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ABSTRACT 
 
Metabolomics is a powerful approach for discovering biomarkers and metabolic quantitative trait loci. While 
untargeted profiling methods can measure up to thousands of metabolite signals in a single experiment, many 
signals cannot be readily identified as known metabolites or compared across datasets, making it difficult to 
infer biology and to conduct well-powered meta-analyses across studies. To deal with these challenges, we 
developed a suite of computational methods, PAIRUP-MS, to match metabolite signals across mass 
spectrometry-based profiling datasets using an imputation-based approach and to generate pathway 
annotations for these signals. We performed meta and pathway analyses for both known and unknown signals 
in multiple datasets and then validated the results using genetic associations. Finally, we applied the methods 
to detect metabolite signals and pathways associated with body mass index, demonstrating that our framework 
is useful for analyzing unknown signals in a robust and biologically meaningful manner and for improving the 
power of untargeted metabolomics studies. 
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INTRODUCTION 
 
Metabolomics is a powerful systematic approach for studying circulating molecules in biological samples1,2. 
Profiling technologies such as nuclear magnetic resonance (NMR) spectroscopy and liquid or gas 
chromatography followed by mass spectrometry (LC-MS or GC-MS) have been used to discover metabolites 
that are biomarkers or predictors for various human traits and diseases, including clinical risk factors of 
metabolic or cardiovascular diseases3, type 2 diabetes4, and all-cause mortality5. Genome-wide association 
studies (GWAS) have also identified numerous metabolic quantitative trait loci (mQTLs) that influence variation 
in metabolite abundance, which may provide valuable insights into gene functions and disease mechanisms6-9. 
 
While metabolomics has led to many new discoveries, a significant portion of the generated data have not 
been used to its full potential. Untargeted profiling platforms collect measurements for thousands of metabolite 
signals and compare their data to standards in compound databases to identify known metabolites1. Current 
identification procedures can identify up to a few hundred known metabolites and the remaining unknown 
signals are often excluded from downstream analyses. However, studying unknown signals may be fruitful for 
several reasons. First, many unknowns show correlation with known metabolites, phenotypes, and genetic 
variants, indicating that they capture biological information10. Second, because unknowns usually make up a 
large portion of untargeted data, including them in analysis can greatly increase the search space in analyses. 
Finally, investigating unknown signals may enable us to discover novel biomarkers that have not been 
characterized in human metabolism. Therefore, developing computational methods that deal with unknown 
signals is critical for making the most out of untargeted metabolomics data. 
 
Analyzing unknown signals poses several challenges. Distinguishing biological signals from noise and 
adjusting for technical artifacts are difficult, because unknowns are often associated with noisier 
measurements compared to known metabolites11. Meta-analysis, which may increase power for detecting 
noisy but true signals, is complicated by the lack of gold standard protocols and varying signal characteristics 
across platforms and studies. While some methods have been developed to align signals across datasets 
using mass-to-charge ratio (m/z) and/or retention time (RT) information, their applications are often restricted 
to processing data batches within a single study or data generated by the same profiling method11-13. Another 
main challenge is to link unknown signals to biological functions without confirming their chemical identities. 
Although several pathway or network-based approaches have incorporated unknown signals into 
metabolomics analyses, they focus on a small subset of the unknowns (e.g. those directly associated with 
known metabolites, genes, or a trait of interest) and do not explicitly provide biological interpretations (e.g. 
pathway labels) for enriched pathways or network clusters identified during analysis10,14,15. 
 
To overcome the challenges described above, we developed and implemented computational methods for 
analyzing unknown signals. Our suite of methods, called PAIRUP-MS (Pathway Analysis and Imputation to 
Relate Unknowns in Profiles from MS-based metabolite data), can be used to process, match, and annotate 
metabolite signals in MS-based profiling datasets and to perform meta and pathway analyses for these signals. 
We utilized genetic associations to validate the methods and demonstrated their application by studying 
metabolite signals associated with body mass index (BMI). Our framework can be applied to diverse 
untargeted profiling datasets and will help to advance metabolomics as a powerful approach for elucidating 
biology underlying human traits and diseases. 
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RESULTS 
 
Metabolomics datasets and data processing 
 
We developed and tested computational methods in PAIRUP-MS using LC-MS profiling data generated from 
three independent cohorts: (1) Obesity Extremes cohort (OE): 300 individuals (100 lean, 100 obese, and 100 
population control) sampled from the Estonian Biobank, (2) Mexico City Diabetes Study cohort (MCDS): 865 
individuals in a prospective type 2 diabetes study, and (3) BioAge Labs Mortality cohort (BioAge): 583 
individuals selected from the Estonian Biobank for a retrospective mortality study. In order to reduce noise in 
the profiling data and to improve power in analyses, we implemented a quality control (QC) pipeline, described 
in Methods and Supplementary Information, to adjust each dataset for measurement variation associated 
with technical artifacts and remove samples, metabolite signals, and data points with noisy trends. After QC, 
we leveraged the correlation structure among signals to impute any remaining missing values within a dataset. 
In the end, the OE dataset contained 298 samples and 13,613 metabolite signals (322 known and 13,291 
unknown); MCDS contained 821 samples and 7,136 signals (242 known and 6,894 unknown); BioAge 
contained 583 samples and 14,617 signals (603 known and 14,014 unknown). Covariate adjustment (if 
appropriate) and rank-based inverse normal transformation were performed on each metabolite signal and the 
resulting abundance z-scores were used in downstream analyses. QC’ed cohort and dataset characteristics 
are summarized in Table 1. 
 
 
Matching metabolite signals across datasets 
 
Matching method overview 
An approach for comparing unknown signals measured in different untargeted profiling datasets is crucial for 
increasing power in metabolomics studies. Instead of using RT information, which can vary greatly across 
profiling methods and platforms, we developed a method that utilizes m/z and imputation to match up signals 
likely to represent the same metabolites across MS-based profiling datasets (Fig. 1a). In preliminary analysis, 
we observed that known metabolites measured across our three datasets had moderately similar correlation 
structures despite substantial differences in study populations and designs (Supplementary Fig. 1). We took 
advantage of this observation and imputed the abundance of unknown (or unshared known) signals from one 
dataset to another using shared known metabolites as predictors in linear regression models. The imputation 
then allowed us to calculate the correlation between signals measured in different datasets across a common 
set of samples and to pair up signals based on agreement in m/z and this correlation. 
 
