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Abstract 

Advances in proteomics reveal that pathway databases fail to capture the majority of cellular 

signaling activity.  Our mass spectrometry study of the dynamic epidermal growth factor (EGF) 

response demonstrates that over 89% of significantly (de)phosphorylated proteins are excluded 

from individual EGF signaling maps, and 63% are absent from all annotated pathways.  We 

present a computational method, the Temporal Pathway Synthesizer (TPS), to discover missing 

pathway elements by modeling temporal phosphoproteomic data.  TPS uses constraint solving 

to exhaustively explore all possible structures for a signaling pathway, eliminating structures 

that are inconsistent with protein-protein interactions or the observed phosphorylation event 

timing.  Applied to our EGF response data, TPS connects 83% of the responding proteins to 

receptors and signaling proteins in EGF pathway maps.  Inhibiting predicted active kinases 

supports the TPS pathway model.  The TPS algorithm is broadly applicable and also recovers an 

accurate model of the yeast osmotic stress response. 
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Introduction 

High-throughput proteomic assays have illuminated the amazing breadth and complexity of 

the signal transduction pathways that cells employ to respond to extracellular cues.  In addition 

to quantifying protein abundance, these technologies are now routinely used to quantify 

protein post-translational modifications (PTMs).  Mass spectrometry, in particular, offers a 

broad view of PTMs, quantifying various modifications such as phosphorylation, 

ubiquitination, acetylation, and methylation (Choudhary and Mann, 2010).  In contrast to 

microwestern arrays (Ciaccio et al., 2010), reverse phase protein arrays (Paweletz et al., 2001), 

mass cytometry (Bendall et al., 2011), and other high-throughput antibody-based assays, mass 

spectrometry is not restricted to a predefined list of proteins and can detect tens of thousands of 

phosphopeptides (Sharma et al., 2014).  Here we show how to discover new facets of signaling 

cascades from complex proteomic data by integrating observed PTMs with existing knowledge 

of protein interactions. 

Many gaps persist in our understanding of phosphorylation signaling cascades.  For example, 

our mass spectrometry experiments show that nearly all proteins that are significantly 

(de)phosphorylated when the epidermal growth factor receptor (EGFR) is stimulated are absent 

from EGFR pathway maps.  The low overlap is consistent with previous temporal 

phosphoproteomic studies of mammalian signaling (Cao et al., 2012; D’Souza et al., 2014; 

Humphrey et al., 2015).  Discordance between mass spectrometry studies and pathway 

databases is partly caused by extensive crosstalk among pathways (Bauer‐Mehren et al., 2009) 

and context-specific interactions (Hill et al., 2017).  In addition, protein abundance varies greatly 

among human cells and tissues (Kim et al., 2014), and interactions from a pathway database are 

irrelevant when the proteins involved are not expressed.  Moreover, perturbations and disease 

can rewire signaling pathways (Pawson and Warner, 2007). 

Network inference algorithms can explain the phosphorylation events that lie outside of 

canonical pathways and complement existing manually curated pathway maps.  Specialized 

algorithms model time series data, which contain information about the ordering of 

phosphorylation changes and can support causal instead of correlative modeling (Bar-Joseph et 
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al., 2012).  Temporal protein signaling information can be used to reconstruct more accurate and 

complete networks than a single static snapshot of the phosphoproteome. 

A complementary challenge to interpreting off-pathway phosphorylation is that the cellular 

stimulus response includes mechanisms that are not captured in phosphoproteomic datasets.  

There is an interplay between phosphorylation changes and other integral parts of signaling 

cascades because phosphorylation can affect protein stability, subcellular localization, and 

recognition of interaction partners (Newman et al., 2014).  Ubiquitination and other PTMs are 

not measured in phosphoproteomic studies, and not all phosphorylated proteins are detected 

by mass spectrometry.  Additional information is required to infer comprehensive signaling 

cascades that include non-differentially phosphorylated proteins. 

Protein-protein interaction (PPI) networks can be used for this purpose by identifying the chain 

of interactions that connect observed phosphorylation events.  For example, MAP2K1 

phosphorylation is not detected in our EGF response data, but our approach uses PPI to 

correctly determine that it is the kinase that controls MAPK1 and MAPK3 phosphorylation. 

We present the Temporal Pathway Synthesizer, a method to assemble temporal 

phosphoproteomic data into signaling pathways that extend far beyond existing canonical 

maps.  "Synthesizer" refers to our application of computational program synthesis techniques 

(Manna and Waldinger, 1980; Solar-Lezama et al., 2005) to produce pathway models from 

experimental data (Fisher et al., 2014), not synthetic biology (Benner and Sismour, 2005).  TPS 

overcomes both of the aforementioned challenges in interpreting phosphoproteomic data: 

modeling signaling events that are not captured by pathway databases and including non-

phosphorylated proteins in the predicted pathway structures.  The TPS workflow consists of 

multiple steps (Figure 1). 
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Figure 1.  TPS workflow:  First, the PPI graph is combined with the phosphorylation data to 

obtain a condition-specific network (Step 1.1).  Algorithms used in this step do not model the 

temporal information.  Separately, the time series data are converted into discrete timed 

signaling events (Step 1.2).  TPS then defines a space of models that agree with the data by 

transforming the timed events, undirected network topology, and prior knowledge (kinase-

substrate interaction directions in this study) into a set of constraints (Step 2).  Our system 

summarizes a huge solution space by computing the union of all signed directed graph models 

that satisfy the given constraints (Step 3).  The final pathway model predicts how a subset of 

generic physical protein interactions coordinate to respond to a specific stimulus in a particular 

cellular context. 

 

In the first step, TPS transforms a PPI graph into a condition-specific network by using mass 

spectrometry data to filter out irrelevant interactions.  We adopt the prize-collecting Steiner 

forest (PCSF) (Tuncbag et al., 2013) network algorithm to connect differentially phosphorylated 

proteins through high-confidence paths that may include non-phosphorylated proteins.  Like 

nearly all existing network algorithms, PCSF cannot use temporal information. 

In the second step, TPS finds the orientation and sign of edges in the condition-specific 

interaction graph based on the order of the phosphorylation events.  Phosphorylation timing is 

modeled separately for each observed phosphorylation site on a protein.  TPS systematically 

explores all possible pathway models, where each model is a signed, directed graph that 

explains how signaling messages propagate from the stimulated source protein.  In the final 

step, TPS summarizes the valid models into a single aggregate network that explicitly tracks 

ambiguous predictions.  Summarization gives insight into which edges must always take a 

unique sign and direction across the whole solution space and enables analysis of the large 

number of candidate models.  We created an interactive visualization tool, the Temporal 

Pathway Visualizer (TPV), to display the summary network alongside the temporal 

phosphoproteomic data (Figure S1). 
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We use EGFR-mediated signaling as our primary model system for temporal 

phosphoproteomic and TPS analysis.  TPS recovers a network that explains how EGF-

responsive proteins are activated or inhibited via chains of physical interactions stemming from 

the EGF receptor.  The highest-confidence TPS predictions are well-supported by prior 

knowledge and consistent with follow-up kinase inhibitions.  In addition, we model the yeast 

osmotic stress response, recovering many of the core pathway components and predicting 

kinase targets that are supported by independent perturbation data.  These insights into well-

characterized human and yeast pathways exemplify the ability of TPS to produce condition-

specific pathway maps. 

Results 

Quantitative time series phosphoproteomics of EGF response captures widespread 

signaling activity 

To quantify global EGFR-mediated changes in cellular signaling in HEK-293 EGFR Flp-In 

(EGFR Flp-In) cells with phosphoproteomics, we used a well-established in-line two-

dimensional high performance liquid chromatography separation (2D-HPLC) coupled to 

tandem mass spectrometry (MS/MS) (Ficarro et al., 2011; Wolf-Yadlin et al., 2006; Zhang et al., 

2005).  EGFR Flp-In cells have been used previously to study EGFR signaling in vitro (Gordus et 

al., 2009; Wagner et al., 2013), and we selected them for this study because they are easy to 

manipulate and provide full control of  input signal.  We know the number of receptors per cell 

and thus the ligand concentration necessary to achieve different levels of saturation.  Most 

importantly, because EGFR Flp-In cells are homogeneous with respect to EGFR expression, this 

system ensures high reproducibility between replicates and minimizes effects of heterogeneous 

receptor expression between different samples and time points. 

After EGF stimulation for 0, 2, 4, 8, 16, 32, 64, or 128 min, cells were lysed and proteins were 

extracted, denatured, alkylated and trypsin digested (Figure 2).  Following digestion, the tryptic 

peptides were either lyophilized, stored for future use, or directly processed for mass 

spectrometry analysis.  To quantify dynamic changes in protein phosphorylation, all peptides 
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were isobarically labeled (Ross et al., 2004), enriched using phosphotyrosine-specific antibodies 

and/or immobilized metal affinity chromatography (IMAC) (Ficarro et al., 2002), and analyzed 

on a Velos Pro Elite mass spectrometer (Ficarro et al., 2011; Wolf-Yadlin et al., 2006; Zhang et al., 

2005).  Peptide sequences and relative quantification were determined using Comet (Eng et al., 

2013).  We collected three biological replicates with two technical replicates each. 

Our study identifies 1,068 phosphorylation sites that are detected in all biological replicates 

(5,442 unique sites detected in at least one replicate), which were then used for network 

modeling in TPS (Tables S1 – S3 and Supplemental File 1).  Phosphorylation intensities were 

well-correlated across the three biological replicates (Figures S2 and S3).  Early temporal 

phosphoproteomic studies of EGF response covered fewer time points than our dataset (Olsen 

et al., 2006) or were limited to tyrosine phosphorylation (Oyama et al., 2009; Zhang et al., 2005).  

A more recent study (Reddy et al., 2016) complements ours, providing a high-temporal-

resolution view of the early signaling dynamics but covering a smaller fraction of the overall 

EGFR pathway. 
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Figure 2.  Overview of proteomics analysis. A) Cells are stimulated with EGF for 0, 2, 4, 8, 16, 

32, 64, or 128 minutes and then lysed.  Cellular protein content is denatured and digested. 

Peptides are labeled with iTRAQ and mixed.  Tyrosine phosphorylated peptides are enriched 

by immunoprecipitation, and the flow-through is passed over immobilized metal affinity 

chromatography to enrich for phosphorylation events on serine and threonine.  The 

phosphotyrosine-rich fraction is analyzed by 1D-LC-MS/MS.  The more complex phospho-

serine/threonine rich fraction is analyzed by 2D-LC‐MS/MS.  Resulting spectra are identified 

and quantified using Comet.  B) The 263 peptides with significant temporal changes in 

phosphorylation exhibit distinct types of temporal behaviors (log2 fold change with respect to 

pre-stimulation intensity).  One group of peptides is activated immediately upon stimulation, 

whereas others display delayed waves of phosphorylation as signals propagate. 

