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Abstract1

Non-independence of characters is a real phenomenon in phylogenetic data2

matrices, even though phylogenetic reconstruction algorithms generally assume3

character independence. In morphological datasets, the problem results in4

characters that cannot be applied to certain terminal taxa, with this inapplicability5

treated as “missing data” in a popular method of character coding. However, this6

treatment is known to create spurious tree length estimates on certain topologies,7

potentially leading to erroneous results in phylogenetic searches. Here we present a8

single-character algorithm for ancestral states reconstruction in datasets that have9

been coded using reductive coding. The algorithm uses up to four traversals on a10

tree to resolve final ancestral states – which are required in full before a tree can be11

scored. The algorithm employs explicit criteria for the resolution of ambiguity in12

applicable/inapplicable dichotomies and the optimization of missing data. We13

score trees following a previously published procedure that minimizes homoplasy14

over all characters. Our analysis of published datasets shows that, compared to15

traditional methods, our new method identifies different trees as “optimal”; as such,16

correcting for inapplicable data may significantly alter the outcome of tree searches.17

(Keywords: cladistic analysis, inapplicable data, character independence, phylogenetic18

tree search, character optimization)19

2

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209775doi: bioRxiv preprint 

https://doi.org/10.1101/209775
http://creativecommons.org/licenses/by-nc/4.0/


Introduction20

Morphological characters are an essential source of data in phylogenetic studies. Even21

though they have been outpaced in their use by molecular sequence data, they remain22

indispensable for a range of research programmes that depend on knowledge of extinct23

or ancestral phenotypic conditions (e.g. palaeontology, molecular clock calibrations,24

comparative developmental biology). Despite advances in the use of probabilistic25

models for analysing morphological data (e.g. Lewis, 2001; Wright et al., 2016), all26

transformation-based methods (e.g. parsimony, likelihood) are subject to the same27

persistent problem in morphological and phenotypic data: the logical inapplicability of28

characters.29

Logical inapplicability occurs when a dataset contains characters that can only30

have a meaningful value in a subset the taxa under investigation. This usually arises31

when one or more characters are ontologically dependant on a neomorphic32

(presence/absence) character, here termed the “principal character”. The problems33

associated with coding these character relationships have been discussed in detail since34

the advent of desktop phylogenetic computer programs (Farris, 1988; Platnick et al.,35

1991; Maddison, 1993; Wilkinson, 1995; Pleijel, 1995; Strong and Lipscomb, 1999;36

Hawkins, 2000; Forey and Kitching, 2000; Fitzhugh, 2006; Brazeau, 2011) and reflect the37

mathematical consequences of several popular coding procedures (reviewed by38

Brazeau, 2011). As it stands, no existing software can accommodate the computational39

issues that arise from logical inapplicability.40
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For situations in which a the state of a character depends on the presence or41

absence of another character, there is widespread agreement that the best practice is to42

code inapplicable taxa using a token treated as “missing data”. The token “-” is often43

used to distinguish cases in which a character is inapplicable (e.g. tail colour, in a taxon44

that lacks a tail) from those in which a character’s state is uncertain (typically denoted45

“?” – e.g. tail colour, where the colour of the tail is unknown). For the tail example, this46

looks like:47

• 1. Tail: absent (0); present (1)48

• 2. Tail colour: blue (0); red (1); inapplicable (? or -)49

This coding style, termed reductive or contingent coding (Strong and Lipscomb,50

1999; Forey and Kitching, 2000, hereafter “reductive coding”), treats inapplicable state51

values as missing data – as though the characteristic in question is not preserved in52

known specimens. This approach is considered unlikely to lead to implicit (and53

unintended) character weighting, but does entail spurious calculations (Maddison,54

