, red). Discovered reactions (Panel c) and 

utilized generalized enzyme reaction rules (Panel d) organized on the basis of their 

Enzymatic Commission40, EC, class. 

 

Pathway reconstruction towards five target compounds  

In the pathway reconstruction process, we used as starting compounds 157 

metabolites selected from the generated network, which were identified as native E. 

coli metabolites using the E. coli genome-scale model iJO136641 (Table S3 - 

Supporting Information). We performed an exhaustive pathway search on the 

generated metabolic network, and we reconstructed 3’679’610 pathways towards 

these five target compounds with pathway lengths ranging from 1 up to 4 reaction 

steps (Table 1). The reconstructed pathways combined consist of 37’448 reactions, 
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i.e., 57% of the reactions reproduced from the BNICE.ch generated metabolic 

network.  

More than 58% of the discovered pathways were towards BuNH2, while only 3.8% of 

the reconstructed pathways were towards 1B2OT, which was the only PubChem 

target compound (Table 1). Only 33 reconstructed pathways were of length one, and 

28 out of them were towards BuNH2 and none towards 1B2OT. The majority of 

reconstructed pathways (> 97%) were of length four. These results suggest that the 

biochemistry of enzymatic reactions favors smaller changes of a molecule structure 

over several steps. 

 

Table 1. Reconstructed pathways towards five target compounds.  

Target Reconstructed Reaction steps Feasible pathways 

compounds pathways 1 2 3 4 FBA TFA 
3-oxopentanoate 

(3OXPNT) 641’493 1 198 12’222 629’072 361’187 11’145 

but-3-en-2-one (MVK) 438’889 1 136 7’554 431’198 57’173 4’117 
Butylamine 

(BuNH2) 2’146’890 28 1’236 53’573 2’092’053 27’211 1’177 

but-1-en-2-olate 
(1B2OT) 140’779 0 53 2’905 137’821 30’689 1’826 

2-hydroxy-2-methyl-
butanenitrile 
(MEKCNH) 

311’559 3 94 6’546 304’916 11’151 660 

 3’679’610 33 1’717 82’800 3’595’060 487’411 18’925 
 

Evaluation of reconstructed pathways 

We performed a series of studies of the 3’679’610 generated pathways to assess their 

biological feasibility and performance (Methods). The feasibility of the pathways 

depends on the metabolic network of the chassis organism. Therefore, we embedded 

each of the reconstructed pathways in the E. coli genome-scale model iJO1366 and 

performed flux balance analysis (FBA) and thermodynamics-based flux analysis 

(TFA). The directionality of the reactions is an important factor in FBA and TFA42, 
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and in our studies, we distinguished the following types the reactions: (R1) known 

and novel reactions for which have no information about their directionality; (R2) 

reactions that have preassigned directionality in iJO1366; and (R3) reactions that 

involve CO2 as a metabolite. We employed 2 types of constraints (Methods): (C1) the 

preassigned directionalities of the R2 reactions were removed and the directionality of 

the R3 reactions was fixed towards decarboxylation; and (C2) the preassigned 

directionalities of the R2 reactions were kept and the directionality of the R3 reactions 

was fixed towards decarboxylation. In C1 constraints, we removed the preassigned 

directionalities to explore the possibilities that might be lost due to assumptions about 

the catalytic activities of enzymes. The catalytic reversibility or irreversibility of 

enzymes could be altered through protein and evolutionary engineering and enzyme 

screening.42 Unless stated otherwise, for FBA and TFA we applied C1 constraints. 

 

Flux balance analysis. We used FBA as a prescreening method and we found the 

pathways that were incompatible with the host organism as they required co-

substrates that were absent in the host organism (based on the iJO1366 

reconstruction). Out of all reconstructed pathways, only 13.24% (487’411) were FBA 

feasible (Table 1). Though the largest number of reconstructed pathways were 

towards BuNH2, only 1.27% (27’211) of these were FBA feasible. The number of 

FBA feasible pathways for MEKCNH was also low (3.59%). In contrast, more than 

56% of pathways towards 3OXPNT were FBA feasible. 

Thermodynamics-based flux analysis. We used TFA and identified 18’925 

thermodynamically feasible pathways (0.51% of all generated pathways, or 3.88% of 

the FBA feasible pathways). The set of TFA feasible pathways involved 3’269 unique 
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reactions. These results demonstrate that TFA is important for pathway evaluation 

and screening.  

We found BuNH2 to have the lowest rate of TFA feasible pathways with 0.05% of 

reconstructed pathways being TFA feasible (Table 1). The highest rate of TFA 

feasible pathways was again for 3OXPNT (1.74 %). The shortest TFA feasible 

pathways consisted of 2 reaction steps (21 pathways), whereas a majority of TFA 

feasible pathways had length 4 (Table 2). All pathways contained novel reaction 

steps, and only 19 pathways had one novel reaction step (Table 2). All of these 19 

pathways were towards MVK, and they all had as intermediates 2-acetolactate and 

acetoin. The final reaction step converting acetoin to MVK was novel in all of them.  

 

Table 2. Number of known reaction steps versus all reaction steps. Pathways with one 

novel reaction step are marked in red. All shown pathways are TFA feasible. 