 

A) B) 
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Reference pathway databases fail to explain phosphorylation changes 

We assessed how much of the observed phosphorylation could be explained by existing 

pathway databases.  To obtain a comprehensive view of EGFR-mediated signaling, we 

collected: EGFR pathway maps from six popular databases (Croft et al., 2014; Gough, 2002; 

Kandasamy et al., 2010; Kanehisa et al., 2012; Nishimura, 2001; Schaefer et al., 2009); a Boolean 

circuit representation of growth factor signaling (Layek et al., 2011); and the related but more 

general mitogen-activated protein kinase (MAPK) pathway from the Kyoto Encyclopedia of 

Genes and Genomes (KEGG).  Collectively referred to as reference pathways, these resources 

reflect the diverse goals and biases of different pathway curators.  BioCarta focuses on the most 

essential signaling events, containing only 16 proteins.  Conversely, Cancer Cell Map, which is 

part of the NetPath resource (Kandasamy et al., 2010), seeks broader coverage.  Its EGFR map 

contains 178 proteins, approaching the 202 proteins cataloged in a thorough EGFR review (Oda 

et al., 2005). 

Despite the diversity of the pathway diagrams, they all fail to capture the vast majority of 

significant phosphorylation events triggered by EGF simulation in our system (Figures 3, S4, 

and S5).  Among the 203 significantly differentially phosphorylated proteins, typically 5% or 

fewer are present in the reference pathways.  The Cancer Cell Map pathway achieves the best 

phosphorylation coverage, but it is still only 11%.  85% of phosphorylated proteins are missing 

from all of the EGFR-related pathway maps (Figure S4).  Additionally, most of the proteins in 

the EGFR pathway maps are not differentially phosphorylated (Figures 3 and S4), reflecting a 

combination of relevant proteins that do not undergo this particular type of PTM, 

phosphorylation events missed by the mass spectrometry, and interactions that are relevant in 

some contexts but not in EGFR Flp-In cells.  The low overlaps agree with phosphoproteomic 

studies of other mammalian signaling pathways.  Less than 10% of insulin-regulated proteins 

were members of a curated insulin pathway (Humphrey et al., 2015).  In a study of T cell 

receptor signaling, only 21% of phosphorylated proteins were known to be involved in the 

pathway (Cao et al., 2012).  Phosphosites regulated by TGF-β stimulation were not enriched for 

the TGF-β pathway (D’Souza et al., 2014). 
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Crosstalk does not explain the low coverage because most phosphorylated proteins are not 

present in any pathway from BioCarta, Reactome, or the Pathway Interaction Database (PID) 

(Figure S4).  Only 37% of phosphorylated proteins are present in any pathway map.  Because 

traditional EGFR pathway diagrams do not reflect the complex signaling observed by mass 

spectrometry, there is a clear need to reconstruct a context-specific representation of the 

underlying EGFR signaling pathway from the data. 

 

Figure 3. Over 95% of the significantly differentially phosphorylated proteins in response to 

EGF stimulation are not included in six of the reference pathways.  Conversely, the majority of 

proteins in the reference pathways are not significantly differentially phosphorylated. 

 

Reconstructing the EGFR pathway with TPS explains temporal phosphorylation 

changes 

We applied TPS to model the dynamic signaling response to EGFR stimulation in EGFR Flp-In 

HEK-293 cells.  Our workflow consists of three major steps: (1) preprocessing the protein-

protein interaction network and temporal phosphorylation data; (2) transforming temporal 

information, subnetwork structure, and prior knowledge into logical constraints; and (3) 

summarizing all valid signaling pathway models to discover interactions with unambiguous 

directions and/or signs (Figure 1).  This process is fully described and illustrated with a simple 

example in Experimental Procedures. 
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We first discretized the time series phosphoproteomic data, using Tukey's Honest Significant 

Difference (HSD) test (Yandell, 1997) to determine whether a peptide exhibits a significant 

increase, significant decrease, or no change in phosphorylation at each post-stimulation time 

point.  Significant phosphorylation changes can be relative to either the pre-stimulation baseline 

level or the previous time point.  263 peptides, corresponding to 203 proteins, significantly 

change at one or more time points (Figure S6).  Second, we used PCSF to link the 

phosphorylated proteins to EGF, the source of stimulation, weighting proteins based on their 

HSD test significance.  PCSF identifies a PPI subnetwork of 316 nodes and 422 edges 

(Supplemental File 2).  This subnetwork comprises the interactions through which signaling 

messages are most likely to propagate.  Third, TPS combined the discretized temporal activities 

of the 263 significantly changing peptides, the PCSF network, and prior knowledge (the 

orientation of kinase-substrate interactions) to generate a summary of all feasible pathway 

models (Table S4).  Each type of input was translated into logical constraints, which were used 

to rule out pathway models that are not supported by the data. 

In contrast to the reference EGFR pathway diagrams, which capture at most 11% of the 

differentially phosphorylated proteins, the predicted network from TPS (Figures 4 and S7 and 

Supplemental File 3) contains 83% of the responding proteins in its 311 nodes.  Each of these 

proteins can be linked to the EGF stimulation with high-confidence PPI and has timing that is 

consistent with the temporal phosphorylation changes of all other proteins in the pathway.  In 

addition to the phosphorylated proteins, 38 other proteins are included in the signaling 

pathway as hidden intermediate nodes that propagate signals via different mechanisms.  Some 

of the differentially phosphorylated proteins may not be functional, but the TPS network 

provides a framework to study their role in the EGF response.  The TPS pathway model 

includes 41 kinases and 5 phosphatases as well as adaptors and other types of proteins that 

coordinate with the direct phosphorylation regulators. 

Like reference pathway maps, the TPS network traces the physical protein interactions used to 

transmit messages from EGF to the phosphorylated proteins, including PTMs and other types 

of interactions.  These interactions are depicted as directed, signed edges in a graph, where the 
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sign reflects that the proteins have the same (activation) or opposite (inhibition) activity 

changes.  The timing of the phosphorylation changes supports many possible valid 

interpretations, and the TPS summary tracks which edges are used in different manners in 

different models.  Of the 413 edges in the network, 202 (49%) have a consistent direction in all of 

the valid pathway models, a very strong assertion about the confidence in these edge directions. 

Thirty-eight of these directed edges have a consistent sign as well.  The PPI connections, 

phosphorylation timing, and prior knowledge of kinase-substrate interaction direction all play 

distinct, important roles in reducing the number of valid pathway models (Supplemental 

Results, Figure S8, and Tables S5, S6, S7, and S8).  The timing of protein activation and 

inactivation in the TPS pathway reveals a rapid spread of signaling post-stimulation 

(Supplemental Results and Tables S9 and S10). 
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Figure 4. Zoomed regions of the full TPS pathway model (Figure S7).  A) The EGFR subnetwork 

(EGFR, GRB2, CBL, and all their direct neighbors) depicts the proteins that first react to EGF 

stimulation.  A substantial portion of the EGFR subnetwork (18 of 38 proteins) is known to be 

associated with EGFR signaling.  Green and red edges depict activation and inhibition, 

respectively.  Gray edges that terminate in a circle indicate that the interaction is used in the 

same direction in all possible pathway models, but the sign is ambiguous.  Thin, undirected 

edges are used in different directions in different valid pathway models.  Thick, rounded 

borders show which proteins are present in one or more reference EGFR pathways.  Node 

annotations are detailed in panel B.  B) Line graphs on each protein node show the temporal 

Activation 

Inhibition 

Directed edge, sign unknown 

Direction and sign unknown 

Significant peptide phosphorylation 

Insignificant peptide phosphorylation 

Protein activity summary 

EGFR reference pathway 

A) B) 

C) 
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peptide phosphorylation changes relative to the pre-stimulation level on a log2 scale.  Multiple 

lines indicate multiple observed phosphopeptides for that protein, where black lines denote 

statistically significant phosphorylation changes and gray lines indicate insignificant changes.  

Proteins without line graphs are connective Steiner nodes inferred by PCSF.  Colored boxes 

summarize the TPS inferred activity state across peptides at each time point.  Red indicates 

activation, blue inhibition, gray ambiguity, and white inactivity.  C) The subnetwork 

surrounding MAPK1 and MAPK3.  TPS uses the PPI network to correctly determine that 

MAP2K1 is the kinase that controls both MAPK1 and MAPK3 even though it is not observed in 

the mass spectrometry data. 

 

Although nearly all differentially phosphorylated proteins lie outside traditional EGFR 

pathway representations, components of the TPS pathway reflect established EGFR 

relationships.  Twenty-nine (11%) of the 273 phosphorylated proteins and 5 (13%) of the 38 

unphosphorylated connective proteins in the TPS network are recognized as EGFR pathway 

members, consistent with our expectations based on the low overlaps between the significantly 

phosphorylated proteins and the EGFR pathway maps (Figure 3).  Four sites on EGFR are 

immediately and significantly phosphorylated post-stimulation as are two others at later time 

points.  Pathway models could potentially begin with EGF interacting with any of its 17 

partners in the PPI network, but strong EGFR phosphorylation leads TPS to initiate all paths 

with the edge EGF->EGFR.  Proteins directly connected to EGFR include known pathway 

members CBL, CBLB, EPN1, HGS, GRB2, PAK1, PRKACA, and PTK2 (Figure 4A).  SHC1 is 

connected to EGFR via GRB2, but the direction and sign of the interaction are ambiguous due to 

a second parallel connection through CBL, which is also active at the two- and four-minute time 

points.  Likewise, PLCG1 is connected via CBL, again with indeterminate direction and sign.  

This reflects how quickly EGFR and the other upstream pathway members are activated, 

suggesting that sub-minute time points may be required to unambiguously order some of the 

immediate connections adjacent to EGFR (Reddy et al., 2016). 
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Further downstream, MAP2K1 is one of several canonical EGFR pathway members that are not 

phosphorylated in our mass spectrometry data but are included in the pathway.  Such proteins 

emphasize the necessity of including PPI in the analysis of the temporal phosphorylation 

changes because these unobserved proteins could not be recovered by any algorithm that 

reconstructs the pathway from the mass spectrometry data alone.  MAP2K1 is correctly 

recognized as the direct kinase of EGFR pathway members MAPK1 (after adding new 

experimental constraints described below) and MAPK3 (Figure 4C).  MAPK1 and MAPK3 

phosphorylation levels are highly correlated and would likely be directly linked by an approach 

based on correlation or mutual information, but TPS correctly predicts that MAPK1 and 

MAPK3 correlation is due to the common upstream regulator (MAP2K1) instead.  Immediately 

downstream of these proteins, MKL1 phosphorylation is not as strongly correlated as the two 

MAPKs, but TPS combines the topological constraints with the temporal information to 

correctly recover MAPK1->MKL1 and MAPK3->MKL1 (Muehlich et al., 2008). 

