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Abstract 

Polyclonal anti-IgG secondary antibodies are essential tools for many molecular 

biology techniques and diagnostic tests. Their animal-based production is, however, a 

major ethical problem. Here, we introduce a sustainable alternative, namely 

nanobodies against all mouse IgG subclasses and rabbit IgG. They can be produced at 

large scale in E. coli and could thus make secondary antibody-production in animals 

obsolete. Their recombinant nature allows fusion with affinity tags or reporter 

enzymes as well as efficient maleimide chemistry for fluorophore-coupling. We 

demonstrate their superior performance in Western Blotting, both in peroxidase- and 

fluorophore-linked form. Their site-specific labeling with multiple fluorophores 

creates bright imaging reagents for confocal and super-resolution microscopy with 

much smaller label displacement than traditional secondary antibodies. They also 

enable simpler and faster immunostaining protocols and even allow multi-target 

localization with primary IgGs from the same species and of the same class. 
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Introduction 

Mouse and rabbit antibodies are fundamental tools for numerous basic research 

techniques as well as medical diagnostic assays. The detection or immobilization of 

these primary antibodies is most often performed indirectly via polyclonal anti-IgG 

secondary antibodies. Yet, the need for a continuous supply of anti-IgG sera requires 

keeping, immunizing, bleeding and eventually sacrificing large numbers of goats, 

sheep, rabbits, or donkeys, which is not only costly but also a major animal welfare 

and ethical problem (Shen, 2013; Reardon, 2016). Furthermore, every new batch of 

serum contains another heterogeneous mixture of antibodies, which need to be 

affinity-purified on IgG columns and then depleted (by pre-adsorption) of nonspecific 

and crossreacting antibodies. Moreover, the success of this procedure has to be 

laboriously quality controlled each time. The large size of secondary antibodies (~10-

15 nm; 150 kDa) is also a disadvantage, since it limits tissue penetration and 

introduces a considerable label displacement, reducing the obtainable image 

resolution by super-resolution fluorescence microscopy methods (Ries et al., 2012; 

Szymborska et al., 2013; Pleiner et al., 2015). Their non-recombinant nature further 

precludes genetic engineering i.e. tagging or fusion to reporter enzymes.  

 

Why then, have recombinant anti-IgG detection reagents not yet replaced polyclonal 

secondary antibodies? The major issue is regarding signal strength. The signal in 

traditional immunofluorescence, for example, is amplified by: (i) multiple secondary 

IgG molecules binding to distinct epitopes of a primary antibody; (ii) a large IgG 

tolerating many labels per molecule; and (iii) by their bivalent binding mode 

exploiting avidity for high affinity target recognition. In the light of these facts, it 
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appears very challenging to achieve comparable signal levels with a small, 

monovalent and monoclonal reagent. 

Yet, we considered nanobodies, single-domain antibodies derived from camelid 

heavy-chain antibodies (Hamers-Casterman et al., 1993; Arbabi Ghahroudi et al., 

1997; Muyldermans, 2013), as perhaps the best candidates for such reagents. Due to 

their small size (~3x4 nm; 13 kDa), the possibility of their renewable production as 

recombinant fusion proteins, as well as favorable biophysical properties, nanobodies 

attracted considerable attention as powerful tools in cell biology (Helma et al., 2015), 

structural biology (Desmyter et al., 2015) and as future therapeutic agents (Van 

Bockstaele et al., 2009; Kijanka et al., 2015). They are particularly useful for super-

resolution imaging (Ries et al., 2012; Szymborska et al., 2013; Pleiner et al., 2015; 

Göttfert et al., 2017; Traenkle and Rothbauer, 2017). The resolving power of some of 

the best microscopes reported to date (e.g. ~6 nm by Balzarotti et al., 2017; ~10-

20 nm by Huang et al., 2016 or Xu et al., 2012) may be reduced due to the offset 

between fluorescent label and target introduced by primary and secondary antibodies 

(20-30 nm). Site-specifically labeled nanobodies represent a promising solution to this 

problem, since they can place fluorophores closer than 2 nm to their antigen and, 

despite their small size, even tolerate up to three dyes (Pleiner et al., 2015). 

In this study, we describe the generation of a comprehensive toolbox of nanobodies 

against all mouse IgG subclasses and rabbit IgG. This work required very extensive 

optimizations of our routine nanobody selection efforts, such as a time-stretched and 

thus affinity-enhancing immunization scheme, subsequent affinity maturation 

including off-rate selections, as well as testing and improving ~200 initial candidates. 

When labeled site-specifically with fluorophores, the resulting nanobodies performed 

remarkably well in Western Blotting and immunofluorescence. In contrast to 
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polyclonal secondary antibodies, they even allow a single-step multicolor labeling and 

co-localization. In Stochastic Optical Reconstruction Microscopy (STORM) of 

microtubules, an anti-mouse kappa light chain nanobody showed greatly reduced 

fluorophore offset distances, suggesting its use as a superior alternative to traditional 

anti-mouse secondary antibodies. Moreover, we show that anti-IgG nanobodies can 

be conjugated to horseradish peroxidase (HRP) or expressed as fusions to ascorbate 

peroxidase (APEX2) (Lam et al., 2015) and thus used for enhanced 

chemiluminescence Western blotting or colorimetric ELISAs or immuno-EM 

detection. These monoclonal recombinant nanobodies are thus perfect substitutes for 

conventional animal-derived polyclonal secondary antibodies. We envision that they 

can be engineered to enable a more versatile use of the plethora of existing antibodies 

and even allow the development of more sophisticated antibody-based diagnostic 

tests. 

 

Results 

A comprehensive anti-IgG nanobody toolbox 

We immunized two alpacas separately with polyclonal mouse or rabbit IgG and used 

chemically biotinylated mouse monoclonal antibodies (mAbs) of defined subclasses 

as well as rabbit IgGs for phage display selections of nanobodies from the resulting 

immune libraries. First results with the initially obtained anti-IgG nanobodies were 

rather disappointing, i.e. we experienced dim and noisy signals in 

immunofluorescence as well as in Western blots. We reasoned that an increase in 

affinity and specificity might yield improved reagents and therefore re-immunized the 

animals after a one-year pause. For this, we used IgGs pre-bound to multivalent 

particulate antigens expected to provide strong T-helper cell epitopes. Moreover, we 
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increased the stringency of the subsequent phage display selections by lowering the 

bait concentration down to the femtomolar range, which should not only select per se 

for sub-nanomolar binders, but also bring displayed nanobodies in direct competition 

with each other, because the number of bait molecules was up to 1000-fold lower than 

the number of displaying phages. Finally, we performed in vitro affinity maturations 

by random mutagenesis and further rounds of phage display, this time also combined 

with off-rate selections. In this way, we obtained a large toolkit of anti-rabbit and 

anti-mouse IgG nanobodies (Fig. 1 A). 

 

All nanobodies were extensively characterized for subclass specificity, epitope 

location on Fab or Fc fragment and crossreactivity to IgGs from other species 

(Fig. 1 B and Fig. S1 A). Their full protein sequences are listed in Supplementary 

Table 1, and clones are available on request and will also be distributed through 

Addgene. Notably, we identified nanobodies against all four mouse IgG subclasses 

and the sole rabbit IgG subclass. Strikingly, many anti-mouse IgG nanobodies target 

IgG1, which represents the most abundant subclass of commercially available mouse 

mAbs (~62-64 %), followed by IgG2a (~22-24 %) and the less frequent IgG2b 

(~13 %) and IgG3 (~1-2 %). Since the vast majority (~99 %) of mouse mAbs possess 

a kappa light chain, anti-kappa chain nanobodies promised to be the most broadly 

useful tools and we therefore actively selected for such binders by swapping the IgG 

heavy chain subclass during sequential selection rounds. For the identification of 

binders targeting the rare lambda chain, we had to pre-deplete the nanobody immune 

library of heavy chain and kappa chain-binders. Some of the identified nanobodies 

have mixed specificities, e.g. multiple mouse Fab-binders target an interface between 

kappa light chain and IgG1 or IgG2a heavy chain. Most anti-mouse IgG nanobodies 
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are exclusively mouse-specific, while others additionally crossreact with rat IgG 

(Fig. S1 A). The anti-rabbit IgG nanobody TP897 also efficiently recognizes guinea 

pig IgG. All nanobodies were produced by cytoplasmic expression in E. coli, mostly 

with an N-terminal His-NEDD8-tag for purification by Ni(II) chelate affinity capture 

and proteolytic release (Frey and Görlich, 2014). They were further equipped with 

ectopic cysteines for subsequent maleimide labeling reactions (Pleiner et al., 2015). 