Calibration using shared known metabolites 
In order to calibrate parameters in our method, we treated known metabolites shared across two datasets as 
unmatched signals and applied our method to match each of them in turn. We compared the performance of 
different parameter settings by calculating the percentage of matches that were either the correct match or 
highly correlated (r2 > 0.8) with the correct match in observed data. The parameter choices we tested included: 
(1) whether to consider different adduct ions when checking for m/z agreement, (2) which set of samples to 
use for calculating correlation between signals, (3) whether to allow multiple-to-1 signal matching or require 
unique 1-to-1 matching, (4) whether to match only signals measured by the same profiling method or allow 
matching across different methods, and, optionally, (5) which correlation cutoff threshold to use for calling a 
match. 
 
The calibration results for OE-MCDS, OE-BioAge, and MCDS-BioAge matching are shown in Supplementary 
Figs. 2-4 and the optimal parameter settings chosen for each dataset pair are summarized in Supplementary 
Table 1a. We decided to consider two types of matches, “multiple” and “reciprocal”, for subsequent analyses. 
Briefly, in the “multiple” setting, we matched each Dataset 1 signal, s, to a Dataset 2 signal by first identifying 
all Dataset 2 signals whose m/z agree with s, and then selecting the one that has the best correlation with s to 
be the final match. Following this procedure, more than one Dataset 1 signal may be mapped to the same 
Dataset 2 signal. For “reciprocal” matches, we repeated the same procedure to match Dataset 1 signals to 
Dataset 2 and vice versa, and only kept the subset of matches that were generated in both directions. Our 
method performed slightly better using the “reciprocal” setting, in which it correctly paired up 69.9 to 87.6% of 
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the matched knowns, with 91.6 to 96.4% of all matches showing strong correlation (r2 > 0.8) with the correct 
match. However, the “multiple” setting also performed relatively well (58.4 to 87.1% of matches were correct; 
91.0 to 96.1% were highly correlated) and identified more correct or highly correlated matches overall, so both 
match types can be useful, depending on the analysis context. 
 
We compared our method against a m/z and RT-based matching approach, where signals with agreeing m/z 
were mapped to each other based on predicted RT calculated from shared known metabolite data. The 
imputation method generally performed as well as or slightly better than the RT method, despite not using any 
RT information (Supplementary Table 1a). An important advantage of the imputation approach is that, even 
when the matches made for known metabolites were incorrect, ~60-80% of them were strongly correlated (r2 > 
0.8) with the true known matches. In contrast, incorrect matches made by the RT approach sometimes showed 
much weaker correlation. These results suggest that our method can be used to discover “proxies” for 
metabolites in a dataset even when an exact match does not exist or could not be identified. Furthermore, 
when we allowed matching across profiling methods, the RT approach showed a bigger dip in performance 
compared to the imputation approach (Supplementary Table 1b). Thus, imputation-based matching may be a 
more flexible framework for comparing datasets generated by diverse profiling platforms, especially when 
directly comparable RT data is not available. 
 
Genetic validation of matched signals 
After demonstrating that the matching method could be used to accurately pair up shared known metabolites, 
we next sought to validate the full set of matches. Because there is no uniform “gold standard” for matching 
unknown signals, we used genetic data to validate matched signals between OE and MCDS, reasoning that 
useful matches would have similar patterns of genetic association across the two cohorts. We performed a 
genome-wide association study (GWAS) in both OE and MCDS for the matched signal pairs (4,432 “multiple” 
matches, of which 1,573 of which were “reciprocal”). We also analyzed an additional 207 pairs of shared 
knowns and 20 sets of 4,432 randomly matched pairs to serve as positive and negative controls, respectively. 
To assess how well we had selected matching pairs, we determined the overall directional consistency of 
association for the best-associated single nucleotide polymorphisms (SNPs) with the matched signal pairs. 
Specifically, for each matched pair, we identified the SNP with the best p-value in a GWAS meta-analysis of 
OE and MCDS, and tested whether the same allele was associated with increased metabolite levels across the 
two studies. (To avoid biasing the subsequent assessment of directional consistency, we forced all SNPs to 
have the same direction of effect when calculating meta-analysis p-values; see Methods). 
 
For the 94 pairs of shared knowns that had genome-wide significant (p < 5 � 10-8) SNPs in the meta-analysis, 
66 pairs (70.2%; Fisher’s p = 1.56 � 10-4) showed directional consistency; in comparison, 478 out of 672 
(71.1%; Fisher’s p = 1.83 � 10-28) “reciprocal” or 1,119 out of 1,772 (63.1%; Fisher’s p = 3.08 � 10-28) “multiple” 
matched pairs were consistent, both of which were significantly better than randomly matched signals (average 
consistency of 52.1%; empirical p < 0.05; Fig. 2). Importantly, at more stringent p-value thresholds, as many 
as 91.4% of the “reciprocal” matched pairs had directional consistency, compared to a ceiling of 90.3% for the 
shared knowns, indicating that these matches for unknown signals show similar consistency as shared known 
metabolites. In addition, we estimated true positive rate for the matched signals by assuming that true matches 
would show same degree of consistency as the shared knowns, and found that the “multiple” setting generated 
more true positive matches overall, albeit at a lower confidence level (maximum true positive rate of 83.0%). In 
summary, the most stringent application of our method (“reciprocal” setting) identified ~7 times as many high-
confidence matches compared to the shared knowns. The method can also be used to generate many more 
potential matches under more lenient settings (e.g. cross-method matching, Supplementary Fig. 5). 
 
Application to perform GWAS replication and meta-analysis 
In order to directly assess how much power we gained from matching metabolite signals, we also performed 
GWAS replication analysis using OE and MCDS as the discovery and replication cohorts, respectively. Out of 
14 shared knowns that had genome-wide significant associations in OE, 7 had nominally significant (p < 0.05) 
and directionally consistent associations in MCDS. In comparison, 156 “reciprocal” matched signals had 
genome-wide significant hits in OE, 56 of which had replicated associations in MCDS. Furthermore, after meta-
analyzing the two cohorts (this time taking direction of effect into account), we found 71 shared knowns and 
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512 matched signals with genome-wide significant associations. Therefore, we identified ~7-8 times more 
metabolite signals with significant associations by using our method to pair up the unshared signals. 
 