Prior evidence supports directions of EGFR pathway predictions 

We find strong literature support for many of the directions that TPS predicts in the 

reconstructed EGFR pathway.  In total, 82 of 202 interaction directions are verified in our semi-

automated evaluations, and the vast majority of the remaining directions can neither be 

confirmed nor refuted (Table S4).  The most compelling evidence comes from the EGFR 

reference pathways, which confirm both the edge direction and relevance to EGF stimulation 

response.  Seven directed edges appear in one of the reference pathways, four with the 

predicted direction and three in complexes (Supplemental Experimental Procedures and 

Supplemental File 4).  We expect this overlap to be low because so few significantly 

phosphorylated proteins are in the reference pathways (Figure 3).  In addition, 78 directed 

edges come from the PhosphoSitePlus input data (Hornbeck et al., 2015), in which the kinase-

substrate interaction direction is already known to be correct in other contexts.  Nearly all of 

these interactions were not previously reported to be involved in EGFR signaling; only three are 

present in an EGFR reference pathway.  We use natural language processing (NLP) software 

(Chen and Sharp, 2004; Hoffmann and Valencia, 2004; Poon et al., 2014) to broaden our edge 
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direction evaluation (Supplemental Experimental Procedures).  The NLP tools confirm the 

directions of fifteen predicted interactions and contradict only one prediction, but a manual 

literature review supports that prediction as well (Supplemental Results and Table S4). 

Inhibitor-induced phosphorylation changes support novel EGFR pathway 

predictions 

To further assess components of the TPS network, we analyzed several interactions that are not 

present in EGFR pathway databases.  These proteins are already known to physically interact.  

The novelty of the TPS predictions is the interactions’ relevance to the EGF response.  We 

prioritized interactions that extend the existing EGFR pathways.  Specifically, we focused on 

edges for which the direction or sign were predicted confidently and one of the two proteins is 

a member of an EGF response reference pathway (Supplemental Results).  For each interaction, 

we inhibited the predicted upstream protein and measured the effect on the predicted target’s 

phosphorylation using Western blotting.  From our list of ten candidate interactions (Table S11), 

we selected the three edges for which the antibodies reliably produced clean and quantifiable 

bands at the right molecular weight: MAPK1-ATP1A1, ABL2->CRK, and AKT1->ZYX (Zyxin) 

(Supplemental Results and Figures 4C and 5).  The inhibitors used to inhibit the upstream 

proteins were SCH772984 for MAPK1, Dasatinib for ABL2 and MK-2296 for AKT1.  After 

serum-starvation, the cells were treated with an inhibitor for one hour and then stimulated with 

EGF.  We collected data at two time points (denoted short and long, see Figure 6) based on the 

timing of the phosphorylation events in our mass spectrometry data.  Lysates were then 

assayed by Western blot to quantify the level of phosphorylation of the downstream protein. 
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Figure 5.  Predicted edges selected for experimental testing.  The pathway context of the 

MAPK1 and ATP1A1 interaction is shown in Figure 4C.  A) The predicted pathway context of 

the ABL2 to CRK interaction.  B) The pathway context of the AKT1 to Zyxin interaction, which 

includes BCAR1, Zyxin, and all of their neighbors. 

 

The inhibition of ABL2 decreased phosphorylation of CRK (isoform Crk-II) pY221, consistent 

with the TPS pathway edge (Figure 6).  Inhibiting AKT1 increased phosphorylation of Zyxin.  In 

both cases, the predicted interaction direction is supported.  MAPK1 inhibition increased 

ATP1A1 pY10 phosphorylation.  The TPS model predicted an inhibitory interaction between 

these proteins, but the direction was ambiguous.  Our data agree with the predicted edge sign 

and suggest that MAPK1 is upstream of ATP1A1.  These results provide independent 

experimental evidence that is consistent with the novel edges identified in our network 

analysis.  However, because the inhibitors may also act upon other related kinases and the 

kinases’ regulation may not be direct, further experiments are required to fully validate the 

predictions. 

A) B) 
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Figure 6.  Inhibiting predicted pathway edges.  A) Western blots for CRK pY 221, Zyxin pS 

142/143 and ATP1A1 pY 10 in the presence and absence of small molecule inhibitors targeting 

their parent node (Dasatinib/ABL2, MK-2206/AKT1, and SCH772984/MAPK1, respectively).  

The red channel displays detection of the specific phosphorylation sites.  The green channel 

displays detection of β-Actin (a loading control used for normalization of each specific phospho 

signal).  Two biological replicates are shown in each Western blot.  Time "0" indicates no EGF 

stimulation; "S" is short EGF stimulation (four or eight min), and "L" is long EGF stimulation 

(sixteen or thirty-two min).  Absence or presence of inhibitor is shown by "-" and "+", 

respectively.  B) Quantification of CRK pY 221 phosphorylation (four replicates).  

Phosphorylation levels are relative to the maximum phosphorylation across all conditions and 

replicates.  An asterisk denotes p < 0.05 (two-sided, unpaired, unequal variances t-test).  

Whiskers show 1.5 times the interquartile range.  C) Quantification of Zyxin pS 142/143 

phosphorylation (four replicates).  D) Quantification of ATP1A1 pY 10 phosphorylation (six 

replicates). 
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Iterative experimental and computational modeling further reduces pathway 

ambiguity 

An important feature of TPS is its flexibility to integrate different types of constraints on 

pathway structure.  This makes it ideal for iterative modeling because computational 

hypotheses that are experimentally confirmed or refuted can be fed back into TPS.  Based on the 

results from the Western blots, we added a new constraint: MAPK1 inhibits ATP1A1.  We then 

ran TPS again, requiring pathways to be consistent with the new constraint and all previous 

constraints.  After restricting the pathway structure, TPS correctly infers that MAP2K1 is 

directly upstream of MAPK1 yielding a more precise and accurate pathway.  Without the 

Western blot-derived constraint, the direction of the MAP2K1-MAPK1 interaction was 

ambiguous due to the possibility that ATP1A1, rather than MAP2K1, controls MAPK1 

phosphorylation changes (Figure 4C).  Other types of experimental corroboration can be 

similarly applied to iteratively improve the predictive power of TPS. 

TPS makes network predictions not captured by alternative approaches 

We compared TPS to two existing methods that combine PPI networks and time series data and 

a third that uses only time series data (Supplemental Experimental Procedures).  The dynamic 

Bayesian network (DBN) (Hill et al., 2012) infers posterior peptide-peptide interaction 

probabilities from time series data and network priors.  TimeXNet (Patil and Nakai, 2014; Patil 

et al., 2013) formulates pathway prediction as a network flow problem.  FunChisq (Zhang and 

Song, 2013) uses an adapted chi-square test to detect directed relationships between 

phosphorylated proteins.  Comparing the four predicted pathways demonstrates the impact of 

the diverse algorithmic strategies.  Almost all of the protein-protein edges are unique to a single 

method, and no edges are predicted by all four methods (Figure S9A).  Despite greater overlap 

among the predicted nodes (Figure S9B), the four pathways are divergent.  The TPS constraints 

allow it to recover different pathway relationships from those identified by the existing 

methods. 

Because most of the differentially phosphorylated proteins are not members of any reference 

pathway, these pathways cannot be used to assess the overall quality of the predictions. 
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However, it is still informative to compare the methods on the small fraction of predictions that 

are covered in the databases.  The TimeXNet pathway, the largest of the three predicted 

networks, generally captures the most reference pathway interactions when ignoring edge 

direction and sign (Table S12).  However, a closer examination that accounts for the predicted 

interaction direction shows that TPS typically makes the fewest errors, even when controlling 

for the size of the predicted pathways (Table S12).  TPS only asserts an edge direction when it is 

certain that all plausible pathway models must use an interaction in a particular direction.  As 

in the NLP evaluation, this conservative approach leads to very accurate direction predictions, 

which is crucial for designing validation experiments.  When tested against the collection of 

EGFR reference pathways and all pathways in the BioCarta, Reactome, and PID databases, TPS 

makes only one incorrect direction prediction, though many of the directed edges are not in the 

reference pathways and cannot be confirmed or refuted.  In contrast, the DBN and TimeXNet 

predict more directed edges but make errors at a greater rate. 

The reference pathway evaluation illuminates additional ways in which our constraint-based 

approach improves upon the existing methods.  Unlike TPS, the DBN and FunChisq can infer 

only interactions between proteins observed in the phosphorylation time series data and ignore 

unphosphorylated nodes.  Therefore, these methods miss important interactions involving 

proteins with no associated time series data, which TPS can detect.  These include two of our 

experimentally-tested predictions (ABL2->CRK and AKT1->ZYX) and additional interactions 

with EGFR reference pathway members MAP2K1 and PAK1.  Overall, the DBN predicts more 

edges than TPS, but fewer of those edges are in the reference pathways (Table S12).  FunChisq 

also produces a larger network than TPS but has no directed edges that overlap with directed 

edges in the reference pathways.  Inspection of the FunChisq network reveals that this may be 

because its predicted network does not resemble the topology of the reference pathways.  It 

contains several clusters of nodes, and nodes within a cluster are predicted to interact with most 

other nodes in the cluster. 

By making greater use of the temporal information in the time series data, TPS can detect 

temporal inconsistencies in TimeXNet predictions that conflict with the reference pathway 
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directions.  We identified incorrectly oriented TimeXNet predictions, such as GRB2->EGFR and 

GRB2->ERBB2, for which TPS detects an inconsistency between the prediction and the input 

data.  When providing the TimeXNet output as input to TPS, TPS reports that there is no 

pathway structure that can activate GRB2.  Consequently, the GRB2 node and the incorrect 

EGFR and ERBB2 interactions are removed.  As an example of an invalid pathway structure, 

TimeXNet predicts that signal flows from LCK to CBL to GRB2.  However, TPS shows that any 

directed path from LCK to GRB2 violates the phosphorylation timing because LCK is first 

differentially phosphorylated at 16 min, later than GRB2’s initial change at 4 min.  TPS detects 

similar contradictions for all other paths to GRB2 in the TimeXNet network.  Although 

TimeXNet also models phosphorylation timing, it cannot model the dynamics of multiple 

phosphosites per protein and uses a coarse division of the time series data into three bins, which 

can produce misleading temporal interpretations (Supplemental Results). 