Without further optimization, we typically obtained yields of 15 mg per liter of 

bacterial culture, which already suffices for a million immunofluorescence stains or 

200 liters of Western blotting solution (see below). 

 

We first assessed if the anti-IgG nanobodies were specific and could purify their IgG 

target from its common source. Anti-rabbit IgG nanobodies TP896 and TP897 

isolated polyclonal rabbit IgG from crude rabbit serum with high specificity 

(Fig. S1 B). Likewise, anti-mouse IgG nanobodies TP881 and TP885 could purify an 

IgG1 mAb from hybridoma cell culture supernatant (Fig. S1 C). Notably, nanobody-

bound IgG was released under physiological conditions using SUMOStar protease 

cleavage (Pleiner et al., 2015). The main virtue of this approach is perhaps not to 

purify IgGs from sera, but to perform immune-affinity purifications of antigens or 

antigen complexes that have been pre-bound to the primary antibodies. In contrast to 

traditional IPs, this approach allows to release the purified complexes under fully 

native conditions. 

 

Western blotting with horseradish peroxidase-conjugated anti-IgG nanobodies  

We next tested the performance of anti-IgG nanobodies as detection reagents in 

Western Blotting, which is a major application for secondary antibodies. A popular 
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mode of signal detection in Western Blotting is enhanced chemiluminescence (ECL) 

in which antibody-horseradish peroxidase (HRP) conjugates are used. HRP is a heme-

containing enzyme that catalyzes the oxidation of luminol in the presence of H2O2 to 

yield bright chemiluminescence, which is greatly increased by phenol-derived 

enhancers. We conjugated maleimide-activated HRP to anti-mouse IgG1 Fc 

nanobody TP1107 via a C-terminal cysteine (Fig. S2 A) and used the resulting 

conjugate in ECL Western Blotting. The nanobody-HRP conjugate is functional and 

outperformed a polyclonal secondary antibody-HRP conjugate from a commercial 

supplier (Fig. 2 A). The anti-rabbit IgG nanobody TP897 could also be linked to HRP 

and the resulting conjugate was functional and specific. 

 

Recombinant ascorbate peroxidase fusion to anti-IgG nanobodies 

Due to its stability and the breadth of its catalyzed colorimetric or chemiluminescent 

reactions that allow strong signal amplification, HRP is the most preferred enzyme for 

conjugation to secondary antibodies. However, it still has to be isolated from 

horseradish roots as a mixture of different isoforms, cannot be made in a practical 

scale and with a useful specific activity in E. coli (Krainer and Glieder, 2015), and it 

fails entirely as a genetic fusion to bacterially expressed nanobodies. 

As an alternative, we tested the engineered APEX2 ascorbate peroxidase (Martell et 

al., 2012; Lam et al., 2015) as a fusion partner of the anti-mouse IgG1 Fc nanobody 

TP1107. The TP1107-APEX2 fusion was not only well-expressed and soluble in E. 

coli (Fig. S2 B), but also, it was active and efficiently catalyzed the oxidation of the 

initially colorless substrate Amplex Ultra Red to the highly fluorescent resorufin 

(Fig. 2 B). In line with previous reports (Lam et al., 2015), HRP seemed slightly more 

efficient than APEX2 in catalyzing this reaction. Nonetheless, low femtomole 
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amounts of TP1107-APEX2 could be detected, suggesting its applicability e.g. in 

ELISA assays as well for immunohistochemistry and enzymatic antigen-localization 

in immunoelectron microscopy applications. 

 

Western Blotting with infrared fluorophore-linked anti-IgG nanobodies 

A convenient alternative to peroxidase conjugation or fusion is the labeling of 

secondary antibodies with infrared fluorescent dyes. In fact, infrared fluorescent 

Western blotting has emerged as a superior alternative to classical ECL. It offers high 

signal-to-noise ratios, allows straightforward quantification due to signal linearity 

over many orders of magnitude and even enables the simultaneous dual color 

detection of multiple proteins. We thus labeled anti-IgG nanobodies site-specifically 

with the infrared fluorophore IRDye 800 at a C-terminal cysteine (Pleiner et al., 

2015). The anti-rabbit IgG nanobody TP897 alone performed just as well as a 

commercial polyclonal anti-rabbit IgG secondary antibody, when it was used with 

rabbit polyclonal antibodies to detect various nucleoporins (Nups) in a Xenopus egg 

extract (Fig. 3 A). Similarly, the anti-mouse IgG1 Fc-specific nanobody TP1107 gave 

comparable or even higher signal intensities than a polyclonal anti-mouse IgG 

secondary antibody in Western Blotting on HeLa cell lysate (Fig. 3 B). Combinations 

of TP1107 with the compatible anti-mouse IgG1 Fab-specific nanobody TP886 or the 

anti-mouse kappa chain nanobody TP1170 provided a clearly better detection 

sensitivity than the polyclonal secondary antibody. TP1170 allows sensitive detection 

of IgG2a subclass mAbs, as shown here for the detection of the bacteriophage minor 

coat protein pIII (Fig. 3 C). We routinely found infrared fluorophore-labeled anti-IgG 

nanobodies to yield higher detection sensitivity than their HRP-conjugated 

counterparts. When combined with the compatible IRDye 680, dual color blots using 
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e.g. mouse and rabbit primary antibodies are easily possible (not shown). In contrast 

to polyclonal secondary antibodies, IRDye-labeled anti-IgG nanobodies give also a 

clean and strong signal when pre-bound to primary antibodies before application. This 

makes a separate incubation with the secondary antibody dispensable and saves up to 

2 h processing time per blot. We explored such a one-step staining strategy in more 

detail below for immunofluorescence. 

 

Single and multi-color imaging with anti-IgG nanobodies  

We next sought to assess the performance of the anti-IgG nanobodies as detection 

reagents in conventional indirect immunofluorescence. For this, cells are incubated 

sequentially with primary and secondary antibodies with intervening washing steps. 

Fluorophore-linked polyclonal secondary antibodies are routinely used for detection, 

since they can bind primary antibodies at multiple sites and thus deliver many 

fluorophores to enable large signal amplification. In contrast, individual anti-IgG 

nanobodies target only a single epitope per antibody (or two for symmetrical binding 

sites) and we therefore expected only modest signal amplification. Strikingly 

however, the anti-IgG1 nanobodies TP886 and TP1107, which specifically target 

IgG1 Fab and Fc fragment, respectively, not only performed well in Western Blotting, 

but also were well-behaved imaging reagents. For maximum brightness, we labeled 

these nanobodies with 2-3 fluorophores each at defined cysteines (Pleiner et al., 2015) 

and used them individually for the detection of mouse IgG1 mAbs in an indirect HeLa 

cell immunostaining (Fig. 4 A). Surprisingly, both were only slightly dimmer than the 

polyclonal mixture of anti-mouse secondary antibodies. We assume that the excellent 

nanobody signal is also due to less steric hindrance as compared to the much larger 

conventional secondary antibody. When both nanobodies were used in combination, 
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we detected increased signal strengths that often were directly comparable to those 

obtained with the secondary antibody (e.g. for Vimentin or Ki-67) (see also 

Fig. S3 A). Importantly, despite a high labeling density with (the always somewhat 

sticky) fluorophores, we observed no detectable background staining with these anti-

IgG nanobodies. This probably relates to the fact that the affinity of our nanobodies is 

very high, which allows their use at rather low nanomolar concentrations. The poor 

performance of the first anti-IgG nanobody generation indeed suggests that such 

excellent signal to noise ratio is not a trivial feature for a monovalent detection 

reagent. 