 

  Reaction steps Feasibility 
 2 3 4 TFA 

N
um

be
r 

of
 k

no
w

n 
st

ep
s i

n 
a 

pa
th

w
ay

 

0 14 371 7’059 7’444 3-oxopentanoate 
(3O

X
PN

T) 

1  118 2’956 3’074 

2   627 627 

0 4 72 3’196 3’272 but-3-en-2-one 
(M

V
K

) 

1 1 13 703 717 

2  2 110 112 

3   16 16 

0 2 35 974 1’011 B
utylam

ine 
(B

uN
H

2 ) 

1  7 139 146 

2   20 20 

0  23 1’576 1’599 but-
1-
en-
2-

olat
e 

(1B
2OT) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 2, 2018. ; https://doi.org/10.1101/209569doi: bioRxiv preprint 

https://doi.org/10.1101/209569
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

1  10 196 206 

2   21 21 

0  50 380 430 2-hydroxy-2-m
ethyl-

butanenitrile 
(M

EK
C

N
H

)3 

1  2 202 204 

2   26 26 

  21 703 18’201 18’925 

 

Yield analysis. We used TFA to assess the production yield of the feasible pathways 

from glucose to the target compounds (Table S4 - Supporting Information). We 

identified pathways for all target compounds that could operate without a loss of 

carbon from glucose. More than a half of the pathways towards 3OXPNT (57%) 

could operate with the maximum theoretical yield of 0.774 g/g, i.e., 1Cmol/1Cmol 

(Figure 2). In contrast, only 4% (27 out of 660) pathways towards MEKCNH could 

operate with the maximal theoretical yield of 0.66 g/g (Table S4 - Supporting 

Information). We found that pathways were distributed into several distinct sets rather 

than being more spread and continuous, i.e., we obtained eleven sets for 3OXPNT, 

four sets for MEKCNH, 15 sets for BuNH2, nine sets for 1B2OT and ten sets for 

MVK (Table S4 - Supporting Information). Interestingly, a discrete pattern in 

pathway yields was also observed in a similar retrobiosynthesis study for the 

production of mono-ethylene glycol in Moorella thermoacetica and Clostridium 

ljungdahlii.43  

Analysis of alternative assumptions on reaction directionalities. Since we found 

that the directionality of reactions in the network impacts yields, we investigated how 

the type of alternative constraints C2 affected the yield distribution. The R2 reactions 
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that could operate in both directions with the C1 constraints applied were 

unidirectional with the C2 constraints applied. As expected, these additional 

constraints reduced flexibility of the metabolic network and some pathways even 

became infeasible (Table S5 - Supporting Information). With the C2 constraints, the 

yields were in general reduced and their distribution was more spread compared to the 

one obtained using the C1 constraints. For example, we found with both sets of 

constraints three alternative pathways for the production of 3OXPNT from acetate via 

two intermediate compounds: 2-ethylmalate and (3S)-3-hydroxypentanoate. The three 

alternative pathways had three different cofactor pairs in the final reaction step that 

converts (3S)-3-hydroxypentanoate to 3OXPNT (Figure F1 - Supporting 

Information). With the C1 constraints, the three pathways had an identical yield of 

0.642 g/g. In contrast, with the C2 constraints, the pathway with NADH/NAD 

cofactor pair in the final step had a yield of 0.537 g/g, the one with NADPH/NADP 

had a yield of 0.542 g/g, and the one with H2O2/H20 had a yield of 0.495 g/g. These 

differences in yields are a consequence of the different costs of cofactor production 

upon adding supplementary constraints. 

These results highlight the importance of the choice of constraints in FBA and TFA as 

they can influence our conclusions on reaction directionalities. Besides, the reaction 

directionalities have a critical impact on network properties such as gene essentiality 

or yields.42 This suggests that particular caution should be exercised when using “off-

the-shelf” models as some of them have ad hoc pre-assigned directionalities.42, 44, 45 

Additionally, this indicates that there is a need for revisiting assumptions on reaction 

directionalities in the current genome-scale reconstructions. This task can performed 

by integrating thermodynamics in metabolic networks and thus allowing for 

systematical assigning of reaction directionalities.42 However, for an accurate 
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estimation of the reaction directionalities using thermodynamics, it is crucial to 

consider the contribution of the activities to the Gibbs free energy of reactions instead 

of using only the standard values44, 45 further emphasizing the importance of 

integrating metabolomics data. 

 

BridgIT analysis. For each novel reaction from the feasible pathways, we identified 

the most similar KEGG reaction whose gene and protein sequences were assigned to 

the novel reaction (Methods). The BridgIT46 results can be consulted at http://lcsb-

databases.epfl.ch/pathways/ upon subscription. 

 

Identification and analysis of anabolic subnetworks capable of synthesizing 

target molecules 

In pathway reconstruction, we identified the sequence of the main reactions required 

to produce the target molecules from precursor metabolites in the core network. 

However, these reactions require additional co-substrates and cofactors that should 

become available from the rest of the metabolism. In addition, these reactions produce 

also side products and cofactors that must be recycled by the genome-scale metabolic 

network in order to have a biologically feasible and balanced subnetwork for the 

production of the target molecules. Therefore, we identified the active metabolic 

subnetworks required to synthesize the corresponding target molecule (Methods). We 

then divided the active metabolic subnetworks into the core metabolic network, which 

included central carbon metabolism pathways47, 48, and the active anabolic 

subnetwork (Figure 2.a, and Methods). Interestingly, we found that on average there 

were more than 3 alternative anabolic subnetworks per pathway due to the redundant 

topology of metabolism (Table 3). For example, for 11’145 feasible pathways towards 
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3OXPNT we identified 35’013 alternative anabolic subnetworks. Overall, we 

identified 57’139 active anabolic subnetworks from the 18’925 TFA feasible 

pathways.  

 

Figure 2. Metabolic network representing the production of 3OXPNT from glucose 

(Panel a). Black lines: reactions pertaining to the core metabolic network. Red lines: 

reactions pertaining to the active anabolic metabolic subnetwork. Green nodes: 

metabolites in the core metabolic network. Orange nodes: metabolites in the active 

anabolic metabolic subnetwork. Yellow nodes: core precursors, i.e., metabolites that 

connect the core and active anabolic subnetworks. Alternative pathways connecting 

ribose-5-phosphate, r5p, with 2-deoxy-D-ribose-1-phosphate, 2dr1p (Panel b). 