1993): such a coding scheme will allow the reconstruction of transformations at nodes55

where the inferred state is logically impossible (e.g. a change in tail colour in an56

ancestor with no tail). These logically impossible state reconstructions and their57

concominant transformations have been informally referred to as “pseudo-parsimony”,58

but could be generalized to “pseudo-optimality”, since they would occur in59

probabilistic calculations as well. In spite of the problem of logically impossible state60

reconstructions, reductive coding is still widely used and defended (Strong and61
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Lipscomb 1999; Hawkins 2000; Brazeau 2011; but see also arguments from Fitzhugh62

2006 and Vogt 2017).63

Maddison (1993) concluded that addressing this problem would require64

modification of phylogenetic software; 25 years later, there are still few signs of65

progress on this problem. Some recent and important theoretical advances were made66

by De Laet (2005, 2015), but De Laet does not describe a single-character algorithm; nor67

does he provide details of how his method might handle ambiguity, polymorphism,68

missing data, or multistate characters.69

In this paper we detail modifications required to enable the Fitch algorithm to70

process morphological characters that exhibit inapplicability. We consider how trees71

should be evaluated for optimality, consistent with the method described by De Laet72

(2015). Furthermore, we show that the effect of “pseudo-optimal” reconstructions can73

lead to both significant over- and under-estimates of parsimony scores during tree74

searches. Our algorithm and its implementation allow a special token to indicate75

inapplicability, meaning that existing datasets that use the gap token to denote76

inapplicability can be treated with little modification. However, we show that77

investigators may wish to re-code some characters in ways that can avoid the78

inapplicable token altogether.79

Theoretical considerations of ancestral state80

reconstructions and tree scores81

We wish to have an algorithm that: (i), incorporates all phylogenetically relevant82
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information; (ii), generates logically and internally consistent nodal state sets, including83

the reconstruction of an inapplicable “state” where a character does not logically apply;84

and (iii), calculates exact optimality scores that neither over- nor under-penalize any85

given tree. In order to reconstruct ancestral states in an ontologically dependent86

character, it is first necessary optimize the presence or absence of the principal87

character, which dictates the nodes at which the ontologically dependent character is88

applicable. This opens up two questions: how do we resolve ambiguity in the principal89

character, and how do we calculate an optimality metric for the tree?90

Ancestral state reconstructions91

It is not unusual for a character to have two mutually exclusive nodal reconstruction92

sets that are equally parsimonious. Particularly relevant here is the case of a93

presence/absence character whose distribution can be accommodated by one of two94

equally parsimonious explanations: the gain and loss of the character (accelerated95

transition / AccTran), or two parallel gains (delayed transition / DelTran).96

By minimizing the number of independent origins in the neomorphic character,97

the AccTran optimization maximises the homology represented by that character. This98

is preferable – on the principle of maximising homology and minimising homoplasy99

(De Laet, 2005) – to the DelTran optimization (de Pinna, 1991), in which each100

independent gain of the character represents an additional instance of homoplasy.101

Even though the neomorphic character makes an equal contribution to tree102

length under either reconstruction, the contribution of any ontologically dependent103
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characters may depend on the optimization chosen. By way of example, an AccTran104

optimization that reconstructs the gain and loss of a red tail implies that all tails are105

homologous; there is therefore no homoplasy in the ontologically dependent character106

“tail colour”. In contrast, a DelTran optimization that invokes two parallel gains of a107

red tail on the same tree may be equally parsimonious with respect to the principal108

character, but would imply two independent origins of red colouration, one of which109

represents an instance of homoplasy.110

A satisfactory method must therefore distinguish the presence of a character111

from its absence: something that is impossible within the Fitch algorithm, which is112

blind to whether tokens denote presence, absence, or some other property, and113

therefore cannot differentiate gain/loss from parallel gain. Thankfully, the presence or114

absence of a principal character is implicit in the distinction between applicable and115

inapplicable states in an ontologically dependent character. If a dataset is coded116

accurately, then the applicable/inapplicable distinction will exactly mirror the117

presence/absence distribution of its principal character. That means that knowledge of118

presence/absence can be built into the handling of ontologically dependent characters,119

and that the algorithm need not be explicitly supplied with a prior specification of the120

principal character.121

Scoring trees122

For the purpose of phylogenetic searches, there must be some function for evaluating123

the amount of homoplasy implied by the optimal character reconstructions on a124
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particular tree topology. When all characters are applicable to all terminal taxa, the125

amount of homoplasy is simply equal to the number of transformations minus the126

theoretical minimum number of transformations over all characters. However, a127

transformation between applicable and inapplicable states has no clear meaning with128

respect to length counts (i.e. it is not an independent transformational event).129