For the detection of IgG2a subclass mAbs, we used a combination of two nanobodies, 

TP1129 and TP1170 (Fig. 4 B and Fig. S3 B). The IgG2a-specific nanobody TP1129 

targets an epitope on the Fc-fragment and was obtained after affinity maturation of a 

lower affinity precursor (Fig. S3 C). Likewise, the kappa chain-specific nanobody 

TP1170 is an affinity-optimized variant, obtained after error-prone PCR, DNA 

shuffling and affinity selection (Fig. S3 D). TP1170 also proved effective in 

combination with the anti-IgG1 Fc nanobody TP1107 for the detection of IgG1 kappa 

mAbs (Figs. S3 E and F). The anti-rabbit IgG Fc nanobody TP897 can be used for the 

detection of polyclonal and monoclonal rabbit IgG (Fig. 4 C).  

The presented nanobodies are specific for their respective IgG subclass, as shown in 

the specificity profiling dot blot assay (Fig. 1 B). We exploited this for multicolor 

imaging of HeLa cells with different IgG subclasses (Fig. 4 D). Mouse IgG1, mouse 

IgG2a and rabbit IgG-specific nanobodies did not show any crossreaction and 

consequently allowed for clean co-localization experiments. Even triple co-

localizations were readily possible. 
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Rapid one-step immunostaining and co-localization 

The main reasons for separate incubation steps of primary and secondary IgGs in 

indirect immunofluorescence and Western blotting are the large size, as well as the 

bivalent and polyclonal nature of conventional secondary antibodies. If primary and 

secondary antibodies are pre-incubated, large oligomeric complexes form, which in 

immunofluorescence cannot easily penetrate into cells to reach their target and thus 

create background and poor signal (see Fig. 5 A). In contrast, anti-IgG nanobodies are 

monovalent and therefore do not crosslink primary antibodies. This allows 

streamlining the conventional immunostaining procedure to a single step. The primary 

antibodies are simply pre-incubated with fluorescently labeled anti-IgG nanobodies 

and then applied to cells together. After washing, the cells can be directly mounted for 

imaging. In such a workflow, anti-IgG nanobodies perform exceptionally well 

(Fig. 5 A). This time-saving protocol is also suitable for co-localization studies 

combining mouse and rabbit IgGs or combining mouse mAbs of different sub-classes. 

If the off-rate of the IgG pre-bound nanobodies were negligible over the staining 

period, then an exchange between the different pre-formed complexes would also be 

negligible. This would also make it unnecessary to use different IgG subclasses for 

multicolor imaging. We thus tested a multicolor staining workflow of HeLa cells 

relying solely on IgG1 subclass mAbs (Fig. 5 B). For this, we labeled anti-IgG1 Fc 

nanobody TP1107 with either Alexa 488, Alexa 568 or Alexa 647 maleimide and pre-

incubated it with different IgG1 mAbs. The separately pre-incubated mixes were then 

combined and applied to HeLa cells for staining in one-step. Strikingly, we obtained 

clean dual and even triple co-localizations. In order to preclude an intermixing of 

colors, unlabeled TP1107 can be added in excess to the final mix and cells can be 

post-fixed after staining and washing. 
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Super-resolution microscopy with anti-IgG nanobodies 

Super resolution fluorescence imaging techniques offer the potential for observing 

sub-cellular structures at very small (e.g. nanometer) length scales (Huang et al., 

2010; Sahl et al., 2017). However, these methods present new challenges for 

fluorescent labeling, because the spatial resolution of the images is comparable to the 

physical size of the probes. In the case of conventional antibodies, the antibody size is 

on the order of 10-15 nm, which may lead to a significant offset distance between the 

fluorophore and the epitope. At best, this offset may complicate the interpretation of 

super-resolution fluorescence image data, and in the worst case it makes it impossible 

to take full advantage of the increased resolution of the microscope. 

Therefore, we reasoned that anti-Fab fragment or anti-kappa light chain nanobodies 

should be ideal imaging reagents for super-resolution microscopy, as they would 

enable small label displacement when used in conjunction with conventional primary 

antibodies. This would be essentially comparable to using directly labeled Fab 

fragments of primary antibodies, but does not require any extra work. In order to test 

this, we imaged microtubules of BS-C-1 cells by STORM with a resolution of 

approximately 20nm (Rust et al., 2006; Bates et al., 2007) (Fig. 6). Bound primary 

antibodies were detected either via Alexa 647-labeled polyclonal anti-mouse 

secondary antibodies or anti-mouse kappa chain nanobody TP1170. From the 

resulting images we selected straight regions of microtubule filaments and calculated 

the summed histogram of the localizations along the axis orthogonal to the filament 

axis. This yielded a measure of the filament width, which was obtained by fitting a 

Gaussian function to each histogram to determine the full width at half maximum 

(FWHM) of the cross-section. The distribution of filament widths measured for the 
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two samples is shown in Fig. 6 B. In line with our initial expectations, we observed a 

striking difference in the microtubules’ apparent width for the two images. 

Microtubules stained via the polyclonal secondary antibody showed a median width 

of around 59.5 nm, which is in good agreement with electron microscopy studies of 

antibody coated microtubules (Weber et al., 1978) and previous STORM imaging 

(Bates et al., 2007). In contrast, staining with the anti-kappa chain nanobody yielded 

microtubules with a width of 37.5 nm, a remarkable ~22 nm reduction as a result of 

much lower label displacement as compared to the polyclonal secondary antibody. 

This result demonstrates, therefore, not only the significant offsets between epitope 

and fluorophore that may arise in conventional indirect immunostaining, but also the 

advantage of the smaller nanobody probe. Detection via the anti-kappa chain 

nanobody resulted in an image that more closely reflects the actual structure of the 

sample, suggesting its use as a superior secondary antibody for any super-resolution 

microscopy involving primary mouse antibodies.  

 

Discussion 

Due to the absence of more sustainable alternatives in the past, the great usefulness of 

polyclonal secondary antibodies in basic research certainly justified their animal-

based production. However, in order to guarantee their constant supply to an ever-

growing market, the producing companies had to dramatically increase their 

livestock, aim for very high antibody titres using aggressive hyper-immunization 

strategies causing strong side effects and increase the frequency and volume of 

collected bleedings. It is therefore not surprising that the global industrial scale 

production of antibodies causes severe animal welfare and ethical problems. The 
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magnitude of these problems recently surfaced in the Santa Cruz Biotechnology 

scandal (Shen, 2013; Reardon, 2016). 

Ideally, one should replace all animal immunization by selecting binders from 

synthetic libraries (Gray et al., 2016; Moutel et al., 2016; McMahon et al., 2017; 

Zimmermann et al., 2017). Yet, with a purely synthetic approach it is still not 

straightforward to obtain high-affinity binders. Further, the synthetic strategy is 

typically also inferior in terms of binder-specificity, because it lacks the stringent 

selection against self-reactivity that happens in antigen-exposed animals. The 

requirement for specificity is particularly high for secondary antibodies. We therefore 

see the here applied approach of using an immune library for binder selection as the 

best possible compromise. Since it is generally sufficient to obtain a few good 

nanobodies out of a small blood sample containing ~100 million lymphocytes, and 

since we found ways of further improving the initially found ones in vitro, there was 

no need for any hyper-immunization aiming at high titers. Importantly, once ideal 

nanobodies are identified, they are defined by their sequence and they can be 

renewably produced in E. coli at constant quality and without any further animal 

involvement. Since polyclonal secondary antibody production accounts for the largest 

share of immunized animals in the world, the anti-IgG nanobodies described in this 

study have the potential to make a great step forward towards reducing animal use 

and further contribute to a future of standardized recombinant antibodies (Marx, 

2013; Bradbury and Plückthun, 2015a; Bradbury and Plückthun, 2015b). 

We expect that our anti-IgG nanobodies will replace polyclonal secondary antibodies 

in many of their applications, e.g. in Western blotting and immunofluorescence. For 

both applications, their site-specific and quantitative modification with fluorophores 

via maleimide chemistry creates superior reagents with predictable label density and 
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position. Furthermore, the precise targeting of primary mouse antibodies at the kappa 

chain with a specific nanobody can substantially reduce the label displacement in 

super-resolution microscopy. In the future, we will also explore the direct coupling of 

anti-IgG nanobodies with engineered cysteines onto colloidal gold particles for 

electron microscopy, which also suffers from the large linkage error introduced by 

bulky secondary antibodies. 