Alternative pathways connecting the core metabolites with propanal, Ppal (Panel c).  

 

Table 3. Alternative anabolic subnetworks for 5 target compounds together with their 

lumped reactions and precursors. 

Target 
compounds 

Feasible 
pathways 

Alternative 
anabolic 

subnetworks 

Unique 
lumps 

Overlapping 
sets of 

precursors 

Unique 
precursors 

3-oxopentanoate 
(3OXPNT) 11’145 35’013 4’517 281 40 

but-3-en-2-one 
(MVK) 4’117 10’162 1’762 126 32 

Butylamine 
(BuNH2) 1’177 4’259 1’791 102 30 

but-1-en-2-olate 
(1B2OT) 1’826 5’339 1’536 97 30 

2-hydroxy-2-methyl-
butanenitrile 
 (MEKCNH) 

660 2’420 794 37 17 

 18’925 57’139 10’400  
  

 
Next, we computed a lumped reaction for each of the alternative subnetworks 

(Methods). Out of the 57’139 computed lumped reactions, only 10’400 were unique 

(Table 3) similar to previous findings from the analysis of the biomass building 
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blocks in E. coli.49 Overall, for the five target compounds, there were, on average, 

more than 5 alternative subnetworks per lumped reaction. For the compound 

3OXPNT, we found the largest diversity in alternative subnetworks per lumped 

reaction, where, on average, more than 7 alternative subnetworks had the same 

lumped reactions (35’013 alternative subnetworks were lumped into 4’517 unique 

reactions). In contrast, we observed the smallest diversity for BuNH2 with 

approximately three alternative subnetworks per lumped reaction (2’420 alternative 

subnetworks lumped into 794 unique reactions) (Table 3). An illustrative example of 

multiple pathways with the same lumped reaction is provided in Figure F2 in the 

Supporting Information. This result suggests that the overall chemistry and the cost to 

produce the corresponding target molecule are the same for many different pathways. 

Since the cost of producing a target molecule depends of the host organism, this 

implies that the choice of the host organism is important. On the other hand, the 

multiple alternative options could also provide useful degrees of freedom for synthetic 

biology and metabolic engineering design. 

The 35’013 active anabolic networks towards the production of 3OXPNT were 

composed of only 394 unique reactions. Out of these 394 reactions, 132 were 

common with the pathways leading towards the production of all biosynthetic 

building blocks (BBB) except chorismate, phenylalanine, and tyrosine. This finding 

suggests that BBBs could be competing for resources with 3OXPNT and that they 

could affect the production of this compound. 

 
Origins of diversity of alternative anabolic subnetworks. To better understand the 

diversity in alternative anabolic subnetworks, we performed an in-depth analysis of 

the two-step pathway from acetyl-CoA and propanal to 3OXPNT, which presented 

the largest number of alternative anabolic networks (185) among all reconstructed 
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pathways (Figure 2.a). The smallest anabolic subnetwork of the 185 alternatives 

consisted of 14 enzymes, whereas the largest one comprised 22 enzymes (Table S6 - 

Supporting Information). All 185 subnetworks shared five common enzymes: the two 

enzymes from the reconstructed pathway converting propanal via (3S)-3-

hydroxypentanoate to 3OXPNT (with the BNICE.ch assigned third level Enzymatic 

Commission40, EC, numbers 2.3.3.- and 1.1.1.-), two enzymes involved in acetyl-CoA 

production (phosphopentomutase deoxyribose (PPM2), and deoxyribose-phosphate 

aldolase (DRPA)), one enzyme converting propionate to propanal (aldehyde 

dehydrogenase (ALDD3y)) (Figure 2). 

The multiplicity of ways to produce acetyl-CoA and propionate contributed to a large 

number of alternative subnetworks: there were 102 alternative ways of producing 

acetyl-CoA from ribose-5-phosphate (r5p) via 2-deoxy-D-ribose-1-phosphate (2dr1p) 

(Figure 2.b) and 9 different ways of producing propionate (Figure 2.c).  

There were two major routes to produce 2dr1p within the 102 alternatives. In the first 

route with 50 alternatives, r5p is converted either to ribose-1-phosphate (in 31 

alternatives) or to D-ribose (in 19 alternatives), which are intermediates in producing 

nucleosides such as adenosine, guanosine, inosine and uridine. These nucleosides are 

further converted to deoxyadenosine (dad), deoxyguanosine (dgsn) and deoxyuridine 

(duri) that are ultimately phosphorylated to 2dr1p. In 26 of the remaining 52 

alternatives of the second route, r5p is converted to phosphoribosyl pyrophosphate 

(prpp), which is followed by a transfer of its phospho-ribose group to nucleotides 

such as AMP, GMP, IMP and UMP. These nucleotides are then converted to 2dr1p by 

downstream reaction steps. In the remaining alternatives for the second route, r5p is 

first converted to AMP in one reaction step, and then to 2dr1p via dad and dgsn. 
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There were 9 alternative routes to produce propionate. In 4 of these, this compound 

was produced from pyruvate and succinate (Figure 2.a and 2.c), in 3 routes it was 

produced from aspartate (Figure 2.c), and in 2 routes it was produced from 3-

phosphoglycerate and glutamate. 