TPS generates high-quality pathway models from lower temporal resolution 

phosphoproteomic spectrometry data 

Having established that TPS produces informative signaling pathway models from our EGF 

stimulation phosphorylation data, we assessed whether it could attain similar performance on 

existing temporal phosphoproteomic datasets, which typically cover fewer proteins and time 

points.  A foundational study by Olsen et al. (Olsen et al., 2006) examined the phosphorylation 

response to EGF at 0, 1, 5, 10 and 20 minutes post-stimulation.  We identified 302 

phosphopeptides on 203 proteins with a phosphorylation log2 fold change of at least 2 and 

constructed PCSF and TPS pathway models from these proteins that exhibited temporal 

phosphorylation changes (Supplemental Files 5 and 6).  The resulting TPS model connects 280 

proteins with 329 edges, and 242 edges can be assigned a unique direction in all possible 

pathway structures (Figure S10).  Twenty-four (10%) of the 243 phosphorylated proteins and 9 

(24%) of the 37 unphosphorylated connective proteins are known EGFR pathway members.  We 

evaluated the 242 edges assigned a unique direction in the TPS model against the EGFR-specific 

and generic reference pathways.  The median number of directed edges that matched a directed 

edge in a reference pathway was two, and none of the reference pathways reported an 
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interaction that conflicted with any of the directed predictions.  Overall, TPS performs well even 

with fewer time points and differentially phosphorylated proteins.  

Although the TPS pathways produced with our phosphoproteomic data and the Olsen et al. 

data are of similar sizes and contain an almost identical number of proteins from the EGFR 

reference pathways, a closer examination reveals that their pathway structures reflect the 

differences in the underlying phosphorylation data.  The Olsen et al. EGF stimulation study 

used HeLa cells, a shorter time course, and different phosphorylation quantification techniques 

than our approach and did not provide biological replicates.  This led to substantial differences 

in the quantified proteins and the magnitudes of their phosphorylation changes (Figure S11), 

which consequently have a strong influence on the resulting network models.  Only 59 proteins 

and 25 edges are common to both TPS models, and each TPS EGFR network captures unique 

parts of the reference EGFR pathways (Figure S12).  Each network reflects the individual 

aspects of EGF signaling in the cell types and conditions being studied, though it is likely that 

the quantified phosphosites and generated TPS models would grow more similar with deeper 

phosphoproteome coverage. 

Yeast osmotic stress response model recapitulates known pathway structure and 

nominates candidate Rck2 and Cdc28 substrates 

Although they are still not fully characterized, stress-response signaling cascades in the yeast 

Saccharomyces cerevisiae are better-understood than their human counterparts and are not subject 

to cell type-specific effects.  Thus, we applied TPS to model the yeast osmotic stress response to 

assess its ability to recapitulate this frequently-studied pathway and reveal additional novel 

interactions.  The hyperosmotic stress response is primarily controlled by the High Osmolarity 

Glycerol (HOG) pathway and its central mitogen-activated protein kinase Hog1, which 

regulates osmo-responsive transcriptome changes (Chasman et al., 2014; O’Rourke and 

Herskowitz, 2004; Posas et al., 2000; Rep et al., 2000), transient translational inhibition (Melamed 

et al., 2008; Teige et al., 2001; Uesono and Toh-e, 2002), cell cycle arrest (Clotet et al., 2006; Duch 

et al., 2012; Escoté et al., 2004), and metabolic changes controlling intracellular osmolyte levels 

(Albertyn et al., 1994; Dihazi et al., 2004; Norbeck et al., 1996).  Kanshin et al. profiled the rapid 
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response to NaCl, an osmotic stressor, measuring phosphorylation changes for 60 seconds post-

stimulation at uniform 5 second intervals (Kanshin et al., 2015).  They identified 1,596 

phosphorylated proteins, including 1,401 dynamic phosphopeptides on 784 proteins based on 

their fold changes in the salt stress time series with respect to a control (Table S13).  We used 

these data to construct a TPS pathway model of the early osmotic stress response (Supplemental 

Files 7 and 8). 

The TPS osmotic stress pathway contains 216 proteins and 287 interactions (Figure S13).  Thirty-

six of these proteins (17%) have been previously annotated as osmotic stress pathway proteins 

(Kawakami et al., 2016).  Focusing on the subset of interactions that connect known HOG 

pathway members reveals that many of the edges connecting them are correct as well (Figure 

S14A).   TPS recovers the core part of the KEGG high osmolarity pathway, including the 

interactions Sho1->Ste50, Sho1->Cdc24, Sho1->Pbs2, Ssk2->Pbs2, and Pbs2->Hog1.  In addition, 

it correctly places Hog1 as the direct regulator of Rck2 (Bilsland-Marchesan et al., 2000) and the 

essential osmotic stress response transcription factors Hot1, Msn2, and Sko1 (Capaldi et al., 

2008).  TPS identifies Sch9 as an additional regulator of Sko1 (Pascual‐Ahuir and Proft, 2007).  

Following hyperosmotic shock, Hog1 is recruited to Fps1 (Lee et al., 2013), consistent with the 

TPS prediction.  The predicted feedback from Hog1 to Ste50 is also well-supported in osmotic 

stress (Hao et al., 2008).  Many predicted interactions that deviate from the canonical HOG 

pathway model can be attributed to the input phosphorylation data and background network, 

not the TPS algorithm (Supplemental Results). 

After confirming the TPS osmotic stress model agrees well with existing models, we 

investigated novel candidate pathway members.  Upon a shift to high osmolarity, Hog1 

phosphorylates and activates the kinase Rck2 (Bilsland-Marchesan et al., 2000), which then 

phosphorylates the translation elongation factor 2 (Eft2), temporarily inhibiting translation 

(Teige et al., 2001).  The TPS model captured the cascade Hog1->Rck2->Eft2 and predicted 

additional Rck2 targets (Figure S14B).  To test these predictions, we compared them to a recent 

phosphoproteomic study of an RCK2 mutant subjected to osmotic stress (Romanov et al., 2017).  

All four proteins that TPS predicts are activated by Rck2 have defective phosphorylation on at 
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least one phosphosite in rck2Δ five minutes after osmotic insult (Romanov et al., 2017).  Thus, 

Rck2 likely directly phosphorylates Fpk1, Pik1, Rod1, and YLR257W upon osmotic stress, as 

TPS predicts.  In addition to the four activated substrates, TPS predicts that Rck2 regulates 

YHR131C.  In this case the edge sign is ambiguous in the TPS model at the protein level because 

some YHR131C phosphosites exhibit a significant increase in phosphorylation while others 

decrease.  One YHR131C phosphosite is dependent on Rck2 during osmotic stress (Romanov et 

al., 2017), supporting our Rck2 –> YHR131C prediction.  Similarly, we verified that 67 out of 91 

(74%) predicted Cdc28 targets have at least one phosphosite with defective phosphorylation 

following Cdc28 inhibition (Holt et al., 2009; Kanshin et al., 2017) (Supplemental Results). 

The high-quality TPS osmotic stress pathway demonstrates the algorithm is broadly useful 

beyond our own EGF stimulation study.  It not only recovers many major elements of the classic 

HOG pathway representation but also prioritizes condition-specific kinase targets that are 

supported by independent perturbations. 

Discussion 

The pathway structure illuminated by the phosphorylated proteins in our EGFR Flp-In cells 

differs considerably from the simple representations in pathway databases.  Interpreting 

signaling data requires the reconstruction of models specific to the cells, stimuli, and 

environment being studied.  TPS combines condition-specific information, time series 

phosphoproteomic data and the source of stimulation, with generic PPI networks and optional 

prior knowledge to produce custom pathway representations.  The predicted EGFR signaling 

network highlights alternative connections to classic EGFR pathway kinases and extends the 

pathway with interactions that are supported by prior knowledge in other contexts or kinase 

inhibition.  Combining different constraints on pathway structure from PPI network topology 

and temporal information is computationally challenging, and we identify predictions that can 

be obtained only through joint reasoning with all available data. 
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Role of novel tested EGFR pathway edges 

The EGFR pathway provides a rich background against which the TPS predictions can be 

validated, while concurrently letting us evaluate its ability to uncover new biology in an 

extensively studied and clinically relevant pathway.  EGFR initiates a variety of signaling 

cascades that regulate phenotypes such as cell differentiation, migration, proliferation, and 

survival (Citri and Yarden, 2006).  Dysregulation of EGFR activity by overexpression, mutation, 

or other mechanisms leads to cellular disease, including cancer (Huang et al., 2009; Pines et al., 

2010). 

All three experimentally-tested pathway edges naturally extend traditional EGFR pathway 

representations.  These interactions involve kinases that play recognized roles in EGF response 

and introduce connections to target proteins that are controlled by the kinases in the EGFR 

context.  We know a priori from the PPI network that the proteins physically interact in some 

manner.  TPS illuminates the interactions’ relevance to EGF response and the details of the 

interactions, that is, the directions and signs. 

ABL2, a well-characterized tyrosine kinase also known as ARG, is involved in actin remodeling, 

cell motility, and EGFR endocytosis (Colicelli, 2010).  Though not detected in our mass 

spectrometry data, this protein is included in the TPS pathway due to its predicted role as a 

regulator of CRK, which is highly phosphorylated in response to EGF.  ABL2 has been shown to 

phosphorylate CRK on Y221 in vivo (Wang et al., 1996).  We confirm this site is sensitive to 

ABL2 inhibition, but it differs from the CRK site detected in our mass spectrometry data (Y136).  

KEGG’s ErbB signaling pathway depicts CRK as a direct regulator of ABL2, which contradicts 

our evidence that ABL2 directly phosphorylates CRK in the EGFR pathway.  Both directions are 

potentially valid, but the current version of TPS does not model cycles, as discussed below. 