Due to their monovalent and monoclonal nature, anti-IgG nanobodies do not crosslink 

primary antibodies and we exploited this for a one-step immunostaining workflow 

that saves valuable hands-on time and can also be extended to Western blotting. We 

envision that for routine stainings, preformed complexes of primary antibodies and 

labeled nanobodies can be prepared as stock solutions or simply bought from 

commercial suppliers. Due to the high affinity of the described nanobodies, the same 

strategy also enables multicolor immunostainings based on a single IgG subclass, 

which could also be relevant for flow cytometry sorting of specific cell types. This 

would be a cheaper and more flexible alternative to differentially labeled primary 

antibodies, it does not pose the risk of inactivating an antigen-binding site and it can 

easily be done if only small amounts of primary antibody are available. 

Further, since the DNA sequences of these anti-IgG nanobodies are essentially 

synthetic building blocks, they can be genetically appended to the multitude of 

available tags, fluorescent proteins or enzymes to generate fusion proteins with novel 

functions for tailored applications in basic research and medical diagnostics, and also 

become valuable tools for immunology to study Fc or B cell receptors and 

downstream signaling cascades. Furthermore, anti-IgG nanobodies equipped with 

protease-cleavable affinity tags (Pleiner et al., 2015) will allow the native isolation of 
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any antibody�target complex e.g. for structural studies by cryo-EM or functional 

assays.  

Even though the here presented anti-IgG nanobody toolbox is already highly 

optimized, we will continue to extend it by identifying new nanobodies that decorate 

complementary binding sites and thus allow a further signal enhancement, and 

combine them with additional functional elements. In any case, it will be an open 

resource for all interested labs. 
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Materials and methods 

Alpaca immunization 

Two female alpacas, held at the Max Planck Institute for Biophysical Chemistry, were 

immunized 4 times with 1.0 mg polyclonal mouse or rabbit IgG at 3 week intervals. 

The anti IgG project turned out to be the so far most challenging nanobody project in 

the lab, because we aimed at an extremely low off-rate for imaging and blotting 

applications. We therefore resumed immunizations after a 12 months (rabbit IgG) or 

an 8 months break (mouse IgG). Nanobodies obtained after these late immunizations 

still showed very clear phage enrichment (> 1000-fold) even with femtomolar 

concentrations of the IgG baits. We therefore assume that they have very high 

affinity.  

Selection of anti-IgG nanobodies 

The generation of nanobody immune libraries and the selection of antigen-specific 

nanobodies by phage display from these libraries were performed as previously 

described (Pleiner et al., 2015). IgG was biotinylated at accessible lysines by addition 

of a 4x molar excess of NHS-PEG12-biotin (Iris Biotech GmbH, Germany) for 2 h at 

room temperature in 1x PBS. Then the reaction was quenched and the excess of 

unreacted biotin separated from biotinylated IgG via buffer exchange into 50 mM 

Tris/HCl pH 7.5, 300 mM NaCl using PD-10 Desalting columns (GE Healthcare, 

USA). 

Expression and purification of untagged nanobodies 

Bacterial expression plasmids for anti-IgG nanobodies will be distributed via 

Addgene. All nanobodies carry engineered cysteines and were expressed in the 

cytoplasm of E. coli NEB express F' (New England Biolabs, USA). A 50 ml 
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preculture (2YT medium containing 50 µg/ml Kanamycin) was grown overnight at 

28°C. The culture was then diluted with fresh medium to 250 ml. After 1 h of growth 

at 25°C, protein expression was induced for 3-5 h by adding 0.2 mM IPTG. After 

addition of 1 mM PMSF and 10 mM EDTA to the culture, bacteria were harvested by 

centrifugation, resuspended in lysis buffer (50 mM Tris/HCl pH 7.5, 300 mM NaCl, 

10 mM imidazole, 5 mM DTT) and then lysed by sonication. The lysate was cleared 

by ultracentrifugation for 1.5 h (T647.5 rotor, Sorvall, 38,000 rpm) at 4°C. 

Nanobodies with engineered cysteines carried an N-terminal His14-bdNEDD8-tag and 

were affinity purified via Ni2+ chelate affinity chromatography. After washing with 

two column volumes (CV) of lysis buffer and one CV of maleimide-labeling buffer 

(100 mM potassium phosphate pH 7.5, 150 mM NaCl, 1 mM EDTA, 250 mM 

Sucrose), untagged nanobodies were eluted by on-column cleavage with 500 nM 

bdNEDP1 protease (Frey and Görlich, 2014) in maleimide-labeling buffer for 45 min 

at 4°C and labeled immediately with fluorophores. For longer storage, 10 mM DTT or 

TCEP were included in the maleimide-labeling buffer to keep cysteines reduced. 

Purified nanobodies were aliquoted and frozen in liquid nitrogen  

Site-specific fluorescent labeling of nanobodies with engineered cysteines 

The fluorescent labeling of nanobodies with maleimide dyes was described in detail 

before (Pleiner et al., 2015). Briefly, stored nanobodies were thawed and the buffer 

was exchanged again to Maleimide-labeling buffer to remove the reducing agent, 

using either illustra NAP-5 or PD-10 desalting columns (GE Healthcare). For a 

standard labeling reaction, 5-10 nmoles of nanobody were rapidly mixed with 1.2x 

molar excess of fluorescent dye per cysteine on the nanobody and incubated for 1.5 h 

on ice. Free dye was separated from labeled nanobody by buffer exchange to 

Maleimide labeling buffer on illustra NAP-5 or PD-10 desalting columns. 
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Quantitative labeling was quality controlled by calculating the degree of labeling 

(DOL). Fluorescently labeled nanobodies were always aliquoted, snap-frozen in 

liquid nitrogen and stored at -80°C until further use.  

Dot blot assay for anti-IgG nanobody specificity profiling 

For profiling the binding of anti-IgG nanobodies to different IgG subclasses and to 

analyze their crossreaction to IgG from other species, a dot blot assay was performed. 

Nitrocellulose membrane was cut in strips and different IgGs (500 ng for polyclonal 

total IgG, Fab and Fc fragments; ~250 ng for monoclonal IgG in 1 µl) were spotted. 

Strips were blocked with 4 % milk (w/v) in 1xPBS for 30 min at room temperature. 

Then, nanobodies were added at ~300 nM in 1 ml milk for 30 min. After washing two 

times with 1x PBS for 10 min each, bound nanobodies were detected at 488 nm in a 

fluorescence scanner (Starion FLA-9000, Fujifilm, Japan). The following IgGs were 

used: IgG1 kappa mAb A225 (Cordes et al., 1995); IgG1 lambda (#010-001-331, 

Rockland, USA); IgG2a kappa (#02-6200, Thermo Fisher Scientific, USA); IgG2b 

kappa (#02-6300, Thermo Fisher Scientific, USA); IgG3 kappa (#401302, 

BioLegend, USA); polyclonal IgG Fab fragments (#010-0105, Rockland, USA); 

polyclonal IgG Fc fragments (#31205, Thermo Fisher Scientific, USA). Polyclonal 

IgG of the following species were used: rabbit (self-made, affinity-purified from 

serum); mouse (#I8765); rat (#I4131); goat (#I5256); sheep (#I5131); human (#I4506, 

all Sigma-Aldrich, USA) and guinea-pig (#CR4-10, Sino Biological, China). 

Native isolation of IgG with anti-IgG nanobodies 

Polyclonal rabbit IgG from serum or mouse mAbs from hybridoma cell culture 

supernatant were isolated natively with anti-IgG nanobodies. For this, 0.3 nmoles of 

biotinylated nanobodies carrying a N-terminal His14-Biotin acceptor peptide-

(GlySer)9-SUMOStar-(GlySer)9-tag were immobilized on 1 mg magnetic Dynabeads 
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MyOne Streptavidin T1 (Thermo Fisher Scientific, USA). Excess biotin binding sites 

were quenched with biotin-PEG-COOH (#PEG1053, Iris Biotech, Germany). The 

beads were then incubated with 1 ml pre-cleared (10 min, 16,000g at 4°C) serum or 

hybridoma supernatant for 30 min at 4°C. After washing two times with wash buffer 

(50 mM Tris/HCl, 300 mM NaCl), nanobody-bound IgG was eluted by addition of 

50 µl 0.5 µM SUMOStar protease (Liu et al., 2008) in wash buffer for 20 min on ice. 