 

Core precursors of five target compounds. An abundant availability of precursor 

metabolites is crucial for an efficient production of target molecules.50 Here, we 

defined as core precursors the metabolites that connect the core to the active anabolic 

metabolic subnetworks (Figure 2.a). We analyzed the different combinations of core 

precursors that appeared in the alternative subnetworks. Our analysis revealed that the 

majority of subnetworks were connected to the core network through a limited 

number of core precursors. We found that all 35’013 alternative subnetworks for the 

production of 3OXPNT were connected to the core network by 281 sets of different 

combinations among 40 unique core precursors (Table 3). We ranked these sets based 

on their number of appearances in the alternative networks. The top ten sets appeared 

in 24’210 subnetworks, which represented 69% of all identified subnetworks for this 

compound (Table 4). Moreover, the metabolites from the top set (acetyl-CoA, 

propionyl-CoA, pyruvate, ribose-5-phosphate, and succinate) were the precursors in 

8’510 (24.3%) subnetworks for 3OXPNT (Table 4). Ribose-5-phosphate appeared in 

9 out of the top ten sets, and it was a precursor in 32’237 (92%) 3OXPNT producing 

subnetworks.  

 

Table 4.  Top ten core precursor combinations for the production of 3OXPNT. Core 

precursors: acetate (ac), acetyl-CoA (acCoA), aspartate (asp-L), dihydroxyacetone 
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phosphate (dhap), propionyl-CoA (ppCoA), pyruvate (pyr), ribose-5-phosphate (r5p), 

succinate (succ), succinyl-CoA (sucCoA). 

ac acCoA asp-L dhap ppCoA pyr r5p succ sucCoA No. of sub- 
networks 

No. of 
feasible 

pathways 

 
✔   ✔ ✔ ✔ ✔  8’510 624 

  ✔  ✔  ✔   5’409 2790 

    ✔ ✔ ✔ ✔  3’463 920 

✔      ✔  ✔ 1’344 672 

     ✔ ✔ ✔  1’049 382 

 ✔     ✔ ✔  965 191 

 ✔     ✔  ✔ 956 478 

    ✔ ✔  ✔  915 460 

 ✔  ✔   ✔   834 419 

   ✔   ✔   765 387 

         24’210 7323 

 

Clustering of feasible pathways 

The repeating occurrences of core precursors and lumped reactions in the alternative 

anabolic subnetworks motivated us to identify common patterns in core precursors, 

enzymes, and intermediate metabolites required to produce the target molecules. To 

this end, we used the feasible pathways from acetate to 3OXPNT as the test study, 

and we performed two types of clustering on these 115 pathways (File M1 – 

Supporting information). 

Clustering based on core precursors and byproducts of lumped reactions. We 

computed 242 lumped reactions corresponding to 115 pathways and 242 subnetworks 

from the test study (File M1 – Supporting information). We chose the first lumped 

reaction returned by the solver for each of the 115 pathways, and we clustered them 
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based on the structural similarity between their core precursors and byproducts 

(Methods).  

The main clustering condition among the 115 pathways was the presence or absence 

of thioesters, such as AcCoA, in the set of core precursors (Figure 3). There were 56 

pathways with CoA-related precursors and 59 pathways that did not require CoA. The 

pathways from the former group were further clustered subject to the presence of the 

precursors acCoA (1 pathway), ppCoA (30 pathways), both acCoA and ppCoA (6 

pathways), and sucCoA (19 pathways), or the occurrence of the byproducts malonate 

(maln) or CO2. The pathways that did not require CoA were further clustered 

depending on if they had as precursors formate (for) or dhap (27 pathways) or not (32 

pathways). The clustering results for the complete set of 242 lumped reactions are 

provided in the supplementary material (Figure F3 – Supporting information). 

 
Figure 3. Clustering dendrogram of the 115 reconstructed pathways from acetate to 

3OXPNT and their respective yields (inset). Pathways were classified based on core 

precursors (red) and byproducts (green) of their lumped reactions. (R)-CoA denotes 

the group of thioesters. Abbreviations: 2-oxoglutarate (akg), acetyl-CoA (acCoA), 

aspartate (asp), dihydroxyacetone phosphate (dhap), formate (for), glycolate (glyclt), 

malate (mal), malonate (maln), propionyl-CoA (ppCoA), pyruvate (pyr), succinyl-

CoA (sucCoA). 

 

In general, we expect the set of precursors and byproducts to affect the pathway yield. 

Interestingly, the clustering based on core precursors and byproducts of lumped 

reactions also separated distinctly the pathways based on their yields (Figure 3, inset). 

Pathways that have acCoA, ppCoA, dhap, and for as precursors have a maximal 

theoretical yield of 0.774 g/g. In contrast, pathways with 2-oxoglutarate (akg) or 
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acCoA as precursors, and maln as the byproduct, had the lowest yield (0.483 g/g) 

from the set of examined pathways. 

The clustering also provided insight into the different chemistries behind the analyzed 

pathways. For most of the pathways, i.e., the ones classified in groups B1-2 and B4-

10, there was a clear link between the core precursors and co-substrates of acetate in 

the first reaction step of the pathways (Figure 3). For example, the pathways from the 

group B1 have a common first reaction step (EC 2.8.3.-) that converts acetate and 3-

oxoadipyl-CoA to 3-oxoadipate (Figure 3). The clustering grouped these pathways 

together because sucCoA was the core precursor of 3-oxoadipyl-CoA through 3-

oxoadipyl-CoA thiolase (3-OXCOAT). Moreover, 3-oxoadipate, a 6-carbon 

compound, was converted in downstream reaction steps to 3OXPNT, a 5-carbon 

compound, and one molecule of CO2 through 18 alternative routes. Similarly, in the 

single pathway of group B2 the co-substrate in the first reaction step was (S)-

methylmalonyl-CoA, which was produced from sucCoA through methylmalonyl-CoA 

mutase (MMM). This enzyme, also known as sleeping beauty mutase, is a part of the 

pathway converting succinate to propionate in E. coli.51 Malonate (maln), a 2-carbon 

compound, was released in the first reaction step, which resulted in a low yield of this 

pathway (Figure 3).  