The kinase MAPK1 (ERK2) is a central component of many stimulus responses and other 

biological processes whose dysfunction is linked with numerous diseases (Wortzel and Seger, 

2011).  ATP1A1 is the catalytic subunit of Na+,K+-ATPase, an ion pump that also plays a role in 

signal transduction when inhibited by ouabain (Reinhard et al., 2013), making it a candidate 

therapeutic target for diseases such as medulloblastoma (Wolle et al., 2014).  MAPK1 
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phosphorylates ATP1A1 in response to insulin (Al-Khalili et al., 2004) and proinsulin-

connecting peptide (C-peptide) (Zhong et al., 2004) stimulation, potentially on T81.  However, 

both the TPS pathway model and our MAPK1 inhibition support an inhibitory effect on 

ATP1A1 phosphorylation.  The difference could be attributed to the specific phosphorylation 

sites because MAPK1 was not linked to ATP1A1 tyrosine phosphorylation in other conditions 

(Al-Khalili et al., 2004).  ATP1A1 Y55 (insignificant change) and Y260 (significant change) 

exhibit decreased phosphorylation in our mass spectrometry data.  Our Western blot quantifies 

phosphorylation of Y10, which was detected jointly with Y260 phosphorylation in many 

PhosphoSitePlus Cell Signaling Technology curation sets (Hornbeck et al., 2015).  Despite prior 

evidence of the MAPK1-ATP1A1 interaction, we cannot rule out indirect effects via other 

inhibited proteins (SCH772984 also impacts MAPK3) or an intermediate tyrosine phosphatase 

controlled by MAPK1, which could explain the significant change in ATP1A1 phosphorylation 

at 0 min (Figure 6D).  Additional experiments are required to explore the mechanistic details of 

the EGF-induced relationships between these two proteins. 

AKT1 is an important kinase in PI3 kinase signaling with roles in glucose transport, cell 

survival, cell growth, metabolism, and multiple diseases (Hers et al., 2011).  Like ABL2, AKT1 

phosphorylation was not detected in our mass spectrometry data, but it is correctly nominated 

as a regulator of other EGF-responsive proteins.  AKT1 directly phosphorylates Zyxin on S142 

(Chan et al., 2007), an activating interaction.  Our Western blots support AKT1 inhibiting Zyxin 

phosphorylation based on an antibody specific to S142 and S143.  The potential disagreement in 

edge sign is an intriguing topic for further study.  It may suggest that although AKT1 directly 

phosphorylates Zyxin some contexts, their relationship in the EGF response context is indirect. 

Tradeoffs between ambiguity, expressiveness, and correctness 

The modeling assumptions made when interpreting and translating biological data into logical 

constraints have complex effects on the degree of ambiguity, expressiveness, and accuracy of 

the resulting pathway summary.  Even with temporal information, many pathway structures 

can explain the ordered signaling events.  This motivates the reduction of ambiguity with hard 

logical constraints, where each constraint is fully trusted, instead of with probabilistic 
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constraints (Hinton et al., 2006; Katoen et al., 2005), where a constraint can potentially be 

violated. 

In the PPI network, we allow paths only through chains of experimentally detected PPI.  In 

settings where the PPI network is less complete, we could include edges among highly 

correlated phosphorylated proteins or predicted interactions based on protein sequence, protein 

structure, pathway connectivity, or literature mining (Lees et al., 2011; Mosca et al., 2013).  The 

pre-processing step that filters the PPI network operates on a weighted network.  These 

additional edges could be assigned lower weights so that PCSF includes them in the TPS input 

network only if they are critical for connecting significantly phosphorylated proteins.  This 

would reduce the impact of missing interactions on TPS pathways at the cost of potentially 

increasing ambiguity because there would be more possible paths through which signal can 

flow. 

Likewise, we observe that some proteins, such as RAS and RAF family members, are not 

included in the TPS pathway because our mass spectrometry data do not detect their 

phosphorylation.  To increase robustness to potential false negatives in the mass spectrometry, 

the input PPI network could be modified to include edges from relevant reference pathways 

with high weights (similar to (Patil et al., 2013)) so that PCSF prefers to include these 

interactions instead of other high-confidence connections in the PPI network.  The weight of 

these prior knowledge edges would control the tradeoff between condition-specific de novo 

pathway discovery and conformance with prior knowledge. 

Unlike single-cell mass cytometry data, where the peak activity times of a small number of 

phosphoproteins can be resolved precisely (Krishnaswamy et al., 2014), phosphorylation timing 

in cell population-level mass spectrometry data is inherently ambiguous.  Therefore, instead of 

rigidly determining a protein’s time of activity by selecting the time point at which the greatest 

phosphorylation change is observed, TPS takes a more general approach.  It allows a protein to 

be activated or inhibited whenever the phosphorylation significantly differs from the level 

before stimulation or at the immediately preceding time point as long as it is the first time at 

which that phosphorylation level has been observed.  We focus on the initial pulse of signaling 
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activity following stimulation, sampling more early time points in our EGF response study 

because we are more confident that these changes in phosphorylation intensity are due to PTMs 

instead of changes in protein abundance.  Feedback loops cannot be detected when learning a 

single activation or inhibition time per peptide, a modeling decision we made in our three case 

studies.  However, the TPS framework makes it possible to allow multiple activity changes per 

peptide in future applications.  Statistical tests of the temporal phosphorylation profiles could 

determine the number of significant activity changes for each peptide.  Then, TPS could search 

for pathway structures with feedback loops that explain the multiple activation or inhibition 

events per peptide.  We describe a constraint-based solution that extends TPS to infer feedback 

in networks in Supplemental Experimental Procedures. 

Lastly, we recognize that different phosphopeptides on the same protein can have different 

phosphorylation changes over time, and we allow each peptide to have its own activation times 

instead of forcing a single time per protein.  This decision can lead to ambiguous edge direction 

predictions at the protein-level even when the directions are consistent at the peptide level.  For 

example, DOCK1 interacts only with BCAR1 (Figure 5B), yet the direction and sign of the 

interaction are ambiguous.  The uncertainty arises because BCAR1 is phosphorylated on both 

Y249 and Y387.  TPS correctly concludes that the sign cannot be determined because one site 

could activate DOCK1 and then feed back and affect the other BCAR1 site. 

Contrasting TPS with related computational approaches 

TPS provides a new way to integrate information from PPI networks, time series 

phosphoproteomic data, and prior knowledge by introducing a powerful constraint-based 

approach to build on concepts previously explored by related algorithms.  Approaches for 

building networks from gene expression data alone (reviewed in (De Smet and Marchal, 2010)) 

can be applied to phosphoproteomic data as well.  Extensions of these methods for temporal 

data introduce time lags and search for dependencies between genes’ expression levels over 

time (Zoppoli et al., 2010).  Methods based on Granger causality (Masnadi-Shirazi et al., 2014) 

identify proteins whose phosphorylation predicts behavior at later time points and provide one 

type of causal model.  However, as we showed in our comparison with the dynamic Bayesian 
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network (Hill et al., 2012) and FunChisq (Zhang and Song, 2013), all methods that rely on the 

phosphorylation data alone (Henriques et al., 2017) will miss critical signaling pathway 

interactions because not all pathway members have observed phosphorylation changes. 

Algorithms based on gene and protein perturbations provide an alternative approach toward 

causal models.  Transcriptional regulatory networks have been inferred from expression 

changes induced by gene knockouts and knockdowns (Anchang et al., 2009; Markowetz et al., 

2007; Wang et al., 2014; Yeang et al., 2004).  Likewise, signaling networks have been 

reconstructed by stimulating a pathway and perturbing signaling nodes with kinase inhibitors 

or RNA interference.  Protein activities are observed with antibody-based assays, and pathways 

are recovered de novo (Ciaccio et al., 2015; Fröhlich et al., 2009; Kiani and Kaderali, 2014; 

Molinelli et al., 2013) or by adapting prior pathway knowledge (Morris et al., 2011).  The 

PHONEMeS method is unique for its ability to handle large-scale phosphoproteomic 

perturbation data (Terfve et al., 2015). 

The HPN-DREAM network inference challenge (Hill et al., 2016) spawned several new 

approaches for analyzing time series phosphoproteomic data in multiple biological contexts.  

Participants predicted signaling pathways from in silico time series data and temporal reverse 

phase protein array data for approximately 45 phosphoproteins in four breast cancer cell lines 

under various stimuli and inhibitor treatments.  In contrast, TPS focuses on reconstructing 

signed, directed signaling networks from large-scale phosphoproteomic data.  The TPS 

networks rely on physical protein-protein interactions and include proteins that are not 

observed in the mass spectrometry.  PropheticGranger (Carlin, 2014), the top performer in the 

HPN-DREAM experimental task, demonstrated the importance of prior knowledge in network 

inference and modified the standard Granger causality approach to assess dependencies 

between observed proteins.  Meanwhile, TPS uses time series information to globally reason 

about temporally consistent network models, ensuring that all paths in a network agree with 

time series data and considering the temporal activities of nodes that are not direct neighbors in 

a path.  FunChisq (Zhang and Song, 2013), the top performer in the HPN-DREAM in silico task, 

did not perform well on our EGF response data (Table S12). 
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In our EGFR study, the TPS PPI subnetwork input is provided by PCSF, but other network 

algorithms can also connect phosphorylated proteins using PPI.  A related algorithm 

interpolates between globally optimal (Steiner tree) and locally optimal (shortest path) 

connections to different proteins (Yosef et al., 2009), and this method has been applied to link 

functional signaling proteins derived from phosphoproteomics data (Rudolph et al., 2016).  

Many other approaches connect source and target proteins in a PPI network to identify 

pathways.  ResponseNet (Yeger-Lotem et al., 2009) does so with a maximum flow formulation; 

SHORTEST (Silverbush and Sharan, 2014) and PathLinker (Ritz et al., 2016) use shortest paths; 

Maximum Edge Orientation (MEO) (Gitter et al., 2011) orients the undirected edges to produce 

short, directed paths.  Integer programs can express complex optimization preferences with 

multi-stage objective functions when predicting source-target connections (Chasman et al., 2014; 

MacGilvray et al., 2017).  The predicted networks from any of these methods can be used as 

input for temporal analysis with TPS. 

Among methods that integrate dynamic data and PPI networks, TPS is unique in its ability to 

assess and summarize all possible pathway structures that are consistent with the input 

network and the temporal constraints.  TPS also considers all possible temporal activations for 

each peptide instead of mapping proteins to temporal bins in advance like TimeXNet (Patil and 

Nakai, 2014; Patil et al., 2013).  Similarly, Budak et al. use time point-specific PCSF networks to 

map proteins to times (Budak et al., 2015), and TimePath assigns genes to transcriptional phases 

based on gene expression timing (Jain et al., 2016), and Khodaverdian et al. explore theoretical 

properties of temporal Steiner trees (Khodaverdian et al., 2016).  The Signaling and Dynamic 

Regulatory Events Miner (SDREM) models temporal gene expression to infer the timing of 

transcription factor activity, but the pathway discovery phase does not use any temporal 

information (Gitter and Bar-Joseph, 2013; Gitter et al., 2013).  Vinayagam et al. used temporal 

phosphorylation to evaluate their predicted PPI directions but did not consider dynamics when 

making the predictions (Vinayagam et al., 2011).  Time series data and interaction networks 

have also been combined for inferring protein complex dynamics (Park and Bader, 2012), 
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pathway enrichment (Jo et al., 2016), and related problems reviewed in Przytycka et al. 