Application to identify BMI-associated signals 
To further showcase the utility of signal matching, we applied our method to identify metabolite signals 
associated with BMI in OE and MCDS. First, we identified 1,474 signals (114 known and 1,360 unknown) that 
were significantly (p < 0.05/13,613) associated with BMI in OE and tested for their replication in MCDS. Out of 
the 96 BMI-associated OE known metabolites that were also measured in MCDS, 75 (78.1%) showed 
directionally consistent association with BMI at a nominal significance threshold in MCDS (Supplementary 
Table 2). For BMI-associated OE signals that could not be compared directly in MCDS (i.e. unknowns or 
unshared knowns), we applied our matching procedure, and found 322 out of 425 (89.2%) “reciprocal” or 543 
out of 790 (68.7%) “multiple” matched signals to have directionally consistent and nominally significant 
association in MCDS. Thus, by matching signals across OE and MCDS, we replicated ~4-7 times more BMI-
associated signals. Even if the unknown signals are not completely independent (i.e. multiple signals might 
correspond to one functional metabolite), the additional biological information extracted from the unknowns can 
be useful in pathway-based analyses that account for redundancy among signals, which we explored in the 
following section.  
 
 
Generating pathway annotations for metabolite signals 
  
Pathway method overview and calibration 
Metabolic pathway annotations in public databases contain rich information for characterizing metabolites. 
However, these annotations are usually binary (i.e. a metabolite is either in or out of a pathway with no 
uncertainty) and only involve metabolites with known identities. Thus, in order to predict functions of unknown 
signals in our data and to perform well-powered pathway analysis, we developed an approach to assign 
metabolite signals to previously curated pathways (Fig. 1b). First, we used profiling data from the BioAge 
cohort to construct “metabolic components” (MCs) that represent modules of covarying signals 
(Supplementary Fig. 6). Next, we collected metabolic pathway annotations from ConsensusPathDB (CPDB)16 
and consolidated them into metabolite sets with unique metabolite combinations (i.e. one metabolite set may 
correspond to multiple pathways that contain identical sets of metabolites). We used the MCs to extend 
(reconstitute) the metabolite sets to include both known and unknown signals, resulting in a numeric signal-
metabolite set annotation matrix, in which each signal is assigned a membership score in each set based on its 
similarity (across MCs) to metabolites originally curated to be in the set. 
 
After reconstitution, we calculated a “label confidence score” to indicate how similar each reconstituted 
metabolite set is to the original pathways labeling the set; we also tested how well the reconstituted 
membership scores could be used to classify known metabolites into their original metabolite sets (see 
Methods). Using these performance measures, we calibrated different parameters in the reconstitution 
procedure (i.e. which metabolite sets and MCs to include) and picked the best-performing settings to construct 
the final BioAge annotation matrix (Supplementary Fig. 7 and Supplementary Table 3). 
 
Genetic validation of pathway annotations 
We utilized OE genetic data to validate that the BioAge annotation matrix captures biologically relevant 
relationships. Specifically, we tested whether metabolite signals genetically associated with a gene would be 
enriched for reconstituted pathways related to that gene. First, we performed exome chip association analyses 
for all OE metabolite signals, mapped the signals with suggestive associations (p < 1 × 10-5) to BioAge using 
our matching procedure (in “multiple” setting), and derived a total of 6,465 associations between OE exome 
SNPs and BioAge matched signals. Next, we filtered the association results to select 36 loci that (1) contain 
coding SNPs associated with >= 5 signals and (2) contain genes curated to be in pathways reconstituted in the 
BioAge annotation matrix. 
 
For each locus, we first used the BioAge annotation matrix to prioritize reconstituted metabolite sets enriched 
for the SNP-associated signals, and then checked whether the gene-related pathways showed up as enriched 
in the analysis. As negative control, we also repeated this procedure using 20 iterations of null association 
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results. At an enrichment significance cutoff of p < 0.01, 5 out of 36 loci had gene-related enriched pathways 
(Table 2), compared to a mean of only 0.85 loci in null results (empirical p < 0.05; Supplementary Table 4). 
Even at less stringent enrichment significance thresholds, our approach performed better compared to null 
prioritization. 
 
Examples of successful validation 
We highlight three loci in which the enriched pathways have clear relevance to the affected genes’ functions. 
First, SNP rs5030858 causes a missense mutation (R408W) in PAH, which encodes the phenylalanine 
hydroxylase responsible for converting phenylalanine to tyrosine, and the mutation is known to cause 
phenylketonuria17. In our analysis, the SNP was associated with phenylalanine, cholate, and 10 unknown 
signals, which were enriched in 83 metabolite sets (corresponding to 129 pathways) at p < 0.01. Eight of these 
sets contain pathways directly linked to PAH in CPDB, while many others are also related to phenylalanine and 
tyrosine metabolism, such as those involved in amine, neurotransmitter, and tryptophan metabolism (Table 2 
and Supplementary Table 5). 
 
Next, SNP rs36004833 is a missense variant (P451S) in SLC13A4 and was associated with creatine, 
sarcosine, and 7 unknowns. SLC13A4 encodes a sodium/sulfate cotransporter that is known to be expressed 
in the high endothelial venules18. Two of the metabolite sets enriched for the SNP-associated signals contain 
gene-related pathways (“Reactome: SLC-mediated transmembrane transport” and “Reactome: Transport of 
glucose and other sugars, bile salts and organic acids, metal ions and amine compounds”) (Table 2 and 
Supplementary Table 6). Importantly, creatine and sarcosine were not originally curated to be in these 
pathways, indicating that the pathways could not have been detected without using our method. 
 
Finally, SNP rs11657051 causes a missense mutation (R398W) in ARSG (Arylsulfatase G19) and was 
associated with 26 unknown signals. The enriched metabolite sets contain one pathway directly linked to 
ARSG (“Reactome:Gamma carboxylation, hypusine formation and arylsulfatase activation”), demonstrating 
that our approach can be successful even without looking at any known metabolite associations (Table 2 and 
Supplementary Table 7). 
 