Despite sharing the first reaction step in which acetate reacted with 2-oxoglutarate to 

create 2-hydroxybutane 1-2-4-tricarboxylate, the pathways from group B9 were split 

in two groups with different yields (Figure 3). These two groups differed in the 

sequences of reactions involved in the reduction of 2-hydroxybutane 1-2-4-

tricarboxylate, a 7-carbon compound, to 3OXPNT. In 11 pathways, the yield was 

0.483 g/g due to a release of two CO2 molecules, whereas in one pathway the yield 
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was 0.644 g/g due to malate being created as a side-product and recycled back to the 

system. 

Pathways from group B3 utilized different co-substrates, such as ATP and crotonoyl-

CoA, along with acetate to produce acetaldehyde in the first reaction step. All these 

pathways shared a common novel reaction step with acetaldehyde and propionyl-CoA 

as substrates (EC 2.3.1.-).  

Finally, group B11 contained the pathways with the intermediate 2-methylcitrate, 

which was produced from pyruvate (pyr). 

The presented clustering analysis has been shown to be very powerful in identifying 

the features of the large number of pathways. The classification can further guide us 

to identify the biochemistry responsible for the properties of pathways. Such deeper 

understanding can provide further assistance for the design and analysis of novel 

synthetic pathways.  

 

Clustering based on involved enzymes. Although the clustering based on the core 

precursors and byproducts provided an insight of the chemistry underlying the 

production of 3OXPNT from acetate, lumped reactions conceal the identity of the 

enzymes involved in the active anabolic subnetworks. We analyzed the 115 active 

subnetworks corresponding to 115 pathways (File M1 – Supporting information), and 

we found that five enzymes were present in all of them: AMP nucleosidase (AMPN), 

5’-nucleotidase (NTD6), purine-nucleoside phosphorylase (PUNP2), PPM2 and 

DRPA, which participated in the production of acetaldehyde from r5p (Figure 4.b). 

To find common enzyme routes in these subnetworks, we performed a clustering 

based on the structural similarity between their constitutive reactions (Methods). The 

clustering separated 115 subnetworks in two groups depending on the existence (47 
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subnetworks) or not (68 subnetworks) of a sequence of six enzymes starting with 

aspartate kinase (ASPK) and ending with L-threonine deaminase (THRD_L), whose 

product 2-oxobutanoate was converted downstream to 3OXPNT (Figures 4.a and 4.b).  

 

Figure 4. Panel a: Clustering dendrogram of 115 active subnetworks corresponding to 

115 reconstructed pathways from acetate to 3OXPNT. Subnetworks were clustered 

based on enzymes they involved. Panel b: Network structure of 47 subnetworks 

containing a sequence of six enzymes starting with aspartate kinase (ASPK) and 

ending with L-threonine deaminase (THRD_L) (groups BI and BII in Panel A). Core 

metabolites are marked in green, while the metabolites from the active anabolic 

networks are marked in orange. 

 

Both groups were further clustered based on a set of enzymes required to produce 

deoxyadenosine and the downstream metabolite acetaldehyde (Figures 4.a and 4.b). 

The first subgroup of enzymes, i.e. ribonucleoside-diphosphate reductase (RNDR1), 

deoxyadenylate kinase (DADK) and NTD6, converted adp to deoxyadenosine. In the 

second subgroup, atp was transferred to deoxyadenosine via ribonucleoside-

triphosphate reductase (RNTR1c2), nucleoside triphosphate pyrophosphorylase 

(NTPP5) and NTD6 (Figure 4.b). Then, for both subgroups, deoxyadenosine was 

converted to 2-deoxy-D-ribose 5-phosphate (2dr5p) that was further transformed to 

acetaldehyde via PPM2 and DRPA (Figures 2 and 4.b). 

The clustering based on enzymes allowed us to identify enzymatic routes 

corresponding to different yields (Figures 4.a, and Figure 3 inset). For example, all 

pathways that include ASPK and novel reaction steps that involve oxidoreductases of 

the third level EC class 1.14.13.- and 1.2.1.-, would provide the maximal theoretical 
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yield of 0.774 g/g (Figure 4.a). Similarly, pathways that contain ALDD3Y, 

methylisocitrate lyase (MCITL2), and RNTR1C2, but not 3-OXCOAT and ASPK, 

would also provide the maximal theoretical yield. In contrast, the clustering also 

permitted us to identify key enzymes participating in pathways with a reduced yield. 

For example, pathways that contained 3-OXCOAT had a yield of 0.644 g/g. 

Furthermore, the clustering based on enzymes allowed us to clarify the link between 

the precursors and the corresponding sequence of enzymes that needed to be active 

for producing the target molecule. For example, pathways from group B1, which had 

sucCoA as a core precursor and CO2 as a byproduct, had the common reaction step 3-

OXCOAT (Figure 4.a). Similarly, all pathways from group B4 with core precursors 

ppCoA and acCoA contained ALDD3Y. 

 

Ranking of biosynthetic pathways and recommendations  

We further ranked the corresponding feasible pathways according to their yield, 

number of reaction steps and enzymes that could be directly implemented or needed 

to be engineered (Methods). As we saw earlier (e.g. in Figure 3, inset), there are 

several distinct maximum yield values that can be achieved with all these alternatives 

rather than a continuous distribution of yields. The clustering analysis suggests that 

the reason for the discreet distribution is the loss of the carbon atoms in specific steps 

along the pathways. We obtained the top candidate pathways for each of the target 

molecules that were likely to produce these compounds with economically viable 

yields. The highest ranked candidate pathway among all feasible pathways was from 

pyruvate to 3OXPNT, and it consisted of two KEGG reactions, R00203 and R02527, 

and two novel reactions of the third level EC class 2.3.3- and 4.2.1.- (Figure 5). The 

BridgIT46 analysis identified KEGG R00472 as the most similar reaction to 2.3.3.-. 
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KEGG reports that R00472 can be catalyzed by EC 2.3.3.9. Similarly, KEGG R04441 

was identified as the most similar to 4.2.1-, and according to the KEGG database this 

reaction is catalyzed by 4.2.1.9. Therefore, the BridgIT results suggest that the two 

novel reactions can be catalyzed by the known enzymes. Finally, the pathway could 

operate with the maximum theoretical yield of 0.774 g/g. 