The problem is most clearly illustrated in the context of a principal character130

with a number of ontologically dependent transformational characters (Fig. 1). If each131

transformation from an applicable to an inapplicable state contributes to tree length,132

the loss of the principal character will be severely penalised, even though it can be133

explained as a single evolutionary event. In contrast, if transformations between134

applicable and inapplicable states contribute nothing to tree length, then losses and135

gains of the principal character are inadequately penalised, effectively resulting in a136

penalty for character congruence, and thus a penalty for homology.137

This illustrates why the amount of homoplasy within a tree cannot simply be138

expressed in terms of the number of transformational events when ontologically139

dependent characters are present (De Laet, 2005, 2015). To once again borrow140

Maddison’s (1993) example, a single transformation from “tail absent” to “tail present,141

red” does not represent an instance of homoplasy for the ontologically dependant142

character “tail colour”, but if this same transformation happens twice, homoplasy in143

tail colour has occurred: the tree should be penalized once for the independent origin144

of the second tail, and once more because the second tail, when it appeared, happened145

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209775doi: bioRxiv preprint 

https://doi.org/10.1101/209775
http://creativecommons.org/licenses/by-nc/4.0/


----------
----------
----------
----------
----------

-

Principal character:

Present

Absent

Ontologically dependent 
transformational characters:

State 1

State 2

Inapplicable

----------
----------
----------
----------
----------

b

a

Figure 1: Effect of counting method on tree preference. If transformations between losses

and gains of the principal character are inadequately penalised, then trees with multiple

gains of the principal character (a) will be favoured; if transformations between appli-

cable and inapplicable states are penalized, then trees in which the principal character

evolves exactly once (b) will be favoured.
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to exhibit the same state (red) as the first (Fig. 2). However, the loss of a tail implies the146

simultaneous loss of colour and other similar attributes, which cannot similarly be147

explained as transformations.148

A satisfactory handling of inapplicable data in morphology must satisfy at least149

two criteria: (i), non-redundancy; and (ii), maximizing the explanatory value of the data150

(De Laet, 2005). This is not possible with currently implemented algorithms. De Laet151

(2005) proposes a solution in which the penalty on the tree is not simply the sum of152

steps, but also the number of regions (or “subcharacters”) defined by a character.153

Regions are defined as subtrees in which a character is logically applicable (i.e.154

applicable character regions). De Laet proposes that the optimal tree is that which155

minimizes the sum of the number of regions and the number of transformations156

between states.157

Throughout this manuscript we therefore make a clear distinction between tree158

length and tree score, either of which might be chosen as an optimality criterion. Tree159

length designates the number of transformational events (steps) implied by a topology,160

whereas tree score designates an optimisation value that combines some function of the161

tree length with other non-transformational events, such as the sum of the number of162

regions.163

Fitch parsimony with partially applicable characters164

The algorithm described below is a single-character (sensu Ronquist, 1998) method in165

which “inapplicability” is reserved as a special token (usually denoted with the symbol166
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Subsequent passes (b)

0011---0

(-)

(-)

(1)

(0,1)

(0)

(-)

(0)

0011---0

(-)

(-,1)

(1)

(0,1)

(0)

(-)

(-,0)

First downpass (a)