Application to identify BMI-associated pathways 
As a last demonstration of the utility of PAIRUP-MS, we applied both the signal matching and pathway 
annotation methods to identify metabolic pathways associated with BMI. First, we identified 1,474 and 1,289 
signals associated with BMI in OE and MCDS, respectively (after correction for multiple testing), and matched 
the unshared signals from each cohort to a common reference cohort (BioAge) using the “multiple” match type 
setting. Between shared knowns and matched signals, we could map a total of 1,162 OE and 1,030 MCDS 
BMI-associated signals to BioAge. We performed separate pathway enrichment analyses using these two sets 
of signals and the BioAge reconstituted metabolite sets. In total, 218 (31.6%) and 179 (25.9%) out of 690 
metabolite sets were enriched (FDR <= 5%) for the OE- and MCDS-matched signals, respectively 
(Supplementary Table 8). A total of 107 (15.5%) metabolite sets, corresponding to 215 pathways, were 
enriched in both analyses (overlap significance: Fisher’s p = 4.01 × 10-20; Fig. 3). These pathways are involved 
in a wide range of biological processes, including signal transduction, neurotransmission, synaptic function, 
macronutrient metabolism, immune system, and transport of various compounds. 
 
To show that our methods increased power for detecting BMI-related pathways, we performed traditional 
overrepresentation analyses using only the BMI-associated known metabolites and the binary metabolite set 
annotations from CPDB, and found only 25 overrepresented sets for OE at 5% FDR, while MCDS had no 
significant sets at all (Supplementary Table 9). Overall, these results showcase how PAIRUP-MS could be 
used to incorporate unknown signals into pathway-based analyses, improving both power and interpretation in 
metabolomics studies. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2017. ; https://doi.org/10.1101/209577doi: bioRxiv preprint 

https://doi.org/10.1101/209577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

DISCUSSION 
 
While untargeted profiling generate data for thousands of metabolite signals, most signals cannot be readily 
identified as known metabolites, are difficult to compare across studies, and consequently are often excluded 
from downstream analyses. In order to facilitate better use of untargeted data, we have developed PAIRUP-
MS, an integrative tool for processing, matching, and annotating the unknown signals, which allowed us to 
compare them across MS-based datasets, extract useful information from their data, and improve power at 
detecting trait-associated biology. To our knowledge, no existing tools provide a similar streamlined and 
flexible framework for dealing with unknown signals across multiple datasets. 
 
Within PAIRUP-MS, we implemented a m/z and imputation-based method for matching unknown signals 
across datasets, demonstrated that it could be used to accurately pair up shared known metabolites, and 
showed that it could outperform a m/z and RT-based matching approach when RT information is unreliable. 
When we used genetic associations to validate a subset of the matched signals, we observed that the most 
stringent matches performed comparably in validation to the shared knowns. By including matched signals in 
combined association analyses (with genetic variants or with phenotypes), we were able to identify ~7 times 
more signals with significant replicated associations compared to the common practice of only studying known 
metabolites. 
 
We also developed a pathway reconstitution procedure to annotate unknown signals using curated metabolic 
pathways. Again, we used genetic data to validate the pathway annotations, showing that signals associated 
with a gene were likely to be enriched for the gene-related pathways. Finally, we applied both the matching 
and pathway methods to identify BMI-associated pathways using a crossover approach (i.e. identifying trait-
associated signals in one dataset but testing for enrichment using pathways built from another dataset), and 
demonstrated that it was more powerful than performing pathway overrepresentation analysis using only 
known metabolites. 
 
Several limitations of this study should be considered. First, although the samples encompassed a range of 
ascertainments and were collected in different continents, all three datasets were generated by the same LC-
MS profiling platform (albeit over different iterations of that platform). Thus, it will be valuable to test PAIRUP-
MS using data from other platforms. The pathway method should be applicable to any profiling dataset that has 
sufficient number of identified known metabolites, while the matching method is applicable to any MS-based 
dataset. However, the performance of the methods, especially the matching of unknown signals, may be 
influenced by technical differences across platforms, so further validation will be important. For both methods, 
calibrating parameters using known metabolites, as we have described here, will be crucial to achieving good 
results when analyzing data from diverse studies and platforms.  
 
One consequence of using known metabolites for calibration is that analyses may be more robust for 
metabolite types that are well represented in the known metabolites or are well-annotated in pathways. This 
problem is more severe for the pathway method, in which we also filtered and reconstituted the metabolite sets 
using the knowns. Hence, even though the main goal of our methods is to analyze the unknown signals, 
progress in known metabolite identification and pathway curation can greatly improve the performance of our 
methods. Conversely, our approach may also be applied to facilitate the process of metabolite identification 
and expand knowledge on previously curated pathways. 
 
Another limitation of our study is that validation of both methods required genetic data to be available for the 
profiled samples. In particular, we were only able to validate OE-MCDS matched signals because BioAge 
genotypes were unavailable, and even the OE and MCDS cohorts had ancestry differences that complicated 
the interpretation of results (i.e. hard to determine if failed validation was due to false match or genetic 
difference). Larger numbers of untargeted profiling datasets with accompanying genetic data will allow the 
ongoing use of genetic data to assess the performance of our methods across a wider range of samples. 
 
There are several major directions for applying and extending our methods in the future. First, while we 
focused on analyzing pairs of datasets in this paper, large-scale meta-analysis requires a framework to match 
and compare many datasets simultaneously. Our current recommendation would be to define a “reference 
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panel” dataset and match metabolite signals in all other datasets to this common reference (analogous to 
reference panels for genotype imputation). The choice of the reference panel could be made after assessing 
the performance of matching shared known metabolites across pairs of datasets. A reference dataset that 
incorporates diverse samples and captures a wide range of metabolite abundance variation would also be 
ideal for building reference pathway annotations that can be used to annotate all signals that are matched to 
the reference. 
 
Furthermore, we note that we focused exclusively on metabolite profiling data from plasma samples.  It would 
be interesting to apply PAIRUP-MS to datasets extracted from other types of biological samples. In particular, it 
would be of interest to test how the pathway reconstitution method could be used across different tissues to 
capture tissue-specific patterns of metabolic variations, analogous to the value of tissue and cell type-specific 
gene expression measurements for gene set reconstitution20. 
 