The top candidates were visualized and can be consulted at http://lcsb-

databases.epfl.ch/pathways/ upon subscription.  

 

Figure 5. The highest ranked candidate pathway for production of 3OXPNT (dashed 

box) and the corresponding active anabolic subnetwork (red) together with the core 

network (grey). 

 

Further experimental implementation and pathway optimization 

After ranking of the top candidate pathways, the experts can choose the most 

amenable ones for experimental implementation in the host organism. The 

implemented pathways typically need to be optimized further for economically viable 

production titers and rates. The optimization is performed through the Design-Built-

Test-(Learn) cycle of metabolic engineering52-54 where stoichiometric55-57 and kinetic 

models58-65, genome editing66, 67 and phenotypic characterization68 are combined to 

improve recombinant strains for production of biochemicals. 

 
Methods  

We employed the BNICE.ch framework8, 9, 20-25 to generate biosynthetic pathways 

towards 5 precursors of Methyl Ethyl Ketone: 3-oxopentanoate (3OXPNT), 2-

hydroxy-2-methyl-butanenitrile (MEKCNH), but-3-en-2-one (MVK), 1-en-2-olate 
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(1B2OT) and butylamine (BuNH2). We tested the set of reconstructed pathways 

against thermodynamic feasibility and mass balance constraints, and discarded the 

pathways that were not satisfying these requirements.8 Next, we ranked the pruned 

pathways based on the several criteria, such as yield, number of known reaction steps 

and pathway length. The steps of the employed workflow are discussed further 

(Figure 6). 

 

Figure 6. Computational pipeline for discovery, evaluation and analysis of 

biosynthetic pathways. 

 

Metabolic network generation  

We applied the retrobiosynthesis algorithm of BNICE.ch8, 43 to generate a 

biosynthetic network that contains all theoretically possible compounds and reactions 

that are up to 5 reaction steps away from MEK. The BNICE.ch network generation 

algorithm utilizes the expert-curated generalized enzyme reaction rules20, 21, 69 for 

identifying all potential compounds and reactions that lead to the production of the 

target molecules. The most recent version of BNICE.ch includes 361*2 bidirectional 

generalized reaction rules capable of reconstructing more than 6’500 KEGG 

reactions.23 Starting from MEK and 26 cofactors required for the generalized enzyme 

reaction rules (Table S2 - Supporting Information), we identified the reactions that 

lead to MEK along with its potential precursors.70  

Note that for studies where we need to generate a metabolic network that involves 

only KEGG compounds, mining the ATLAS of Biochemistry23 is a more efficient 

procedure than using BNICE.ch retrobiosynthesis algorithm. The ATLAS of 
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Biochemistry is a repository that contains all KEGG reactions and over 130’000 novel 

enzymatic reactions between KEGG compounds.  

 

Pathway reconstruction 

We performed a graph-based search to reconstruct all possible pathways that connect 

the five target molecules with the set of 157 native E. coli metabolites (Table S3 - 

Supporting Information).41 We reconstructed the exhaustive set of pathways up to the 

length of 4 reaction steps.  

Note: If we were interested in pathways containing only KEGG reactions, we would 

perform a graph-based search over the network mined from the ATLAS of 

Biochemistry. 

 

Pathway evaluation  

It is crucial to identify and select, out of a vast number of generated pathways, the 

ones that satisfy physico-chemical constraints, such as mass balance and 

thermodynamics, or the ones that have an economically viable production yield of the 

target compounds from a carbon source. Evaluation of pathways is context-

dependent, and it is important to perform it in an exact host organism model and 

under the same physiological conditions as the ones that will be used in the 

experimental implementation. We performed both Flux Balance Analysis (FBA)71 

and Thermodynamic-based Flux Analysis (TFA)42, 44, 45, 72, 73 to evaluate the pathways. 

We have also used BridgIT46 to identify candidate sequences for protein and 

evolutionary engineering in implementing the pathways. The availability of such 

sequences for the novel reactions and the ability to engineer them should also serve as 

a metric in ranking the feasibility of the pathways.  
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Flux balance and thermodynamic-based flux balance analysis. We embedded the 

generated pathways one at the time in the genome-scale model of E. coli, iJO136641 

(File M1 – Supporting information) and we performed FBA and TFA on the resulting 

models. In these analyses, we assumed that the only carbon source was glucose and 

we applied the following two types of constraints on reaction directionalities: 

	 (C1) We removed the preassigned reaction directionalities74 from the iJO1366 

model (R2 reactions) with the exception of ATP maintenance (ATPM), and we 

assumed that the reactions that involve CO2 (R3 reactions) are operating in the 

decarboxylation direction.  The lower bound on ATPM was set to 8.39 

mmol/gDCW/hr. The remaining reactions (R1 reactions) were assumed to be bi-

directional for FBA, whereas for TFA the directionality of these reactions was 

imposed by thermodynamics. The purpose of removing preassigned reaction 

directionalities was to investigate alternative hypotheses about the catalytic 

reversibility of the enzymes. 

	 (C2) This type of constraints contains the preassigned directionalities of R2 

reactions together with the constraints from C1. 