*

**

Figure 2: Scoring of a simple tree with inapplicable data. A principal character is present

in two regions of the tree (black lines). A transformation from state 1 to state 0 adds one

step to tree length. A second occurrence of state 0 represents a case of homoplasy, and

should also contribute to tree score. In our algorithm, the first downpass (a) generates

possible reconstructions of each node; final state reconstructions are generated in the

first uppass and not modified by further passes. The second downpass increments tree

length by two, reflecting one step (at *) and one additional region (at **).
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“-”). At its core, the algorithm resembles the Fitch algorithm (Fitch, 1971), with167

“inapplicability” being treated as an additional state. The first two passes of the168

algorithm use the distribution of applicable and inapplicable tokens to infer whether169

the associated principal character can be optimally reconstructed as present at each170

node. In nodes where the principal character can be reconstructed as present, normal171

Fitch rules are used to identify and count transformations. Transformations are not172

reconstructed at nodes where the principal character was necessarily absent.173

To count the number of applicable regions, a flag is stored at each node which174

records whether or not any descendants store applicable values. This allows the175

number of regions to be incremented when moving, on the second downpass or on the176

second uppass, from an inapplicable region of the tree to an applicable region. Up to177

four passes are therefore required to complete ancestral state reconstructions for a178

given node (Fig. 3). An interactive visualisation of the four passes is available via the179

Inapp R package at https://github.com/TGuillerme/Inapp.180

First postorder traversal (downpass) – Figs 2a, 3a181

Traverse the internal nodes of the tree in postorder. At each node:182

1. If there is any token in common between both descendants, go to 2; else go to 3.183

2. If the token in common is only the inapplicable token, and both descendants have184

an applicable token, set the node’s state to be the union of the descendants’ states;185

12

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 26, 2017. ; https://doi.org/10.1101/209775doi: bioRxiv preprint 

https://github.com/TGuillerme/Inapp
https://doi.org/10.1101/209775
http://creativecommons.org/licenses/by-nc/4.0/


32--?1-0

(1,2,3)

(2,3)

(2,3)

(2,3)

(2,3)

(1,2,3)

(0,1,2,3)

32--?1-0

(0,1,2,3)

(0,1,2,3)

(0,1,2,3)

(0,1,2,3)

(0,1,2,3)

(0,1,2,3)

(0,1,2,3)

32--?1-0

(-,1)

(-)

(-)

(-,2,3)

(2,3)

(-)

(-,0)

32--?1-0

(1)

(0,1,2,3)

(2,3)

(2,3)

(2,3)

(1)

(0)

First downpass (a)

Second downpass (c)

First uppass (b)

Second downpass (d)

Figure 3: Illustration of the use of four passes for correctly estimating the ancestral states

with inapplicable data in this phylogeny. After the second pass, the ancestral state sets

are incorrect at six of the seven nodes.
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else set the node’s state to be the token in common between both descendants.186

Then go to 4.187

3. If both descendants have an applicable token, set the node’s state to be the union188

of both descendants’ states without the inapplicable token; else set the node’s189

state to be the union of its descendants’ states. Then go to 4.190

4. Visit the next node in postorder. Once all nodes have been visited, conduct the first191

uppass.192

First preorder traversal (uppass) – Figs 2b, 3b193

Traverse the tree in preorder. At each node:194

1. If the node has the inapplicable token, go to 2; else leave the node’s state195

unchanged and go to 8.196

2. If the node also has an applicable token, go to 3; else go to 4.197

3. If the node’s ancestor has the inapplicable token, set the node’s state to be the198

inapplicable token only and go to 8; else remove the inapplicable token from the199

current node’s state. Then go to 8.200

4. If the node’s ancestor has the inapplicable token, set the node’s state to be the201

inapplicable token only and go to 8; else go to 5.202
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5. If any of the descendants have an applicable token, set the node’s state to be the203

union of the applicable states of its descendants; else set the node’s state to be the204

inapplicable token only. Then go to 8.205

6. If the unvisited tip includes both inapplicable and applicable tokens, go to 7; else206

go to 8207

7. If the current node has only the inapplicable token, set the tip’s state to the208

inapplicable token only; else remove the inapplicable token from the tip’s state.209