(Przytycka et al., 2010). 

The key difference between our work and other declarative computational approaches is that 

TPS operates on networks that are several orders of magnitude larger and summarizes very 

large solution spaces defined by sparser and less precise experimental data.  Model checking 

and symbolic reasoning have been used to verify properties of manually constructed biological 

models (Fisher and Piterman, 2014), complete partially specified pathways using perturbation 

data (Köksal et al., 2013), and synthesize gene regulatory networks directly from data (Dunn et 

al., 2014; Moignard et al., 2015) (reviewed in (Fisher et al., 2014)).  In addition, other types of 

declarative approaches, such as integer programming (Budak et al., 2015; Chasman et al., 2014; 

Jain et al., 2016; Ourfali et al., 2007; Sharan and Karp, 2013; Silverbush and Sharan, 2014) and 

answer set programming (Guziolowski et al., 2013), have been applied to biological pathway 

analysis.  The TPS model summarization strategy, which makes it applicable to comprehensive 

signaling networks containing more than a hundred thousand edges and phosphosites, sets it 

apart from these related methods (Supplemental Results and Figure S15). 

Future directions in pathway synthesis 

TPS offers a powerful framework for combining multiple types of declarative constraints to 

generate condition-specific signaling pathways.  The constraint-based approach can be 

extended to include many additional types of data.  New types of constraints could be derived 

from high-level properties that proteins, interactions, or pathways must satisfy.  Future versions 

of TPS could incorporate perturbation data that links kinase inhibition or deletion to 

phosphorylation changes that are far downstream from the kinase.  For instance, both temporal 

(Kanshin et al., 2015) and kinase perturbation (MacGilvray et al., 2017; Romanov et al., 2017) 

phosphoproteomic data are available for the yeast osmotic stress response.  Modeling multiple 

related conditions (e.g., different ligand stimuli and inhibitor perturbations) could allow TPS to 

learn not only the signs of interactions but also the logic employed when multiple incoming 

signals influence a protein.  Finally, TPS could accommodate user-defined assumptions or 

heuristics about pathway properties, such as restrictions on pathway length.  Such complex 
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constraints cannot be readily included in existing optimization-based approaches like dynamic 

Bayesian networks or TimeXNet. 

As proteomic technologies continue to improve in terms of depth of coverage (Sharma et al., 

2014; Zhou et al., 2013)  and temporal resolution (Humphrey et al., 2015; Kanshin et al., 2015; 

Reddy et al., 2016), the need to systematically interpret these data will likewise grow.  TPS 

enables reasoning with temporal phosphorylation changes and physical protein interactions to 

define what drives the vast protein modifications that are not represented by existing 

knowledge in pathway databases. 

Experimental Procedures 

Temporal Pathway Synthesizer algorithm overview 

As illustrated in Figure 1, our algorithm receives three types of input: a time series mass 

spectrometry phosphoproteomic analysis of a stimulus response, an undirected graph obtained 

by filtering a large PPI network to identify interactions that are relevant to the differentially 

phosphorylated proteins, and optional prior knowledge about interaction directions (for 

example, kinase-substrate relationships). 

The undirected input graph is obtained through a static analysis in which the significantly 

changing proteins are overlaid on a network of physical protein interactions.  A network 

algorithm recovers connections among the affected proteins, simultaneously removing 

interactions that do not form critical connections between these proteins and nominating 

hidden proteins that do, even if they are not themselves phosphorylated.  The specific criteria 

used to select proteins and interactions vary based on the network algorithm.  Here we use 

PCSF (Tuncbag et al., 2013), but we have also successfully applied ResponseNet (Yeger-Lotem 

et al., 2009), MEO (Gitter et al., 2011), and TimeXNet (Patil and Nakai, 2014; Patil et al., 2013) for 

this step. 

Our method combines the input data to recover pathways embedded in the network that agree 

with the temporal data.  TPS transforms the input into logical constraints that determine which 
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pathway models can explain the observed phosphoproteomic data.  Topological constraints 

stem from the filtered PPI network and require that phosphorylated proteins are connected to 

the source of stimulation, such as EGF, by a cascade of signaling events.  These signaling events 

propagate along the edges of the filtered PPI network.  Temporal constraints ensure that the 

order of the signaling events is consistent with the timing of the phosphorylation changes.  If 

protein B is downstream of protein A on the pathway, B cannot be activated or inhibited before 

A.  Lastly, prior knowledge constraints guarantee that if the direction or sign of an interaction is 

known in advance, the pathway may not contain the edge with the opposite direction or sign.  

Typically, many possible pathways meet all constraints, so TPS summarizes the entire collection 

of valid pathways and identifies interactions that are used with the same direction or sign 

across all models.  A symbolic solver reasons with these logical constraints and produces the 

pathway summary without explicitly enumerating all possible pathway models. 

To illustrate this process, consider a hypothetical signaling pathway that contains a receptor 

node A and six other downstream proteins that respond when A is stimulated (Figure 7A).  We 

cannot directly observe the pathway structure but seek to infer it from the types of data shown 

in Figure 7B - 7D.  The first input is time series mass spectrometry data measuring the response 

to stimulating the receptor (node A), which detects phosphorylation activity for six proteins. 

Node B is absent from the phosphorylation data because it is ubiquitinated, not 

phosphorylated, by A.  The second input is an undirected graph, which reveals high-confidence 

protein-protein interactions.  These are detected independently of the stimulation condition but 

filtered based on their presumed relevance to the responding proteins with an algorithm such 

as PCSF. By combining phosphorylation data with the PPI subnetwork, this topology can 

recover "hidden" components of the pathway that are not phosphorylated (node B).  Finally, our 

method accepts prior knowledge of directed kinase-substrate or phosphatase-substrate 

interactions, such as the edge C->D.  Each of these inputs can be used individually to restrict the 

space of plausible pathway models.  However, reasoning about them jointly produces a greater 

number of unambiguous predictions than considering each resource separately. 
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TPS exhaustively explores all signed, directed tree-structured pathway models, which are 

obtained by assigning signs and directions to edges of the undirected graph while restricting 

this space of networks through declarative constraints.  These constraints are derived from the 

input.  We next describe the constraints and how they restrict the space of models. 

 

 

A) C) D) 

B) 
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Figure 7.  An artificial example illustrating the inputs to TPS.  A) The signaling pathway that 

responds to stimulation of node A.  The colored boxes on each node show the time at which the 

protein is activated or inhibited and begins influencing its downstream neighbor, with the 

leftmost position indicating the earlier time point.  Red boxes are increases in activity, blue 

boxes are decreases, and white boxes are inactive time points, as explained in Figure 4B.  The 

left position indicates the activity at 0 to 1 min, the center position at 1 to 2 min, and the right 

position at 2 to 5 min.  B) The first input is time series phosphorylation data of the response to 

stimulating node A.  C) The second input is an undirected graph of high-confidence interactions 

that can recover hidden components that do not appear in the temporal data, such as node B.  

D) The last input is prior knowledge of the pathway or the protein-protein interactions, 

expressed as (unsigned) directed edges.  We represent unsigned edges with a circular 

arrowhead.  Here, we have one such interaction, which is from C to D. 

 

To formulate temporal constraints, we transform the time series data into a set of discrete 

signaling events (activation or inhibition) for each node, taking an event-based view of the 

signaling process (Table 1).  We determine time points for each node that correspond to 

statistically significant phosphorylation changes.  These discrete events are then used to rule out 

network models that contain signed, directed paths that violate the temporal ordering of these 

events no matter which event is chosen for each node.  For example, there can be no edge from 

E to D in any model because D is activated strictly earlier than E regardless of whether E is 

activated at 1-2 min or 2-5 min.  Because the time series data measures the response to a specific 

stimulus, we also devise topological constraints that ensure all signaling activity originates from 

this source.  In our example, this asserts that all edges in a solution network must be on a 

directed path that starts at node A.  Finally, our third input, the set of directed interactions, 

requires that no model violates this prior knowledge by including an edge from D to C. 
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Table 1.  Plausible signaling events inferred for each node through a statistical analysis of the 

time series phosphorylation data.  Although B is ubiquitinated in the 0-1 min interval, this is not 

observed in the phosphoproteomic input data. 

Node Plausible temporal signaling events 

A Activated 0-1 min 

B Activated or inhibited at any time 

C Inhibited 0-1 min or 2-5 min 

D Activated 0-1 min 

E Activated 1-2 min or 2-5 min 

F Activated 0-1 min 

G Activated 0-1 min or 1-2 min 

 

We show in Figure 8 the pathway models that can be learned using each type of constraint 

alone and by asserting them jointly.  When we enforce only temporal constraints, which 

corresponds to reasoning locally with phosphorylation data for pairs of nodes to see if one 

signaling event strictly precedes another, we obtain a single precise (signed and directed) 

prediction from D to E (Figure 8A).  The topological constraints by themselves are sufficient to 

orient edges from the source A and from node D because D forms a bottleneck (Figure 8B).  The 

prior knowledge constrains the direction of the edge from C to D, but its sign remains unknown 

(Figure 8C).  Jointly enforcing all of these constraints has a nontrivial impact on the solution 

space (Figure 8D).  For instance, we can infer that F must activate G.  If the edge direction were 

reversed, F would be downstream of E, but the data show that activation of F precedes 

activation of E.  The final model that includes all available data closely resembles the true 

pathway structure (Figure 7A).  The edges incident to node B are ambiguous, and the 

interaction between E and G cannot be uniquely oriented, but all other interactions are 

recovered.   
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Figure 8.  Summary graphs obtained by aggregating (via graph union) all possible signed, 

directed tree models for different constraints obtained from: A) time series data, B) graph 

topology, C) prior knowledge (in this example, kinase-substrate interaction directions), and D) 

all three types of input at the same time.  If an edge has a unique sign and direction in a 

summary graph (colored green and red for activations and inhibitions, respectively), this means 

there are no valid models that assign a different orientation or sign to that edge.  Edges that can 

have any combination of sign and direction in different models are gray without an arrowhead. 