Since FBA is less computationally expensive than TFA, we first performed FBA as a 

prescreening method to identify and discard the pathways: (i) that are not satisfying 

the mass balance, e.g., pathways that need co-substrates not present in the model; and 

(ii) that have a yield from glucose to the target compounds lower than a pre-specified 

threshold. We then performed TFA on the reduced set of pathways to identify the 

pathways that are bio-energetically favorable and we computed their yields from 

glucose to 5 target compounds under thermodynamic constraints. 
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BridgIT analysis. We used BridgIT to find known reactions with associated genes in 

databases that were the most structurally similar to novel reactions appearing in the 

feasible pathways.46 BridgIT integrates the information about the structures of 

substrates and products of a reaction into reaction difference fingerprints.75 These 

reaction fingerprints contain the information about chemical groups in substrates and 

products that were modified in the course of a reaction. BridgIT compares the 

reaction fingerprints of novel reactions to the ones of known reactions, and quantifies 

this comparison with the Tanimoto similarity score. The Tanimoto score of 1 signifies 

that two compared reactions had a high similarity, whereas the Tanimoto score values 

close to 0 signify that there was no similarity. We used this score to rank the reactions 

identified as similar to each of the novel reactions. The gene and protein sequences of 

the highest ranked reactions were proposed as candidates for either a direct 

experimental implementation or enzyme engineering.  

 

Subnetwork reconstruction analysis  

Once the biologically feasible pathways were identified and ranked, we analyzed the 

parts of the metabolism that carry fluxes when the target compounds are produced 

from glucose. We considered that the active parts of metabolism consisted of: (i) the 

core metabolic network (Figure 2.a), which included the central carbon pathways, 

such as glycolysis, pentose phosphate pathway, tricarboxylic cycle, electron transport 

chain; and (ii) the active anabolic metabolic subnetworks (Figure 2.a), which contain 

the reactions that would carry fluxes when a target molecule is produced, but did not 

belong to the core metabolic network. We also defined the core precursors as 

metabolites that are connecting the core and the active anabolic metabolic 

subnetworks (Figure 2.a). 
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We derived the core metabolic network from the genome-scale reconstruction 

iJO136641 using the redGEM algorithm76, and we then used the lumpGEM49 

algorithm to identify active anabolic subnetworks, and to compute their lumped 

reactions. The analysis of lumped reactions allowed us to identify core precursors of 

the target chemicals. We then performed clustering to uncover core precursors, 

common enzymes, and intermediate metabolites of the anabolic subnetworks leading 

to the production of the target chemicals.  

 
Identification and lumping of active anabolic subnetworks. The lumpGEM algorithm 

was applied to identify the comprehensive set of smallest metabolic subnetworks that 

were stoichiometrically balanced and capable of synthesizing a target compound from 

a defined set of core metabolites. The set of core metabolites belongs to the core 

metabolic network, and it includes also cofactors, small metabolites, and inorganic 

metabolites (Table S7 - Supporting Information). Then, for each target compound and 

for each identified subnetwork, we used lumpGEM to generate a corresponding 

lumped reaction. Within this process, we also identified the stoichiometric cost of 

core metabolites for the biosynthesis of these target compounds. 

 

Clustering of subnetworks. To better understand the chemistry that leads towards the 

target compounds, we performed two types of clustering on the identified 

subnetworks: 

• Clustering based on the structural similarity between the core precursors and 

byproducts of the lumped reactions. For each lumped reaction, we removed all 

non-carbon compounds, such as H2, O2, and phosphate, and the cofactor pairs, 

such as ATP and ADP, NAD+ and NADH, NADP+ and NADPH, flavodoxin 

oxidized and reduced, thioredoxin oxidized and reduced, ubiquinone and 
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ubiquinol. This way, we created a set of substrates (core precursors) and 

byproducts of interest for each lumped reaction. We then used the msim algorithm 

from the RxnSim77 tool to compare the lumped reactions based on individual 

similarities of their core precursors and byproducts. We finally used the obtained 

similarity scores to perform the clustering. 

• Clustering based on the structural similarity between reactions that constitute the 

anabolic subnetworks. We used BridgIT to compute structural fingerprints of 

reactions that constitute the anabolic subnetworks, and we then performed a 

pairwise comparison of the anabolic subnetworks as follows.  

For a given pair of anabolic subnetworks, we carried out a pairwise comparison of 

their reactions. As a comparison metric we used the Tanimoto distance of the 

reaction fingerprints.78 Based on this comparison, we found the pair of the most 

similar reactions in two subnetworks and we stored the corresponding distance 

score. We then removed this pair of reactions from comparison, and we found the 

next pair of the most similar reactions, we stored their distance score, and we 

continued with this procedure until we found all pairs of reactions in two 

subnetworks. Whenever the number of reactions in two subnetworks was unequal, 

we ignored the unmatched reactions. The distance score between two compared 

subnetworks was formed as the sum of the distance scores of compared pairs of 

reactions. This procedure was repeated for all pairs of subnetworks.  

We then used the computed distance scores to perform the subnetworks 

clustering.  

 

Ranking and visualization of in silico pathways  
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In this step, we identified the pathways that were most likely to produce the target 

molecules. For scoring and ranking the biologically meaningful pathways we used the 

following criteria: (i) maximum yield from glucose to the target molecules; (ii) 

minimal number of novel reactions, i.e., enzymes to be engineered; (iii) minimal 

number of reaction steps in the production pathway; and (iv) highest similarity scores 

from BridgIT.  

 

Experimental implementation and pathway optimization 

The highest ranked candidate pathways can then be experimentally implemented in 

the host organism and can further be optimized through the Design-Built-Test-(Learn) 

cycle of metabolic engineering.52-54  

 

Conclusions 

In this work, we used BNICE.ch to reconstruct, evaluate and analyze more than 3.6 

million biosynthetic pathways from the central carbon metabolites of E. coli towards 

five precursors of Methyl Ethyl Ketone (MEK), a 2nd generation biofuel candidate. 