In conclusion, we have developed a suite of methods, PAIRUP-MS, for analyzing unknown signals in 
untargeted profiling data and showed that it can be applied to improve power and make biological inferences in 
metabolomics analyses. Matching across datasets is vital for increasing power through meta-analysis (e.g. 
imputation enabled meta-analysis of GWAS data across different genotyping platforms). Similarly, PAIRUP-MS 
can enable much more powerful analyses and meta-analyses of the great majority of untargeted metabolomics 
data that has not yet been systematically examined. The availability of many more untargeted datasets 
(especially with accompanying genetic data) will allow these analyses to be performed in much larger sample 
sizes, and should also allow further refinement and evaluation of our methods across a wider range of 
datasets, samples, and platforms.  
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METHODS 
 
Metabolomics datasets and data processing 
 
Obesity Extremes cohort (OE): Metabolite profiling was performed on plasma samples of 300 individuals from 
the Estonian Biobank of the Estonian Genome Center at the University of Tartu (EGCUT)21. The individuals 
were selected from the extremes of the BMI distribution to include 100 lean (BMI < 20), 100 obese (BMI > 34), 
and 100 random individuals matched for age, sex, and fasting time (>= 4 hr). Clinical data were examined to 
exclude any individuals with pregnancy, anorexia, or known wasting illnesses. Profiling was done using 4 LC-
MS methods to measure 393 known metabolites and 18,667 unknown signals. 
 
Mexico City Diabetes Study cohort (MCDS): Metabolite profiling was performed on fasting plasma samples 
collected from 865 individuals in the Mexico City Diabetes Study at the 1998 exam cycle. Details of this 
prospective cohort have been described previously22. 3 LC-MS methods were used to measure 306 known and 
11,888 unknown signals. 
 
BioAge Labs Mortality cohort (BioAge): Metabolite profiling was performed on plasma samples of 583 
individuals 70-80 years old and free of major morbidity at enrollment, selected from the Estonian Biobank as a 
mortality cohort. None of the BioAge samples overlap with OE. 4 LC-MS methods were used to measure 629 
known and 19,087 unknown signals. 
 
Metabolite data processing: We performed the following steps on each of the 3 metabolite datasets before 
using them in downstream analyses: (1) log-transformed and normalized the data using internal standards and 
interspersed pooled plasma samples, (2) removed outlier data points and signals with noisy variation trends, 
(3) removed samples and signals with > 25% (OE) or 50% (MCDS and BioAge) missing data, (4) imputed 
missing values using the MICE R package (v2.25)23, (5) adjusted each signal for covariates if appropriate (only 
done for data used in genetic and BMI association analyses: age, sex, and fasting time for OE; age and sex for 
MCDS), and (6) performed rank-based inverse normal transformation to calculate abundance z-scores for 
each signal. 
 
More details of the metabolite profiling, quality control, and missing value imputation procedures are described 
in Supplementary Information. 
 
 
Matching metabolite signals across datasets 
 
Checking for m/z agreement: We implemented an algorithm to check whether the difference between 2 m/z 
values are within d ± 0.005 of each other. While d = 0 in the most basic setting, it can be set to multiple values 
when taking ionization modes and adduct ions into account as shown in Supplementary Table 10. In 
particular, we implemented 2 settings when at least one of the m/z values was derived from positive ion mode: 
(1) “No adduct”: only the most common positive adduct ion is considered, or (2) “Adduct”: 4 common positive 
ions (M+, [M+H]+, [M+NH4]

+, and [M+Na]+) are considered. When identifying all signal pairs with agreeing m/z 
values across two datasets, we also implemented a third “combined” setting, where the “adduct” setting was 
used only when the “no adduct” setting failed to identify any pairs with matching m/z values. We tested all 3 
settings in Parameter calibration to identify the optimal setting to use for matching signals across each pair of 
datasets. 
 
Calculating imputation-based correlation: To impute a signal from Dataset 1 to Dataset 2, we fit a linear 
regression model for the signal using Dataset 1 data, which included all known metabolites shared by the two 
datasets as predictors, and then applied the resulting model to Dataset 2 data to predict the signal’s 
abundance in Dataset 2 samples. The reversed process was done to impute signals from Dataset 2 to Dataset 
1. When performing imputation for the shared knowns (used as positive controls in Parameter calibration), we 
built a leave-one-out model for each known metabolite m, where all shared knowns except for m were used as 
predictors. After imputation, we calculated pairwise correlation between Dataset 1 and Dataset 2 signals using 
3 different settings: (1) “Dataset 1 correlation”: correlate Dataset 1 (observed) and Dataset 2 (imputed) signals 
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across Dataset 1 samples, (2) “Dataset 2 correlation”: correlate Dataset 1 (imputed) and Dataset 2 (observed) 
signals across Dataset 2 samples, or (3) “All correlation”: merge observed and imputed data and correlate 
signals across all samples. We evaluated these settings in Parameter calibration to identify the optimal 
approach to use for Matching based on m/z and correlation. 
 
Matching based on m/z and correlation: In general, to match a Dataset 1 signal, s, to a Dataset 2 signal, we 
would first identify all Dataset 2 signals whose m/z agree with s, and then select the one that is best correlated 
with s to be the final match. If no Dataset 2 signals share matching m/z with s, then s is not matched at all. We 
implemented variations of this procedure and compared their performance in Parameter calibration. First, since 
the matching procedure is directional (i.e. matching from Dataset 1 to 2 vs. 2 to 1 could be different), we 
distinguished between 3 types of matches, each type being a subset of the previous type: (1) “Multiple”: all 
matches that can be made as described by the general guideline above, which allows multiple-to-1 matching 
(i.e. multiple Dataset 1 signals can be mapped to the same Dataset 2 signal), (2) “Unique”: unique 1-to-1 
matches that only keep the best (in terms of correlation) Dataset 1 signal mapped to each Dataset 2 signal, or 
(3) “Reciprocal”: unique, bidirectional 1-to-1 matches that appear both when matching from Dataset 1 to 2 and 
from 2 to 1. We also allowed 2 partition settings: (1) “Within method”: only look for matches among signals 
measured using the same profiling method, or (2) “Across method”: look for matches across datasets 
regardless of differences in profiling methods. Lastly, we implemented an optional correlation cutoff for calling 
matches (i.e. only keep matched pairs whose correlation is greater than the cutoff). 
 