An aliquot of the eluate was then analyzed by SDS-PAGE and Coomassie staining. 

Western Blotting 

Bacteriophage protein III was detected with a mouse anti-pIII IgG2a mAb (#E8033S, 

New England Biolabs, USA). Mouse mAbs used for detection of human proteins in 

HeLa cell lysate were the following products: anti-Skp1 (clone H-6, #sc-5281, Santa 

Cruz Biotechnology, USA), anti-α-tubulin (clone DM1A, #T6199, Sigma-Aldrich, 

USA) and anti-Histone H3 (clone 96C10, #3638, Cell Signaling Technologies, USA). 

Polyclonal goat anti-mouse IgG coupled to IRDye 800CW (#925-32210; LI-COR 

Biosciences, USA) was used to detect primary mouse antibodies at a dilution of 

1:1340 (5 nM). Polyclonal rabbit antibodies against Xenopus laevis nucleoporins 

Nup98, Nup93, Nup54 and Nup88 were prepared in the lab (Hülsmann et al., 2012). 

Polyclonal goat anti-rabbit IgG coupled to IRDye 800CW (#925-32211; LI-COR 

Biosciences, USA) was used to detect primary rabbit antibodies at the lowest 

suggested dilution of 1:5,000. Anti-mouse IgG1 Fab nanobody TP886 (5 nM), anti-

mouse IgG1 Fc nanobody TP1107 (5 nM) and anti-rabbit IgG nanobody TP897 

(10 nM) were labeled with a single IRDye 800CW maleimide (#929-80020, LI-COR 

Biosciences, USA) via a C-terminal cysteine and used at the indicated concentrations 

in 4 % (w/v) milk in 1x PBS. Polyclonal goat anti-mouse-HRP conjugate was from 

DakoCytomation (Denmark) and used at 1:1,000 dilution (5 nM). Anti-mouse IgG1 
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Fc nanobody TP1107 was conjugated to maleimide-activated HRP (#31485, Thermo 

Fisher Scientific, USA) via a C-terminal cysteine by mixing both in equimolar 

amounts and incubation for 1h at room temperature. The conjugate was used at 5 nM 

in 4 % (w/v) milk in 1x PBS. The ECL solution was self-made and contained 5 mM 

Luminol (#A4685, Sigma-Aldrich, USA), 0.81 mM 4-Iodophenylboronic acid 

(#471933, Sigma-Aldrich, USA) and 5 mM freshly added H2O2 in 0.1 M Tris/HCl 

pH 8.8. 

Amplex Ultra Red assay 

APEX2 was derived from pTRC-APEX2 (Addgene plasmid #72558), which was a 

gift from Alice Y. Ting (Lam et al., 2015). The anti-mouse IgG1 Fc nanobody 

TP1107-APEX2 fusion was expressed from pTP1135 with an N-terminal His14-

bdNEDD8-tag in E. coli NEB express F’ (New England Biolabs, USA) for 6 h at 

25°C in the presence of 1 mM of the heme precursor 5-aminolevulinic acid (#A3785, 

Sigma-Aldrich, USA). Following lysis, the protein was purified by nickel chelate 

affinity chromatography and eluted by cleavage with 500 nM bdNEDP1 protease 

(Frey and Görlich, 2014) in 100 mM potassium phosphate pH 7.5, 150 mM NaCl, 

250 mM sucrose. The final assay mix contained 160 µM Amplex Ultra Red, 160 µM 

H2O2 in either 100 mM Citrate pH 6.6, 150 mM NaCl (optimal pH for APEX2) or 

100 mM potassium phosphate pH 6.0, 150 mM NaCl (optimal pH for HRP). 50 µl of 

this mix was used per reaction. Anti-mouse IgG1 Fc nanobody TP1107-APEX2 was 

titrated from 167 nM to 470 fM in a 1.8-fold dilution series and 2 µl of each dilution 

added to 50 µl reaction mix in triplicates. HRP (#31490, Thermo Scientific, USA) 

was titrated from 31 nM to 5 fM in a 2.4-fold dilution series and 2 µl per dilution 

added to 50 µl reaction mix in triplicates. The 96-well plate containing these reactions 

was incubated at room temperature for 30 min and then resorufin fluorescence was 
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measured at 590 nm (530 nm excitation) in a Bio-Tek Synergy HT Multi-Detection 

Microplate Reader (BioTek Instruments Inc., USA). 

Immunofluorescence 

HeLa cells grown on glass coverslips were fixed for 10 min at room temperature with 

3 % (w/v) paraformaldehyde (PFA) and then washed two times with 1x PBS for 

5 min each. Residual PFA was quenched by incubation with 50 mM NH4Cl in 1x PBS 

for 5 min. After two washes with 1x PBS for 5 min each, the cells were permeabilized 

with 0.3 % (v/v) Triton-X-100 for 3 min. Then the cells were washed three times 

quickly with 1x PBS and blocked for 30 min with 1 % (w/v) BSA in 1x PBS 

(blocking buffer). Following blocking, the coverslips were stained with primary 

antibody, which was diluted in blocking buffer, in a humid chamber for 1 h at room 

temperature. The coverslips were then washed two times in 1x PBS for 15 min each 

and added again to a humid chamber for incubation with secondary antibody or anti-

IgG nanobody diluted in blocking buffer. Afterwards, the cells were washed two 

times in 1x PBS for 15 min each and the coverslips mounted with Slow Fade Gold 

(Thermo Fisher Scientific, USA) for imaging on a Leica TCS SP5 confocal 

microscope equipped with hybrid detectors (Leica, Germany). 

For methanol fixation, the cells were incubated with -20°C-cooled methanol for 6 min 

at room temperature, washed two times in 1x PBS for 5 min each and then blocked in 

blocking buffer. The staining was performed as described above. 

Antibodies for immunofluorescence 

The following rabbit antibodies were used for immunofluorescence on HeLa cells: 

anti-Lap2 polyclonal antibody (1:100 dilution, #14651-1-AP, Proteintech, UK); anti-

Ki-67 mAb clone D3B5 (1:200 dilution, #9129, Cell Signaling Technologies, USA). 

The following mouse mAbs were used for immunofluorescence on HeLa cells: anti-
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Vimentin mAb clone V9 (1:10 dilution of Hybridoma supernatant, kind gift of Mary 

Osborn); anti-Ki-67 mAb clone B56 (1:50 dilution, #556003, BD Bioscience, USA); 

anti-TPR mAb 203-37 (1:500 dilution, Matritech Inc., USA; (Cordes et al., 1997)); 

anti-Cytochrome (Cyt) c mAb clone 6H2.B4 (1:50 dilution, #556432, BD Bioscience, 

USA); anti-Lamin A/C mAb clone 4C11 (1:50 dilution, #4777T, Cell Signaling 

Technologies, USA); anti-CD44 mAb clone 156-3C11 (1:200 dilution, #3570T, Cell 

Signaling Technologies, USA). Polyclonal goat anti-rabbit IgG (#111-545-003) and 

goat anti-mouse IgG (#115-545-003, Jackson ImmunoResearch, USA) coupled to 

Alexa Fluor 488 were used as secondary antibodies at 1:150 dilution (~33 nM). Anti-

IgG nanobodies were labeled with maleimide Alexa Fluor dyes at engineered surface 

cysteines (Pleiner et al., 2015) and used at 20 nM. The used nanobodies had the 

following degree of labeling: TP886-Alexa 488 = 1.9, TP1107-Alexa 488 = 2.7, 

TP1107-Alexa 647 = 2.2, TP1129-Alexa 488 = 2.5, TP1129-Alexa 568 = 2.0, 

TP1079-Alexa 488 = 2.2, TP897-Alexa 488 = 2.2. 