Our evaluation and analysis showed that more than 18’000 of these pathways are 

biologically feasible. We ranked these pathways based on process- and physiology-

based criteria, and we identified gene and protein sequences of the structurally most 

similar KEGG reactions to the novel reactions in the feasible pathways, which can be 

used to accelerate their experimental realization. Implementation of the discovered 

pathways in E. coli will allow the sustainable and efficient production of five 

precursors of MEK (3OXPNT, MVK, 1B2OT, BuNH2, and MEKCNH), which can 

also be used as precursors for the production of other valuable chemicals.36-38  
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The pathway analysis methods developed and used in this work offer a systematic 

way for classifying and evaluating alternative ways for the production of target 

molecules. They also provide a better understanding of the underlying chemistry and 

can be used to guide the design of novel biosynthetic pathways for a wide range of 

biochemicals and for their implementation into host organisms.  

The present study shows the potential of computational retrobiosynthesis tools for 

discovery and design of novel synthetic pathways for complex molecules, and their 

relevance for future developments in the area of metabolic engineering and synthetic 

biology.  
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Tables S1-S7 (XLSX)  

S1: List of compounds one step away from MEK. 

S2: List of starting compounds used for the retrobiosynthesis of BNICE.ch 
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S3: List of 157 starting compounds.  

S4: Yield histograms for 5 MEK precursors obtained with C1 constraints. 

S5: Yield histograms for 5 MEK precursors obtained with C2 constraints. 

S6: List of 185 alternative pathways from AcCoA and PpCoA to 3OXPNT.  

S7: List of metabolites in the core metabolic network. 

 

Figures F1-F3 (PDF)  

F1: Three alternative ways to produce 3OXPNT from acetate through 2 

intermediate metabolites: 2-ethylmalate and 3-hydroxypentanoate. 

F2: Three different pathways from acetate to 3OXPNT sharing the same 

lumped reaction. 

F3: Clustering of all 242 alternatives for production of 3OXPNT from acetate. 

 

File M1 (Matlab .mat file) 

M1: Genome-scale model of E. coli iJO1366 and 242 active anabolic 

subnetworks connecting the core metabolism with 115 pathways from acetate 

to 3OXPNT together with their lumped reactions and stoichiometry. 

 
Abbreviations 
 

Abbreviation Reaction EC number 

3OXCOAT 3-oxoadipyl-CoA thiolase 2.3.1.174 

ACACT1r Acetyl-CoA C-acetyltransferase 2.3.1.9 

ALDD3y Aldehyde dehydrogenase (propanal, NADP)  1.2.1.4  

AMPN AMP nucleosidase 3.2.2.4 

ASPK Aspartate kinase 2.7.2.4 

DADK Deoxyadenylate kinase 2.7.4.3 
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DRPA  Deoxyribose-phosphate aldolase  4.1.2.4  

FTHFLi Formate-tetrahydrofolate ligase 6.3.4.3 

LALDO3 L-Lactaldehyde:NADP+ 1-oxidoreductase  
 

1.1.1.283, 1.2.1.49 

MCITD 2-methylcitrate dehydratase 4.2.1.79 

MCITL2 Methylisocitrate lyase 4.1.3.30 

MGSA Methylglyoxal synthase 4.2.3.3  

MMM Methylmalonyl-CoA mutase  5.4.99.2 

NTD6 5'-nucleotidase (dAMP)  3.1.3.89 

NTTP5 Nucleoside triphosphate pyrophosphorylase 3.6.1.19 

PPM2 Phosphopentomutase 2 (deoxyribose)  5.4.2.7 

PUNP2 Purine-nucleoside phosphorylase 2.4.2.1 

RNDR1 Ribonucleoside-diphosphate reductase (ADP) 1.17.4.1  

RNTR1c2 Ribonucleoside-triphosphate reductase (ATP) 1.17.4.2 

THRD_L L-threonine deaminase 4.1.1.19 

 

Abbreviation Compound Alternative 
name 

Database IDs 

KEGG PubChem 

3OXPNT 3-Oxopentanoate 3-Oxopentanoic acid C02233 5297 

MVK But-3-en-2-one Methyl Vinyl Ketone C20701 172232421 

BuNH2 Butylamine Butanamine C18706 124489380 

1B2OT But-1-en-2-olate 1-Butene-2-olate ✗ 54444500 

MEKCH 2-Hydroxy-2-
methylbutanenitrile 

Methyl Ethyl Ketone 
Cyanohydrin C18796 124489470 

2dr1p 2-deoxy-D-ribose-1-
phosphate 

2-Deoxy-alpha-D-ribose 
1-phosphate C00672 3941 

2dr5p 2-deoxy-D-ribose 5-
phosphate 

2-Deoxy-alpha-D-ribose 
5-phosphate C00673 3942 

dad Deoxyadenosine 2'-Deoxyadenosine C00559 3839 

dgsn Deoxyguanosine 2'-Deoxyguanosine C00330 3624 

duri Deoxyuridine 2'-Deoxyuridine C00526 3809 
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prpp Phosphoribosyl 
pyrophosphate 

5-Phospho-alpha-D-
ribose 1-diphosphate C00119 3419 

ac Acetate Acetic acid C00033 3335 

acCoA Acetyl-CoA Acetyl coenzyme A C00024 3326 

akg 2-oxoglutarate 2-Ketoglutaric acid C00026 3328 

asp-L Aspartate L-Aspartic acid C00049 3351 

dhap Dihydroxyacetone 
phosphate 

3-Hydroxy-2-
oxopropyl phosphate C00111 3411 

ppCoA Propionyl-CoA Propionyl coenzyme A C00100 3400 

pyr Pyruvate 2-Oxopropanoate C00022 3324 

r5p Ribose-5-phosphate alpha-D-Ribose 5-
phosphate C03736 6499 

succ Succinate Butanedionic acid C00042 3344 

sucCoA Succinyl-CoA Succinyl coenzyme A C00091 3391 
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