Matching based on m/z and RT: We implemented a crude RT-based matching procedure to serve as a 
comparison to our imputation-based method. Here, to match signals from Dataset 1 to Dataset 2, we would 
first use RTs of shared knowns to fit a linear model for predicting the RT shift between the two datasets. Then, 
to match a Dataset 1 signal, s, to a Dataset 2 signal, we would predict the RT of s in Dataset 2 using the fitted 
model, find all Dataset 2 signals whose m/z agree with s, and then select the one whose RT is closest to the 
predicted RT to be the final match. Just as we did for Matching based on m/z and correlation, we tested 
different match types (“multiple”, “unique”, or “reciprocal”) and partition settings (“within method” or “across 
method”) in Parameter calibration. 
 
Parameter calibration: To calibrate all of the parameters described above (i.e. adduct ion setting, correlation 
setting, match type, partition setting, and correlation cutoff), we treated known metabolites shared across two 
datasets as unmatched signals and applied our procedures to match them up. For each pair of datasets (i.e. 
OE-MCDS, OE-BioAge, or MCDS-BioAge), we calculated the number and percentage of (1) correct matches: 
Dataset 1 metabolite is matched to itself in Dataset 2, (2) highly correlated matches: Dataset 1 metabolite is 
matched to a signal that is highly correlated (r2 > 0.8) with itself in Dataset 2, and (3) incorrect but highly 
correlated matches: matches in (2) but not in (1).  
 
 
GWAS and genetic validation of matched signals 
 
GWAS and meta-analysis: 294 OE samples with Estonian reference imputed genotypes and 637 MCDS 
samples with 1000 Genomes phase 3 imputed genotypes were used to perform GWAS for the OE-MCDS 
shared known and matched signal pairs (see Supplementary Information for genotyping and imputation 
details). We used the linear mixed model and kinship matrix calculation methods in EPACTS (v3.2.6)24 to 
analyze each cohort, restricting analyses to biallelic SNPs with minor allele count >= 3 in the cohort and 
including genotyping platform as a covariate. SNPs that overlap between the 2 cohorts were meta-analyzed 
using the inverse variance weighted method in METAL (2011-03-25 version)25. 
 
Validation analysis: For each pair of shared knowns or matched signals, we performed an alternative meta-
analysis that ignored direction of effect (i.e. forcing all effect size estimates to be positive), identified the SNP 
with the best meta-analyzed p-value, and determined if its original effect size estimates in OE and MCDS were 
directionally consistent. We combined results for individual signal pairs to calculate the number and fraction of 
consistent pairs among shared knowns or matched signals at different p-value thresholds (i.e. only considering 
pairs whose best SNPs pass the threshold). We used Fisher’s exact test to evaluate statistical significance of 
the observed degree of consistency. Additionally, for the matched signals, we performed 20 null permutations 
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by shuffling the mapping between matches (i.e. generating randomly matched pairs), and then calculated an 
empirical p-value for the observed consistency fraction (i.e. p = proportion of null fractions greater than or 
equal to the observed fraction). Finally, we estimated the fraction of true positive pairs (i.e. true positive rate) at 
each p-value threshold to be: max[(c – 0.5)/(s – 0.5), 1] where c = fraction of consistent pairs and s = fraction 
of consistent shared knowns, and then derived the number of true positive pairs using this fraction. 
 
 
Generating pathway annotations for metabolite signals 
 
Metabolic pathway and metabolite set annotations: We collected metabolic pathway annotations from CPDB 
(release 31)16, which aggregated data from 11 source databases. We filtered the annotations to obtain 
pathways containing >= 2, 5, or 10 known metabolites profiled in BioAge and assigned a “database:name” 
label to each pathway, where database refers to the source database and name is the pathway name as 
shown in that database. We further consolidated the pathways into metabolite sets, with each set representing 
all pathways sharing the same metabolite combination, excluding metabolites not profiled in BioAge. The 
resulting metabolite set annotations were used as input data in Signal-metabolite set annotation matrix. CPDB 
also contains annotations that link genes to pathways based on previous literature evidence, which we utilized 
in Genetic validation of pathway annotations. 
 
Metabolic components: We calculated pairwise Spearman correlation for all metabolite signals (known and 
unknown) across BioAge samples, and then performed principal component analysis on the correlation matrix 
to derive “metabolic components” (MCs; eigenvectors that represent modules of correlated signals) and a 
corresponding signal-MC score matrix. In order to assess if the MCs captured biological patterns contained 
within metabolite sets derived from CPDB, we performed enrichment analysis using the MC scores of known 
metabolites included in the metabolite sets. For each MC and each set, we performed a two-tailed Wilcoxon 
rank-sum test to compare the MC scores of metabolites in the set vs. other metabolites. We repeated the tests 
using 20 iterations of null, permuted MC scores and estimated the FDR for each observed rank-sum p-value 
threshold, P, to be: (average number of null p-values <= P per iteration) / (number of observed p-values <= P). 
This FDR was used to filter MCs as described in Parameter calibration. 
 
Signal-metabolite set annotation matrix: We used the MC scores of metabolite signals to reconstitute the 
CPDB metabolite sets, adopting a previously described framework for gene set reconstitution20. Again, we 
performed a two-tailed Wilcoxon rank-sum test to compare the MC scores of known metabolites in the set vs. 
not in the set for each metabolite set-MC pair, but this time storing the results as a metabolite set-MC matrix of 
rank-sum z-scores. Next, we used the signal-MC matrix (from Metabolic components) and the metabolite set-
MC matrix to calculate the Spearman correlation between each signal-metabolite set pair across the MCs, 
resulting in a signal-metabolite set annotation matrix of correlation scores. To avoid overfitting, when 
calculating the matrix scores of a known metabolite originally annotated in a set, we repeated the reconstitution 
procedure by leaving out the data for this metabolite. 
 
Parameter calibration: A calibration procedure was carried out to determine which metabolite sets and MCs to 
use for constructing the optimal signal annotation matrix. We tested metabolite sets containing >= 2, 5, or 10 
known metabolites profiled in BioAge. For MCs, we tested the top 50, 100, or 583 MCs (in terms of variance 
explained), or filtered for any MCs that were enriched for >= 1 metabolite set at 1% or 5% FDR (see Metabolic 
components). After generating annotation matrices using different parameters, for each matrix, we converted 
correlation scores of known metabolites into p-values, and then evaluated how well these p-values could be 
used to classify metabolites into their original metabolite sets using a receiver operating characteristic (ROC) 
curve and area under the curve (AUC) approach. We also performed post-reconstitution enrichment analysis to 
identify reconstituted metabolite sets enriched for metabolites originally annotated to be in the set (see 
Metabolite set enrichment analysis). The enrichment p-values from this analysis were used as “label 
confidence scores” for the metabolite sets. 
 