STORM imaging of microtubules in BS-C-1 cells 

BS-C-1 cells were stained with an anti-alpha tubulin monoclonal antibody (1:200 

dilution, #	T6074, Sigma Aldrich, USA) after PFA fixation as described above for 

HeLa cells. STORM imaging was carried out using a custom built microscope, 

similar to what has been described previously (Bates et al., 2012). Briefly, 642nm 

laser light was used to illuminate the sample, and fluorescence was detected with an 

EMCCD camera (Andor Ixon DU860), after filtering with a bandpass filter 

(ET700/75, Chroma Technologies). Raw STORM data was analyzed with custom 

written software, and STORM images of each sample were rendered using summed 

Gaussian functions. For calculation of the cross-section histograms, multiple straight 

segments of tubulin filaments were selected from the STORM images. For each 
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straight filament segment, a line was overlaid the segment in order to define the 

filament axis. Next, a set of rectangular regions of interest (ROIs) was created, 

aligned with the segment, spanning the cross-section of the filament. The ROI length 

was set equal to the segment length, and a user-selectable ROI width, which was 

chosen to be 5 nm for this analysis (the bin width). By counting the number of 

localizations falling within each ROI, a histogram corresponding to the cross-

sectional profile of the STORM image of a filament, averaged along the segment 

length, was generated. To measure the width of the cross-section, a Gaussian function 

was fit to the histogram, and the full width at half maximum was calculated. The 

distribution of measured filament widths is shown in Fig. 6 B. 
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Figure Legends 

Figure 1. Characterization of the anti-IgG nanobody toolbox. 

(A) Overview of all identified anti-IgG nanobodies. The obtained nanobodies were 

characterized for IgG subclass specificity, epitope location on Fab or Fc fragment and 

species crossreactivity (Fig. S1 A). The protein sequences of all anti-IgG nanobodies 

can be found in Supplementary Table 1. Nb = nanobody; CDR III = 

Complementarity-determining region III; Gp = Guinea pig; Hs = Human; κ = kappa 

light chain; λ = lambda light chain; Fab = Fragment antigen-binding, Fc = Fragment 

crystallizable. 

(B) IgG subclass reactivity profiling of selected anti-mouse IgG nanobodies 

representing all identified specificity groups. The indicated IgG species were spotted 

on nitrocellulose strips and the strips blocked with 4 % (w/v) milk in 1x PBS. Then 

300 nM of the indicated tagged nanobodies were added in milk. After washing with 

1x PBS, bound nanobodies were detected using a fluorescent scanner. Note that the 

signal strength on poylclonal IgG depends on the relative abundance of the specific 

subclass (e.g. IgG2b and IgG3 are low-abundant) or light chain (kappa : lambda ratio 

= 99:1). TP885 and TP926 showed no detectable binding to polyclonal Fab or Fc 

fragment and might bind to the hinge region. MBP = maltose binding protein; poly = 

polyclonal. 

 

Figure 2. Application of peroxidase-linked anti-IgG nanobodies. 

(A) A twofold dilution series of Xenopus laevis egg extract was blotted and probed 

with anti-Nup62 mouse IgG1 mAb A225. It was then decorated with horseradish 

peroxidase (HRP)-conjugated goat anti-mouse polyclonal IgG (5 nM) or anti-mouse 

IgG1 Fc nanobody TP1107 (5 nM) and detected via enhanced chemiluminescence 
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(ECL). Similarly, a rabbit polyclonal antibody targeting Nup54 was decorated with 

HRP-conjugated goat anti-rabbit polyclonal IgG or anti-rabbit IgG nanobody TP897 

(5 nM). 

(B) Oxidation of the fluorogenic ELISA substrate Amplex Ultra Red. A dilution 

series of pure HRP or recombinant anti-mouse IgG1 Fc nanobody TP1107-Ascorbate 

peroxidase (APEX2) fusion was incubated with Amplex Ultra Red and H2O2. 

Oxidation leads to formation of the fluorescent compound resorufin. The obtained 

data were fitted with a four-parameter logistic regression. The inflection points of the 

curves can be used to compare attainable sensitivity. A.U. = arbitrary units. 

 

Figure 3. Western blotting with infrared dye labeled anti-IgG nanobodies. 

(A) A twofold dilution series of Xenopus laevis egg extract was analyzed by SDS-

PAGE and Western Blotting. The indicated rabbit polyclonal antibodies were used to 

detect nucleoporins (Nups). These primary antibodies were then decorated either via 

IRDye 800-labeled goat anti-rabbit polyclonal IgG (1:5,000; LI-COR Biosciences, 

USA) or anti-rabbit IgG nanobody TP897 (10 nM). Blots were analyzed with an 

Odyssey Infrared Imaging System (LI-COR Biosciences, USA). 

(B) (Left panel) A twofold dilution series of HeLa cell lysate was analyzed by SDS-

PAGE and Western Blotting. The indicated mouse IgG1 mAbs were decorated either 

via IRDye 800-labeled goat anti-mouse polyclonal IgG (1:1,340, 5 nM, LI-COR 

Biosciences, USA) or anti-mouse IgG1 Fc nanobody TP1107 (5 nM). (Right panel) A 

twofold dilution series of Xenopus egg extract was blotted and probed with anti-

Nup62 mouse IgG1 mAb A225. It was then detected either via IRDye 800-labeled 

goat anti-mouse polyclonal IgG (5 nM), anti-mouse IgG1 Fc nanobody TP1107 

(5 nM), anti-mouse IgG1 Fab nanobody TP886 (5 nM), anti-mouse kappa chain 
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nanobody TP1170 (2.5 nM), a combination of TP1107 and TP886 or TP1107 and 

TP1170. Blue pixels indicate signal saturation. 

(C) A dilution series of filamentous bacteriophages was blotted and probed with an 

anti-minor coat protein pIII mouse IgG2a mAb. It was then decorated either via 

IRDye 800-labeled goat anti-mouse polyclonal IgG (2.5 nM) or anti-mouse kappa 

chain nanobody TP1170 (2.5 nM). 

 

Figure 4. Imaging with anti-IgG nanobodies. 

(A) Immunofluorescence with anti-mouse IgG1 nanobodies. HeLa cells were stained 

with the indicated mouse IgG1 kappa mAbs. These primary antibodies were then 

detected with Alexa 488-labeled goat anti-mouse polyclonal antibody, anti-mouse 

IgG1 Fab nanobody TP886 or anti-mouse IgG1 Fc nanobody TP1107. A combination 

of TP886 and TP1107 yielded increased staining intensities. Laser intensities used to 

acquire the anti-IgG nanobody images were normalized to the intensity used to 

acquire the anti-mouse polyclonal antibody image (RLI = relative laser intensity is 

used here as a measure of fluorescence signal strength). 

(B) Immunofluorescence with anti-mouse IgG2a nanobodies. HeLa cells were stained 

with the indicated mouse IgG2a mAbs. These primary antibodies were then detected 

with Alexa 488-labeled goat anti-mouse polyclonal antibody, anti-mouse IgG2a Fc 

nanobody TP1129 or anti-kappa chain nanobody TP1170. A combination of TP1129 

and TP1170 yielded increased staining intensities. 

(C) Immunofluorescence with anti-rabbit IgG nanobody TP897. HeLa cells were 

stained with the indicated rabbit antibodies. These primary antibodies were then 

detected with Alexa 488-labeled goat anti-rabbit polyclonal antibody or anti-rabbit 

IgG nanobody TP897. 
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(d) Multicolor-staining of HeLa cells. HeLa cells were incubated with the indicated 

mouse IgG1, mouse IgG2a or rabbit IgG antibodies. These primary antibodies were 

detected via anti-mouse IgG1 Fc nanobody TP1107, anti-mouse IgG2a Fc nanobody 

TP1129 or anti-rabbit IgG nanobody TP897, respectively, labeled with the indicated 

Alexa dyes. The upper two panels show dual and the lower panel shows a triple co-

localization.  

 

Figure 5. One-step immunostaining of HeLa cells with anti-IgG nanobodies. 