 

The summary for the combination of all constraints produces precise predictions that cannot be 

obtained by intersecting the summaries for the individual types of constraints.  For instance, 

TPS infers that the relationship between F and G must be an activation from F to G because the 

sole way G can reach F in a tree rooted at A is through E, but F's activation precedes E's.  This 

inference cannot be made by combining the models in panels A, B, and C.  The simple example 

also highlights the differences in how the TPS constraint-based approach improves upon related 

methods based on correlation or the time point of maximum phosphorylation change 

(Supplemental Results and Figure S16). 

A) B) C) D) 

Time series data Graph topology Prior knowledge Combination of all 
three sources 
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TPS pathway synthesis 

TPS takes the undirected network of interactions produced by the PCSF algorithm and 

transforms it into a collection of signed, directed graphs that provide an explanation of dynamic 

signaling events. 

Discretization of time series data 

To find pathway models that agree with the phosphorylation dynamics, TPS first performs a 

discretization step that determines time intervals in which each protein may be differentially 

phosphorylated.  The discrete set of activation and inhibition state changes is then used to rule 

out networks that violate the observed temporal behavior. 

The transformation consists of finding time points for each profile where phosphorylation 

significantly differs from either the baseline (pre-stimulation) or the previous time point.  In the 

baseline comparison, this time point is accepted only if it is not preceded by an earlier, larger 

change with respect to the baseline.  If there is a hypothetical phosphorylation level at which the 

protein is activated and acts upon its downstream targets, a signaling event occurs only at the 

first time this threshold value is reached.  This criterion does not apply when comparing to the 

phosphorylation level at the previous time point.  In our EGF study, we use Tukey’s HSD test to 

find significant differential phosphorylation.  If comparing a time point to the baseline or the 

previous measurement produces a p-value below a user-defined threshold, the time point is 

marked as a possible activation or inhibition event depending on whether the phosphorylation 

level increased or decreased relative to the earlier time point to which it was compared. 

As an example, when we consider the profile for node E in Figure 7B, we find that both two and 

five minutes are time points where phosphorylation increases significantly relative to the 

previous time point (Table 1).  As a result, both time points mark possible activation intervals.  

Even though the last measurement for node G significantly differs from the baseline, it does not 

constitute a possible activation because it is preceded by a larger value at 2 minutes.  The 

hidden nodes for which there is no phosphorylation data (e.g., node B) are temporally 
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unconstrained.  They permit both activation and inhibition as possible state changes at all time 

intervals. 

Modeling assumptions 

Characteristics of the time series data directly influence our modeling assumptions.  We assume 

at most one signaling event happens for every node across time points.  Our logical solver can 

explore all possible activation and inhibition events for every node, but our experience shows 

that the data are too ambiguous to extend our interpretation beyond one event per node when 

modeling a single type of stimulation (such as EGF response).  We also observe that, in the 

absence of perturbation experiments that test the pathway behavior under different initial 

conditions, it is impossible to distinguish between different Boolean logic functions governing 

the behavior of each node (AND/OR semantics) and whether a node exhibits activity in 

response to one or multiple predecessors.  We therefore opt for signed, directed trees as our 

formalism for representing pathway models because they provide a sufficient basis for 

explaining the dynamic system behavior under these assumptions. 

Translating input into constraints 

TPS transforms each input into a set of constraints that declaratively specify valid signed, 

directed tree models that agree with the data.  These constraints are expressed as Boolean 

formulas with linear integer arithmetic, ranging over symbolic variables that represent choices 

on edge signs and orientations as well as how the temporal data are interpreted.  The 

constraints can then be solved by a Satisfiability Modulo Theories (SMT) solver to find a 

network model that satisfies all constraints along with dynamic timing annotations for each 

interaction in the network. 

Using constraints, we restrict the possible orientation and sign assignments to signed, directed 

tree networks rooted at the source node (e.g., EGF).  Furthermore, constraints express how 

every tree model must agree with the time series data by establishing a correspondence 

between the order of nodes on tree paths and their temporal order of activity according to the 

time series data.  Finally, we declaratively rule out models that contradict the prior knowledge 
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of kinase-substrate interaction directions.  In the Supplemental Experimental Procedures, we 

detail how such constraints are derived from the input.  Together, these constraints typically 

define a very large space of candidate networks that agree with the data.  TPS summarizes this 

space without explicitly enumerating all models. 

Pathway summaries 

The space of all valid pathway models with timing annotations defined by the constraints we 

specified is typically very large, and enumerating all models is not computationally feasible.  

Given an undirected network G with V nodes and E edges, along with T time points, there are 

5E ways of assigning a sign and orientation to edges of G and (T*2 + 1)V ways of assigning 

timing annotations to its nodes.  Even for a network with 200 edges, the number of possible sign 

and orientation assignments is 6*10139.  TPS can reason with even larger state spaces by 

producing summaries of all valid pathways instead of explicitly enumerating them.   

We define a summary network as the graph union of all signed, directed tree networks that 

satisfy the stated constraints.  Timing annotations are summarized by computing the set of 

possible annotations for each node over all solutions.  Figure 8 shows an example of a pathway 

summary obtained by computing the union of all valid models in the solution space.  In this 

union, we observe that some edges have a unique direction and sign combination, which 

signifies that this was the only observed signed, directed edge between two given edges across 

the solution space.  However, this does not guarantee that the edge between the interacting 

proteins must be present in all valid pathway models.  Meanwhile, when there are multiple 

direction and sign combinations between two nodes (e.g., between B and D), we know that 

multiple models have a different direction or sign assignment for the pair of nodes.  The fourth 

summary graph indicates that at least two models contain an edge between B and D in opposite 

directions (Figure S17). 

We compute the summary graph by performing a linear number of SMT solver queries in terms 

of the size of the input graph.  Each query asks whether at least one signed, directed model 

contains a specific signed, directed edge.  These individual queries are relatively 

computationally cheap in practice, and we can therefore have a view of the entire solution space 
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without enumerating all models, which is typically intractable.  The summary graph over-

approximates the solution space.  It is not possible to recover the exact set of valid models from 

the summary, but only a superset of the models (Supplemental Experimental Procedures and 

Figure S17).  This tradeoff must be made in order to analyze such a large state space. 

Using solvers for synthesis 

TPS uses the Z3 theorem prover (De Moura and Bjørner, 2008) via the ScalaZ3 interface (Köksal 

et al., 2011) to solve the constraints it generates.  It additionally provides a custom solver 

implemented specifically for computing pathway summaries based on data-flow analysis.  The 

custom solver and the symbolic solver produce identical pathway summaries.  However, the 

custom solver is much more scalable because it is specifically designed to address our synthesis 

task, and can handle networks containing more than a hundred thousand edges and 

phosphosites (Supplemental Results and Figure S15). 

Cell culture, stimulation and generation of peptides 

Flp-In 293 cells expressing EGFR were described previously (Gordus et al., 2009).  These 

isogenic cells do not express EGFR heterodimerization receptor partners, and receptor 

quantities are uniform across cells (~100,000 EGFR/cell).  Although their signaling response may 

differ from in vivo responses in human tissues, this system ensures the phosphorylation changes 

are EGFR-specific and reproducible across replicates.  The cells were grown using standard cell 

culture procedures in Dulbecco's modified Eagle's medium supplemented with 10% (v/v) fetal 

bovine serum, 2 mM glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, and 150 μg/ml 

hygromycin B.  For the activation of the EGF receptor, the cells were grown in plates to 

approximately 70% confluency, then washed once with phosphate-buffered saline (PBS) and 

incubated for 16 hours in serum-free medium.  Subsequently cells were stimulated with 23.6 nM 

EGF (Peprotech) for 0, 2, 4, 8, 16, 32, 64, or 128 minutes.  Untreated plates were used for the 0 

min time point.  After EGF stimulation, cells were lysed on ice with 3 ml of 8 M urea 

supplemented with 1 mM Na3VO4.  A 10 μl aliquot was taken from each sample to perform the 

micro bicinchoninic acid protein concentration assay (Pierce) according to the manufacturer’s 

protocol.  Cell lysates were reduced with 10 mM DTT for 1 hr at 56 °C, alkylated with 55 mM 
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iodoacetamide for 45 min at room temperature, and diluted to 12 ml with 100 mM ammonium 

acetate; pH 8.9. 40 μg trypsin (Promega) was added to each sample (~200:1 substrate to trypsin 

ratio) and the lysates were digested overnight at room temperature.  The whole cell digest 

solutions were acidified to pH 3 with acetic acid (HOAc) and loaded onto C18 Sep-Pak Plus C18 

Cartridges (Waters).  The peptides were desalted (10 mL 0.1% trifluoroacetic acid (TFA)) and 

eluted with 10 mL of a solution comprised of 40% acetonitrile (MeCN) with 0.1% TFA.  Each 

sample was divided into ten aliquots and lyophilized overnight to dryness for storage at –80°C. 

The peptides were then labeled using 8-plex iTRAQ reagents (Ab Sciex) according to the 

manufacturer’s instructions.  200 µg of lyophilized peptides were resuspended in 30 µl of 

dissolution buffer, and the corresponding iTRAQ reagent dissolved in 70 µl isopropanol was 

added.  The mixtures were incubated at room temperature for 1 hr and concentrated to ~30 μl. 

Samples labeled with eight different isotopic iTRAQ reagents were combined and dried to 

completion.  The sample was then rehydrated in 500 µl (0.1% HOAc) and desalted using a Sep-

Pack Vac C18 column (Waters).  The peptides were eluted with 80% acetonitrile, 0.1% HOAc. 

The eluate was evaporated to 100 µl in the SpeedVac and lyophilized. 

Phosphopeptide enrichment, mass spectrometry, and data analysis 

Peptides containing phosphotyrosines were enriched using immunoprecipitation (IP).  12 µg of 

each of the antibodies P-Tyr-1000 (Cell Signaling Technologies), 4G10 (Millipore), and PT-66 

(Sigma-Aldrich) were bound to 20 µl of packed protein G Plus agarose beads (Calbiochem) in IP 

buffer (100 mM Tris-HCl pH 7.4, 0.3% NP-40).  The lyophilized peptides were rehydrated with 

IP buffer, and the pH of the solution was adjusted to 7.4 using 100 mM Tris-HCL ph 8.5.  The 

peptide sample was added to the beads and incubated for 4 hours.  The supernatant was then 

removed and saved for the next step.  The beads were washed extensively using IP buffer, 100 

mM Tris-HCl and H2O.  The bound peptides were eluted using 50 µl 15% acetonitrile/0.1% TFA.  