 
Genetic validation of pathway annotations 
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Exome chip association analysis: A subset of 281 OE samples were genotyped using the Illumina 
HumanOmniExpressExome BeadChip (v1.2). We performed association analysis for each OE metabolite 
signal using this genetic dataset to identify exome SNPs associated with signal abundance. We restricted our 
analyses to 57,220 exome SNPs with minor allele count >= 3 and call rate >= 0.5 in OE, using the linear mixed 
model and kinship matrix calculation methods in EPACTS (v3.2.6)24. 
 
Validation analysis: We filtered the OE exome chip association results using OE-BioAge “multiple” matched 
signals to identify associations between OE SNPs and BioAge signals. We grouped the associations by SNPs 
and identified SNPs that (1) were associated with >= 5 signals at p < 1 × 10-5, (2) cause missense or nonsense 
mutations in genes, and (3) affect genes linked to >= 1 CPDB pathways used for reconstitution. If multiple 
SNPs were found for the same gene, we only kept the SNP with the best p-value. To perform validation 
analysis for each locus, we first used the BioAge signal annotation matrix to prioritize metabolite sets enriched 
for the SNP-associated signals (see Metabolite set enrichment analysis). Next, we determined if any pathways 
linked to the affected gene showed up as enriched across a range of enrichment p-value thresholds. For each 
threshold, we counted the number of loci for which >= 1 gene-associated pathway was enriched, and then 
repeated the procedure using 20 iterations of null exome chip association results (i.e. identifying top signals 
associated with random genotypes) to generate null counts for comparison. We calculated the empirical p-
value for the observed count to be the proportion of null counts >= the observed count. 
 
 
BMI-associated metabolite signals and metabolite sets 
 
Metabolite signals: We calculated BMI z-scores for both OE and MCDS samples by adjusting raw BMI for age 
and sex and performing rank-based inverse normal transformation on the residuals. For OE, all samples in the 
Estonian Biobank were included during z-score calculation; for MCDS, only samples in the cohort were 
included. We performed linear regression to test for association between BMI z-scores and signal abundance 
z-scores in both cohorts and identified BMI-associated signals at Bonferroni-corrected significance thresholds 
(p < 0.05/13,613 for OE; p < 0.05/7,136 for MCDS). 
 
Metabolite sets: We identified BioAge shared knowns or “multiple” matched signals corresponding to the BMI-
associated OE and MCDS signals from the previous section, and then used these signals and the BioAge 
signal annotation matrix to perform two separate enrichment analyses as described in Metabolite set 
enrichment analysis. After identifying enriched metabolite sets at 5% FDR in both analyses, we performed a 
Fisher’s exact test to evaluate the statistical significance of the overlap. 
 
 
Metabolite set enrichment analysis  
 
Rank-sum p-value: To calculate the enrichment of each metabolite set in the signal annotation matrix given a 
“positive” and a “negative” list of signals, we used a two-tailed Wilcoxon rank-sum test to compare the 
metabolite set scores (absolute correlation) of the positive vs. negative signals to get a nominal p-value. For 
post-reconstitution enrichment analysis (in Generating pathway annotations for metabolite signals), the positive 
and negative lists consisted of known metabolites in an original CPDB metabolite set vs. not in the set, 
respectively. For identifying trait-associated metabolite sets, the lists consisted of signals significantly 
associated with the trait (SNP genotype in Genetic validation of pathway annotations; BMI in BMI-associated 
metabolite signals and metabolite sets) vs. all other signals (restricting to signals that could be matched across 
datasets). 
 
Permutation p-value: For Genetic validation of pathway annotations and BMI-associated metabolite signals 
and metabolite sets, we generated null lists of signals ranked by their association with 1000 sets of permuted 
trait scores and repeated the rank-sum tests using the null lists (i.e. taking the top N signals in each null list to 
be the “positive” list, where N = the number of signals in the observed positive list). We used the null 
enrichment results to adjust the observed rank-sum p-values for metabolite set-specific biases, calculating a 
permutation p-value for each metabolite set to be the proportion of null rank-sum p-values <= the observed 
rank-sum p-value. 
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FDR: For BMI-associated metabolite signals and metabolite sets, we implemented another level of 
permutations to estimate analysis-wide FDR that accounts for multiple hypothesis testing across metabolite 
sets. We generated 20 additional null signal lists and calculated their corresponding rank-sum p-values. By 
comparing these new null rank-sum p-values against the 1000 sets of null rank-sum p-values computed 
previously, we calculated 20 sets of null permutation p-values. The FDR for an observed permutation p-value 
threshold, P, was then estimated as: (average number of null permutation p-values <= P per null set) / (number 
of observed permutation p-values <= P). Finally, we forced the final FDR estimates to be monotonic (i.e. FDR 
for smaller p-values had to be <= FDR for larger p-values) to smooth out random fluctuations in null iterations. 
 
A schematic overview of how we calculated statistical significance in metabolite set enrichment analysis is 
shown in Supplementary Figure 8. 
 
 
Metabolite set overrepresentation analysis  
 
Binary metabolite set annotations from CPDB were used to perform overrepresentation analysis given a list of 
trait-associated known metabolites. For each metabolite set, we created a 2 × 2 contingency table that 
categorized known metabolites based on trait association and metabolite set membership and used it to 
calculate a one-sided Fisher’s exact p-value. Null permutations were performed as described in Metabolite set 
enrichment analysis (except using Fisher’s exact test instead of rank-sum test) to calculate permutation p-
value and FDR. 
 