(A) The indicated mouse IgG1 mAbs were pre-incubated with an equal amount of 

Alexa 488-labeled goat anti-mouse secondary antibody or a combination of anti-

mouse IgG1 Fab nanobody TP886 and anti-mouse IgG1 Fc nanobody TP1107. 

Likewise, the anti-LAP2 rabbit polyclonal antibody was pre-incubated either with 

Alexa 488-labeled goat anti-rabbit secondary antibody or anti-rabbit IgG nanobody 

TP897. The resulting mixes were then applied to fixed and blocked Hela cells. After 

washing, the cells were directly mounted for imaging. For every primary antibody, 

images were acquired under identical settings and pixel intensities are represented via 

a false-color lookup table. 

(B) Multicolor-staining of HeLa cells with mouse IgG1 subclass mAbs. The indicated 

mouse IgG1 mAbs were separately pre-incubated with Alexa 488, Alexa 568 or Alexa 

647-coupled anti-mouse IgG1 Fc nanobody TP1107 and then mixed before staining 

HeLa cells in a single step. Washed cells were directly mounted for imaging. 

 

Figure 6. STORM imaging with anti-kappa chain nanobody TP1170. 

(A) BS-C-1 cells were stained with an anti-alpha tubulin monoclonal antibody (IgG1 

kappa) and then detected with Alexa 647-labeled goat anti-mouse polyclonal antibody 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 26, 2017. ; https://doi.org/10.1101/209742doi: bioRxiv preprint 

https://doi.org/10.1101/209742


 
 

32 

or Alexa 647-anti-mouse kappa chain nanobody TP1170. STORM images of the two 

samples show sub-diffraction limit organization of the tubulin filaments. (B) In order 

to quantify the effect of the label size on the apparent width of the filaments in the 

STORM images, averaged cross-sectional profiles of straight segments of filaments 

from the two samples were measured. First, the two labeling approaches are 

illustrated on the left and right of the figure, showing the expected smaller width for 

the nanobody labeling case. In the middle, box plots illustrate the results of the width 

analysis. In these measurements, the median width of the tubulin filaments decreased 

by a significant amount (from 59.5 nm to 37.5 nm) when stained with the anti-mouse 

kappa chain nanobody TP1170.  

 

Figure S1. Species crossreactivity profiling and native target IgG isolation. 

(A) Crossreactivity profiling of all anti-IgG nanobodies. Using the same Dot blot 

assay as described in Fig. 1 B, the crossreactivity of anti-IgG nanobodies to 

polyclonal IgG from the indicated species was determined. 

(B) Isolation of polyclonal rabbit IgG from rabbit serum. Anti-rabbit IgG nanobodies 

TP896 and TP897 carrying an N-terminal Avi-SUMOStar tag were biotinylated and 

immobilized on magnetic Streptavidin beads. After incubation with crude rabbit 

serum and washing, nanobody-bound polyclonal rabbit IgG was specifically eluted 

via SUMOStar protease cleavage in physiological buffer. Empty beads served as 

negative control. 

(C) Isolation of anti-Nup62 mouse IgG1 kappa mAb A225 from hybridoma 

supernatant with anti-mouse IgG1 nanobodies TP881 and TP885 as described in B. 

The asterisk indicates the SUMOStar protease used for elution. 
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Figure S2. Anti-IgG nanobody conjugation to HRP and fusion to APEX2. 

(A) Anti-mouse IgG1 Fc nanobody TP1107 with a C-terminal cysteine was 

conjugated to maleimide-activated horseradish peroxidase (HRP) by incubation of 

equimolar amounts for 1 h at room temperature. 

(B) Expression of anti-mouse IgG1 Fc nanobody TP1107-ascorbate peroxidase 

(APEX2) fusion in E. coli. After binding to nickel beads via the N-terminal His14-

bdNEDD8-tag, untagged fusion protein was eluted by on-column bdNEDP1 cleavage 

(Frey and Görlich, 2014). 

 

Figure S3. Immunofluorescence with anti-mouse IgG nanobodies. 

(A-B) Images for a given mAb or polyclonal antibody were acquired under identical 

settings and pixel intensities are represented via a false-color lookup table. (A) HeLa 

cells were stained with the indicated mouse IgG1 mAbs. These primary antibodies 

were then detected with Alexa 488-labeled goat anti-mouse polyclonal antibody or a 

combination of anti-mouse IgG1 Fab nanobody TP886 and anti-mouse IgG1 Fc 

nanobody TP1107. (B) HeLa cells were stained with the indicated mouse IgG2a 

mAbs. These primary antibodies were then detected with Alexa 488-labeled goat anti-

mouse polyclonal antibody or a combination of anti-mouse IgG2a Fc nanobody 

TP1129 and anti-kappa chain nanobody TP1170. 

(C) Protein sequence alignment of anti-mouse IgG2a nanobody TP921 and the variant 

TP1129 obtained after affinity maturation. HeLa cells were stained with a mouse 

IgG2a mAb targeting Lamin A/C. The mAb was detected via TP921 or TP1129 

labeled with a single Alexa 488 dye and the images acquired under identical settings.  

(D) Protein sequence alignment of anti-mouse kappa chain nanobody TP974 and the 

variant TP1170 obtained after DNA shuffling and affinity maturation. HeLa cells 
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were stained with a mouse IgG2a mAb targeting Lamin A/C. The mAb was detected 

via TP974 or TP1170, both labeled with two Alexa 488 dyes.  

(E) HeLa cells were stained with the indicated mouse IgG1 kappa mAbs. These 

primary antibodies were then detected with Alexa 647-labeled goat anti-mouse 

polyclonal antibody, anti-mouse IgG1 Fc nanobody TP1107 or anti-mouse kappa 

chain nanobody TP1170. A combination of TP1107 and TP1170 yielded increased 

staining intensities, see (F) for identical settings scan. RLI = relative laser intensity 

(as defined in Fig. 4 A). 
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Immunofluorescence with anti-IgG nanobodies - identical settings
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Supplementary Table 1. Anti-IgG nanobody protein sequences

Nb ID Isotype specificity Epitope Crossreaction Sequence
Anti-rabbit TP896 N/A Fab Rabbit only QVQLVESGGGLAQPGGSLRLSCAVSGFRFSFYQMTWVRQAPGKGLEWVADINSAGGTTYYADSVKGRFAISRDNAKNTLYLQMNSLKPEDTAVYYCAKGKFPVESRRHGGTAQWDEYDYWGQGTRVTVSS

TP897 N/A Fc Rabbit, Guinea pig, Human (weak) QVQLVESGGGLVQAGDSLRLSCVASGRSLDGATMRWYRQAPGKEREFVAGIFWDEIGTEYADTAKGRFTISRDNAKNTIYLQMTNLRSEDTAMYYCNGLVFGGEYWGQGTQVTVSS
Anti-mouse TP1170 Kappa chain - Mouse, Guinea pig (weak) QVQLVESGGGWVQPGGSLRLSCAASGFTFSDTAMMWVRQAPGKGREWVAAIDTGGGYTYYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTARYYCAKTYSGNYYSNYTVANYGTTGRGTLVTVSS

TP975 Kappa chain - Mouse only QVQLVESGGGLVQPGGSLRLSCAASGFTFSNYDMSWVRQAPGKGLEWVSAISSGGGSTYYVDSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCATGSGPAFRLSGGSWSPRGDGSRGQGTLVTVSS
TP1014 Lambda chain - Mouse, Rat, Rabbit (weak) QVQLVESGGGEVQAGGSLRLSCAASGRTFSRNVMGWFRQAPGKEREFLAAINWSGNSIGYRDSVKGRFTASRDNVNNTLYLRMNNLKPEDTAVYYCAARGSSDYDVAMQGHEYTYWGQGTQVTVSS