Serine and threonine (and remaining tyrosine) phosphorylated peptides were enriched from the 

IP supernatant using immobilized metal affinity chromatography.  Briefly, protein 

concentration was adjusted to 1 mg/ml protein using wash buffer (80% MeCN/0.1%TFA).  100 

µl of Ni-depleted Ni-NTA Superflow beads (Qiagen) were activated with 100 mM FeCl3.  The 
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supernatant was loaded onto the beads and incubated for 1hr.  After washing the beads three 

times with wash buffer, the bound peptides were eluted twice with 1.4% ammonium 

hydroxide.  The eluates were combined and evaporated in a SpeedVac to 5-10 µl.  The sample 

was then reconstituted to a total volume of 20 µl in 20 mM ammonium formate pH 9.8. 

All mass spectrometry experiments were performed on a Thermo Fisher Velos Orbitrap mass 

spectrometer equipped with a nanospray ionsource coupled to a nanoACQUITY Ultra 

Performance LC system (Waters) equipped with two binary pumps.  Samples were separated 

using either 1D (IP eluate) or 2D (IMAC eluate) chromatography.  For the 1D separation, the 

sample was loaded onto a 5 cm self-packed (Reliasil, 5 µm C18, Orochem) pre-column (inner 

diameter 150 μm) connected to a 20-cm self-packed (ReproSil, 3 µm C18, Dr. Maisch) analytical 

capillary column (inner diameter 50 μm) with an integrated electrospray tip (∼1 μm orifice).  

Peptides were separated using a 115-minute gradient with solvents A (H2O/formic acid (FA), 

99.9:1 (v/v)) and B (MeCN/FA, 99.9:1 (v/v)) as follows: 1 min at 2% B, 84 min from 98 to 40% B, 5 

min at 40% B, 20 min at 20% B, and 14 min at 2% B.  For the 2D reverse phase chromatography, 

the sample was first loaded onto a 5 cm self-packed Xbridge column (Waters, inner diameter 

150 μm) and eluted with a 7-step gradient of 1, 3, 6, 9, 13, 25, and 44% B with solvents A 

(H2O/20 mM ammonium formate pH 9.8) and B (MeCN/20 mM ammonium formate, pH 9.8).  

The eluted sample was directly loaded onto a 5 cm self-packed precolumn (Reliasil, 5 µm C18, 

Orochem), which was connected to a 20 cm self-packed analytical column (ReproSil, 3 µm C18, 

Dr. Maisch).  The peptides were eluted with the same gradient as described above in the second 

dimension. 

Eluted peptides were directly analyzed using a Velos-Orbitrap mass spectrometer operated in 

data-dependent acquisition (DDA) mode to automatically switch between MS and MS/MS 

acquisitions.  The Top 10 method was used, in which full-scan MS (from m/z 350–2000) was 

acquired in the Orbitrap analyzer at 120,000 resolution, followed by high-energy, collision-

induced dissociation (HCD) MS/MS analysis (from m/z 100–1700) of the top 10 most intense 

precursor ions with a charge state >2.  The HCD MS/MS scans were acquired using the Orbitrap 

analyzer at 15,000 resolution at a normalized collision energy of 45%, with the ion selection 
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threshold set to 10,000 counts.  Precursor ion isolation width of 2 m/z was used for the MS/MS 

scans, and the maximum allowed ion accumulation times were set to 500 ms for full (MS) scans 

and 250 ms for HCD (MS/MS).  The standard mass spectrometer tune method settings were as 

follows: Spray Voltage, 2.2 kV; no sheath and auxiliary gas flow; heated capillary temperature, 

325 C; Automatic Gain Control (AGC) enabled.  All samples were analyzed by LC-MS/MS in 

biological triplicates. 

MS/MS data files were searched against the human protein database using Comet (Eng et al., 

2013).  Variable (phosphorylation of serine, threonine, or tyrosine, 79.966331 Da, methionine 

oxidation, 15.9949 Da) and static (carbamidomethylation of cysteine, 57.02 Da and the iTRAQ 

modification of 304.205360 Da to peptide N-terminus and lysine side-chains) modifications 

were used for the search (Supplemental File 9).  We applied a 1% false discovery rate threshold 

at the peptide level because our analysis models individual phosphopeptides.  Quantitation of 

the iTRAQ signals was performed using Libra (Deutsch et al., 2010) (see Supplemental 

Experimental Procedures for pre-processing and normalization). 

Across the three biological replicates, we quantified 5442 unique peptides in at least one 

replicate and 1,068 peptides in all replicates.  We focused on these 1,068 peptides for the 

computational modeling because the repeated observations indicate more reliable 

quantification and let us assess the significance of phosphorylation changes (Table S3).  The 

Supplemental Experimental Procedures describe the Tukey's Honest Significant Difference 

statistical testing (Yandell, 1997) and temporal phosphorylation analysis.  Table S14 

demonstrates robustness to the p-value threshold. 

Quantitative Western blotting 

The following kinase inhibitors were used at the following concentrations: 25 nM Dasatinib 

(#S1021), 400 nM SCH772984 (#S7101), and 800 nM MK-2206 (#S1078, all Selleckchem).  The Flp-

In 293 EGFR cells were serum-starved for 16 hours in growth medium without FBS.  Then, if 

indicated, the kinase inhibitors were added and incubated with the cells for 60 min.  Only 

DMSO was added to control cells.  After stimulation with 23.6 nM EGF for the indicated times, 

the cells were lysed using RIPA buffer (25mM Tris-HCl pH 7.6, 150mM NaCl, 1% NP-40, 1% 
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sodium deoxycholate, 0.1% SDS) with 1 mM sodium orthovanadate.  Cells without EGF 

stimulation were used as controls (0 min time point).  After incubation on ice for 15 minutes, the 

lysates were centrifuged at 21000 g for 10 min, and the protein concentration of the 

supernatants was determined.  Protein amounts were adjusted to 30–50 ug protein/well, and 

protein phosphorylation was assessed by SDS separation and Western blotting.  The 

membranes were probed with the following antibodies at a dilution of 1:1000: pY221-CRK 

(#3491, Crk-II isoform), pY10-ATP1A1 (#3060), and pS142/143-Zyxin (#8467, all Cell Signaling 

Technologies).  β-actin (#3700) was used to normalize loading across the gel.  Fluorescently 

labeled secondary antibodies were added according to the manufacturer’s instructions at 1:5000 

(Goat anti rabbit IRDye 680 and Goat anti mouse IRDye 800, Li-COR Biosciences).  Blots were 

imaged using an Odyssey Infrared Imaging System (Li-COR Biosciences).  Quantification of the 

phosphorylated proteins was performed with the Odyssey analysis software. 

Prize-collecting Steiner forest 

We use the prize-collecting Steiner forest implementation from Omics Integrator (Tuncbag et 

al., 2016) to recover the most relevant PPIs connecting the phosphorylated proteins.  PCSF 

recovers the sparse subnetwork F = (VF,EF) from a dense PPI network that links proteins of 

interest by solving 

argmin
𝐹

∑(𝛽 ∙ 𝑝(𝑣) − 𝜇 ∙ 𝑑(𝑣)) +

𝑣∉𝑉𝐹

∑ 𝑐(𝑒) +

𝑒∈𝐸𝐹

𝜔 ∙ 𝜅 

where p is a positive score (prize) that reflects the relevance of a vertex (protein) v, d is the 

degree (number of neighbors) of v, c is a positive cost for including an edge (interaction) e in the 

subnetwork, and κ is the number of disconnected trees in the subnetwork.  Parameters β, μ, and 

ω control the size and structure of the solution subnetwork.  An advantage of PCSF is that it 

nominates pathway members that are not detected by the mass spectrometry but form critical 

pathway connections to phosphorylated proteins, like ABL2 and AKT1 in our EGF response 

study (Figure 5).  The Supplemental Experimental Procedures describe how we set these 

parameters, ran PCSF multiple times to identify parallel connections between proteins, 

generated prizes from the phosphoproteomic data, and created a weighted interaction network 
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from iRefIndex (Razick et al., 2008) and PhosphoSitePlus (Hornbeck et al., 2015) PPI.  Omics 

Integrator solves the PCSF optimization problem with the belief propagation-based msgsteiner 

algorithm (Bailly-Bechet et al., 2011). 

Data and software availability 

The raw mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE (Vizcaíno et al., 2016) partner repository with the dataset identifier 

PXD006697, and the processed data are available in Tables S1 – S3.  The latest version of TPS is 

available at https://github.com/koksal/tps as MIT-licensed open source software.  TPS version 

2.1 and instructions for running the software are included in Supplemental File 10.  Our 

prototype visualization tool for TPS output is available at https://github.com/koksal/tpv as MIT-

licensed open source software. 
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Supplemental File Index 

 Table S1. Unprocessed mass spectrometry data.  Three biological replicates with two 

technical replicates each.  IP and IMAC are listed separately. 

 Table S2. Normalized mass spectrometry data for each of the biological replicates. 

 Table S3. Processed mass spectrometry data for peptides that appear in all biological 

replicates.  Includes median intensity at each time point, log2 fold change, and statistical 

significance from Tukey’s HSD test. 

 Table S4. All interactions in the TPS pathway for our EGF response data.  Includes the 

directions and signs each interaction may take and the evaluation results with respect to 

EGFR reference pathways, kinase-substrate interactions, and NLP. 

 Table S12. The overlap between the TPS, TimeXNet, FunChisq, and DBN pathway 

predictions and reference pathways. 

 Supplemental File 1. Mass spectrometry data formatted as input for the PCSF and TPS 

algorithms. 

 Supplemental File 2. Subnetwork output by PCSF run on our EGF response data as a 

Simple Interaction Format (SIF) file. 

 Supplemental File 3. Cytoscape (Shannon et al., 2003) session file for visualizing the TPS 

pathway for our EGF response data.  Created with Cytoscape version 3.2.0. 

 Supplemental File 4. Web pages containing a detailed evaluation of TPS predictions 

with respect to reference EGFR pathways and kinase-substrate interactions. 

 Supplemental File 5. Subnetwork output by PCSF run on the Olsen et al. EGF response 

data as a SIF file. 
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 Supplemental File 6. Cytoscape session file for visualizing the TPS pathway for the 

Olsen et al. EGF response data. 

 Supplemental File 7. Subnetwork output by PCSF run on the yeast osmotic stress 

response data as a SIF file. 

 Supplemental File 8. Cytoscape session file for visualizing the TPS pathway for the 

yeast osmotic stress response data. 

 Supplemental File 9. Comet MS/MS search engine parameters file. 

 Supplemental File 10. Version 2.1 of the TPS code, including instructions for running 

the software, example data, and scripts for linking PCSF and TPS.  The most recent 

version of the code is available at https://github.com/koksal/tps. 
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