 
Code availability 
 
PAIRUP-MS source code and documentation are available at https://github.com/yuhanhsu/PAIRUP-MS. 
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Table 1. Characteristics of study cohorts and corresponding metabolomics datasets. 
 Obesity Extremes 

cohort (OE) 
Mexico City Diabetes 
Study cohort (MCDS) 

BioAge Labs Mortality 
cohort (BioAge) 

Study design BMI extremes from 
Estonian Biobank (EB) 

Prospective cohort for 
type 2 diabetes 

Retrospective cohort for 
mortality from EB 

# of samples 298 821 583 
# of women (%) 149 (50.0) 498 (60.7) 407 (69.8) 
Age 38.5 ± 12.1 52.3 ± 7.73 73.3 ± 2.70 
BMI 28.3 ± 9.95 28.6 ± 4.54 27.3 ± 4.33 
Fasting time* 7.42 ± 3.34 overnight 3.04 ± 2.80 
Profiling methods** C8-pos, C18-neg, HILIC-

pos, HILIC-neg 
LIPID, HILIC-pos, CMH C8-pos, C18-neg, HILIC-

pos, HILIC-neg 
# of signals (# of 
knowns) 

13,613 (322) 7,136 (242) 14,617 (603) 

# of signals with m/z 
data (# of knowns) 

13,552 (261) 7,083 (189) 14,617 (603) 

 
Mean ± standard deviation is reported for quantitative phenotypes. * Fasting time for OE and BioAge was not 
exact due to conversion from categorical variable; 200 BioAge samples had no fasting time information. ** 
Italicized profiling methods had m/z and RT information available; we treated "C8-pos" and "LIPID" to be the 
same method in our analyses due to large overlap in the metabolites they measured; see Supplementary 
Information for methods details. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 8, 2017. ; https://doi.org/10.1101/209577doi: bioRxiv preprint 

https://doi.org/10.1101/209577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

 
 
Figure 1. PAIRUP-MS is a suite of computational methods for analyzing metabolite signals in 
untargeted metabolomics data. (a) Overview of matching method: unknown (or unshared known) signals are 
imputed across datasets using shared known metabolites as predictors and then paired up based on m/z and 
correlation across samples. Genetic data can be used to validate matched signal pairs that share similar 
genetic associations. Matched signals can be used to perform combined association analyses across datasets 
(e.g. identifying trait-associated signals in discovery and replication cohorts). (b) Overview of pathway method: 
using binary metabolic pathway annotations and untargeted profiling data as input, a pathway reconstitution 
procedure is performed to construct a numeric annotation matrix, where each signal (known or unknown) gets 
a membership score in each pathway (or “metabolite set”, see Methods). Genetic data can be used to validate 
that signals associated with a specific gene are enriched for reconstituted pathways related to the gene. The 
annotation matrix can be used to perform pathway analyses (e.g. identifying pathways enriched for a list of 
trait-associated signals). 
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Figure 2. Genetic validation of OE-MCDS matched signals. GWAS were performed for “multiple” matched 
signal pairs (a subset of were “reciprocal”), shared known pairs (“Shared Known”, positive control), and 
randomly matched pairs (average statistics shown as “Random”, negative control) in OE and MCDS, followed 
by meta-analysis that ignored direction of effect. For each pair, the SNP with the best meta-analyzed p-value 
was selected to assess directional consistency of its association in the two cohorts. (a) “Total # of Pairs”: 
number of signal pairs with best SNPs below p-value threshold; (b) “# of Consistent Pairs” and (c) “Fraction of 
Consistent Pairs”: number and fraction of pairs with directionally consistent best SNPs below p-value 
threshold; (d) “# of True Positive Pairs” and (e) “Fraction of True Positive Pairs”: number and fraction of true 
positive pairs were estimated as described in Methods. X-axes start at genome-wide significant p-value 
threshold (p < 5 × 10-8). Error bars for “Random” pairs were excluded due to low visibility (all close to average). 
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Table 2. Top loci identified during genetic validation of BioAge pathway annotations. 
Locus (SNP) Chr Alleles Gene Mutation Associated signals* Enriched pathways (p < 0.01) linked to gene 
rs1105879 2 A/C UGT1A6 R184S 1-methylnicotinamide, 

54 unknowns 
EHMN:Porphyrin metabolism; KEGG:Porphyrin and chlorophyll 
metabolism - Homo sapiens (human); Reactome:Metabolism of 
porphyrins 

rs36004833 7 A/G SLC13A4  P451S creatine, sarcosine, 
7 unknowns 

Reactome:SLC-mediated transmembrane transport; 
Reactome:Transport of glucose and other sugars, bile salts 
and organic acids, metal ions and amine compounds 

rs5030858 12 C/T PAH R408W phenylalanine, 
cholate, 10 
unknowns 

Reactome:Metabolism of amino acids and derivatives; 
Wikipathways:Biogenic Amine Synthesis; 
Wikipathways:SIDS Susceptibility Pathways; 
Reactome:Phenylalanine and tyrosine catabolism; 
SMPDB:Tyrosinemia Type 2 (or Richner-Hanhart syndrome); 
SMPDB:Phenylalanine and Tyrosine Metabolism; 
SMPDB:Phenylketonuria; SMPDB:Tyrosinemia Type 3 
(TYRO3); KEGG:Phenylalanine, tyrosine and tryptophan 
biosynthesis - Homo sapiens (human); KEGG:Phenylalanine 
metabolism - Homo sapiens (human); 
HumanCyc:phenylalanine degradation/tyrosine biosynthesis 

rs30842 16 T/G GOT2 V346G 5 TAGs (C46:2, 
C46:3, C48:3, C48:4, 
C48:5), 5 unknowns 

INOH:Glycine Serine metabolism; SMPDB:4-Hydroxybutyric 
Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency; 
SMPDB:Glutamate Metabolism; SMPDB:2-Hydroxyglutric 
Aciduria (D And L Form); SMPDB:Hyperinsulinism-
Hyperammonemia Syndrome; SMPDB:Succinic semialdehyde 
dehydrogenase deficiency; SMPDB:Homocarnosinosis; 
INOH:Phenylalanine degradation; HumanCyc:4-hydroxyproline 
degradation; KEGG:Phenylalanine metabolism - Homo sapiens 
(human) 

rs11657051 17 C/T ARSG R398W 26 unknowns Reactome:Gamma carboxylation, hypusine formation and 
arylsulfatase activation 

 
Bolded loci are discussed in main text. * Unique BioAge signals matched to associated (p < 1 × 10-5) OE signals are shown.
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Figure 3. Correlation heat map of 107 metabolite sets enriched (5% FDR) for both OE and MCDS BMI-
associated signals. Correlation between metabolite sets were calculated using the BioAge annotation matrix. 
Color key indicates correlation values between each pair of metabolite sets. Distinct clusters (blue boxes) are 
labeled with representative pathway names in the clustered metabolite sets. 
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