IgG1-specific TP1107 IgG1 Fc Mouse, Rat, Human (weak) QVQLVESGGGLVQPGGSLRLSCAASGFTFSDTWMNWVRQAPGKGLYWISAINPDGGNTAYADSVKGRFTISRDNAKNMVYLQMDNLRPEDTAMYYCAKGWVRLPDPDLVRGQGTQVTVSS
TP878 IgG1 Fc Mouse only QVQLVESGGGLVQAGGSLRLSCAASGSIFSINAMAWYRHRPGMQRERVAAISSGGTTSYADSVKGRFTISRDNARDTLYLQMNSLKPEDTAMYYCAACPGDYTSTICNSDGMDYWGKGTLVTVSS
TP879 IgG1 Fc Mouse, Rat QVQLVESGGGLVQPGGSLRLSCVVSGGTMNAYAIGWFRQAPGKEREAVSCITSNSKYTNYADSVKGRFTISRDNAKSTAYLQMNSLEPEDTAVYYCAAAQFFNDGHQYCPNPNYWGQGTQVTVSS
TP1104 IgG1 Fc Mouse only QVQLVESGGGLVQPGGSLRLSCTASGFTFSDSPMTWARQAPGKRLEWVSTISSDGEKIGYRDAVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCLNVVLVGREVFSNGTLVTVSS
TP881 IgG1 Fc Mouse, Rat (weak) QVQLVESGGGLVQPGGSLRLSCAAFGFTFSNYYMNWVRQAPGKGLEWISGINSGGGTTAYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTAVYYCAKGAVRLVAGALRPADWGQGTQVTVSS
TP882 IgG1 Fc Mouse, Rat QVQLVESGGGLVQPGGSLTLSCATSGFSLDYYSIGWFRQAPGKEREGVSCISSTGGSTNYVDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCAAYRRSGAYCTSGGQDYWGKGTLVTVSS
TP883 IgG1 Fc Mouse, Rat, Human (weak) QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVACITSSEGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCAAAVTYASCNEYDYSGQGTQVTVSS
TP884 IgG1 Fc Mouse, Rat (weak) QVQLVESGGGLVQPGGSLTLSCVISGFRMDIATMSWVRQAPGKGLEWVAGIINYRNFTWYSDSVKGRFTISTDTAKSEVYLQMNSLKSEDTAVYYCAHGGSDTATSRAIRGQGTQVTVSS
TP894 IgG1 Fc Mouse only QVQLVESGGGLVQPGGSLRLSCAVSGLTLDFKGIGWFRQAPGKEREGVSCINPSDSSAAYADSVKGRFTISRDNAKNTVYLQMNNLQPEDTAVYYCVAFEQKNIYCSGYSLTLSARGVMDHWGKGTLVTVSS
TP895 IgG1 Fc Mouse only QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEHEGVSCISPSGGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYSCVAVARGTWGRGGVDRTTDQAMCIPRDPSVDFWGKGTQVTVSS
TP885 IgG1 Hinge (?) Mouse, Rat QVQLVESGGGLVQAGGSVRLSCAASGFTFSSYYMTWVRQAPGKGPEWVSAINTGGDATRYAESVKGRFTISRDNAKNMLYLQMNSLKPEDTALYYCGRVPGYSDYRQGYDYRGQGTLVTVSS
TP886 IgG1 Fab (κ+λ) Mouse only QVQLVESGGGLVQPGGSLRLSCAASGFTFANYYMSWVRQAPGKGPEWVSAINTLGGKTKYADSVKGRFTISRDNAKSTLYLQMNSLKPEDTALYYCAREVTYYSGTYYLFGTKQEYDYRGQGTQVTVSS
TP887 IgG1/IgG2a Fab (κ only) Mouse only QVQLVESGGGLVQAGGSLRLSCAASGRTFSTYIMGWFRQAPGKEREFVAAITWIGGSTYYADSVKGRFTISRDYAKNTLYLQMNSLKPEDTAVYYCAAQMKFQITTMDSDYDYWGQGTQVTVSS
TP888 IgG1/IgG2a Fab (κ only) Mouse only QVQLVESGGGLVQDGGSLRLSCAASGRTFSVYAMGWFRQAPGKEREFVAAISWIGGSTYSADSVKGRFTISREYAKNTLYLQMNSLRPEDTAVYYCAAIFHREITTVPRKYDYWGQGTQVTVSS
TP889 IgG1/IgG2a Fab (κ only) Mouse only QVQLVESGGGLVQAGDSLRLSCTASGRTFSTYAMGWFRQAPGKEREFVAAISWIGGSTYYADSVKGRFTISRDYAENTLYLQMNSLKPEDTAVYYCAASTMRSIDFYVTDFGSWGQGTLVTVSS
TP890 IgG1/IgG2a Fab (κ only) Mouse only QVQLVESGGEAVQTGGSLRLSCAASGRTFSTYLMGWFRQAPGKEREFVAAISWIGGSTYYADSVKGRFTISRDYAENTLYLQMNSLKPEDTAVYYCAATFKWEVTTTPDGYDYWGQGTQVTVSS
TP1106 IgG1/IgG2a/IgG2b Fab (κ only) Mouse only QVQLVESGGGLVQPGGSLRLYCAASGRTDTTYALGWFRQPPGKERQFVASITWIGGATNYAASVKGRFTISKDLGTNTFNLQMNSLTPDDTAVYYCAAAVVRQWPNAHQGAYDYWGQGTQVTVSS

IgG2a-specific TP1129 IgG2a Fc Mouse only QVQLVESGGGLVQPGGSLRLSCVASGFTFSSAYMSWVRQAPGKGPEWVSTISTGGGIVNYADSVKGRFAISRDNAKNTLYLQMNKLKPEDTALYYCASNKGPHYHSDYFDSNLYDFWGQGTLVTVSS
TP922 IgG2a Fc Mouse only QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYYMSWVRQAPGKGLEWVSDISTDGGRTLYADSVKGRFTISRDNAKNTLYLQMNSLKPEDTALYFCAREGWEDTITEEPNDENYWGKGTLVTVSS
TP923 IgG2a Fc Mouse only QVQLVESGGGLVQPGESLTLSCAASGFTFSNVAMSWVRQAPRKGLEWVSSISSDGGRTLYAASVKGRFTVSRDNAKNTLTLQMDSLKAEDTAVYYCTEEEGGTRGQGTQVTVSS
TP926 IgG2a Hinge (?) Mouse only QVQLVESGGGLVQAGGSLRLSCAASETIFSINVMGWFRQAPGKERELVAKISSVGSTYYADPVKGRFTISRDDTKNTLSLQMNSLKPEDTAMYYCAACARCFFVPRMTSAAAYGYWGQGTQVTVSS
TP925 IgG2a/2b Fc Mouse only QVQLVESGGGLVQPGGSLRLSCAASGFTLDSYGIGWFRQAPGKARQAILCISSRGETTTYGDSVQGRFTSSRDNAKNTAYLQMNHLKPEDTAVYYCAAVRLSRGYLCRNYDMDYWGKGTQVTVSS

IgG2b-specific TP979 IgG2b Fab (κ only) Mouse, Guinea pig QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRLAPGKEREGVSCISSSGGSTNYADSVKGRFTISRNNAKNTVYLQMNSLKPEDTAVYYCALGVGDGSSCPDSAYEYAYWGQGTQVTVSS
TP984 IgG2b Fab (κ only) Mouse only QVQLVESGGGLVQGGGSLRLSCAASRSIFSINAMGWYRQALGKERELVAAISSGGSTYYVDSVKGRFTISRDHVKNTLYLQMNSLKPEDTAMYYCAALQSWGSYPHDDYWGQGTQVTVSS

IgG3-specific TP924 IgG3 Fc Mouse, Rabbit QVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMTWVRQAPGKGLEWVGDINGVGNYTYYADSVKGRFTISRDNAKNTLYLQMNNLKPEDTAVYYCAPGGAATVVGGPYDYWGQGTQVTVSS
TP929 IgG2a/3 Fc Mouse, Rabbit (weak) QVQLVESGGGLVQPGGSLRLSCAASGFTLDYYAIGWFRQAPGKEREGVSCISSSSGRTDYVDSVKGRFTISRDNARNTVYLQMNSLKPEDTAVYYCAALERATMCPRDPTWYDYWGQGTQVTVSS

Nb = Nanobody; N/A = not applicable; Fab = Fragment antigen-binding; Fc = Fragment crystallisable; κ = kappa light chain; λ = lambda light chain  
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