Then go to 8.210

8. If one of the node’s descendants is an unvisited tip, go to 6; else visit the next211

node in preorder. Once all nodes and tips have been visited, initialise the tracker.212

Initialise tracker – Figs. 2b, 3c213

Visit each tip in turn. At each tip:214

1. If the tip’s state contains the inapplicable token, set its tracker to “off” and go to 4;215

else go to 2.216

2. If the tip’s state does not contain the inapplicable token, set its tracker to “on” and217

go to 4; else go to 3.218

3. If the ancestor’s state contains an inapplicable token, set the tip’s tracker to “off”;219

else set the tip’s tracker to “on”. Then go to 4.220

15
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4. Visit the next tip. Once all tips have been visited, conduct the second downpass.221

Second postorder traversal (downpass) – Figs. 2b, 3c222

Traverse the tree in postorder. At each node:223

1. If the tracker of either descendant is “on”, set this node’s tracker to “on”; else set224

it to “off”. Then, go to 2225

2. If the node had an applicable token in the first uppass, go to 3; else leave the226

node’s state unchanged and go to 8.227

3. If there is any token in common between both descendants, go to 4; else go to 5.228

4. If the tokens in common are applicable, set the node’s state to be the tokens held229

in common, without the inapplicable token; else set the node’s state to be the230

inapplicable token. Then go to 8.231

5. Set the node’s state to be the union of the states of both descendants (if present)232

without the inapplicable token, and go to 6.233

6. If both descendants have an applicable token, increment the tree score (step234

increment) and go to 8; else go to 7.235

7. If both of the node’s descendants’ trackers are “on”, increment the tree score236

(applicable region increment) and go to 8; else just go to 8.237

16
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8. Visit the next node in postorder. Once all nodes have been visited, conduct the238

second uppass.239

Second preorder traversal (uppass) – Figs. 2b, 3d240

Traverse the tree in preorder. At each node:241

1. If the node has any applicable token, go to 2; else go to 9.242

2. If the node’s ancestor has any applicable token, go to 3; else go to 10.243

3. If the node’s state is the same as its ancestor’s, go to 10; else go to 4.244

4. If there is any token in common between the node’s descendants, go to 5; else go245

to 6.246

5. Add to the current node’s state any token in common between its ancestor and its247

descendants and go to 10.248

6. If the states of the node’s descendants both contain the inapplicable token, go to 7;249

else go to 8.250

7. If there is any token in common between either of the node’s descendants and its251

ancestor, set the node’s state to be its ancestor’s state; else set the current node’s252

state to be all applicable tokens that are common to both its descendants and253

ancestor. Then go to 10.254

8. Add to the node’s state the tokens of its ancestor. Then go to 10.255

17
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9. If both of the node’s descendants’ trackers are “on”, increment the tree score256

(applicable region increment) and go to 8; else go to 10.257

10. Visit the next node in preorder. Once all nodes have been visited, calculate the tree258

score.259

Calculate tree score260

The contribution of the given character to the total score of the tree is given by:261

Contribution to tree score = number of state changes + number of additional regions

(1)

State changes are recorded in the second downpass (at point 6); the number of262

applicable regions is calculated in both the second downpass (at point 7) and the263

second uppass (point 9).264

Character coding with inapplicable-aware265

reconstruction algorithms266

Two categories of ontologically dependent character267

An upshot of recognizing maximized homology and minimized homoplasy as the268

objective of maximum parsimony is that not all cases of ontological dependency of269

characters (sensu Vogt, 2017) require reductive coding. Two coding strategies may be270
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applied, depending on the information implied by the states of an ontologically271

dependent character. That is, we may distinguish between subcharacters that are272

transformational (as in the case of tail colour) and neomorphic (following Sereno, 2007).273

Transformational character statements describe a variable property of a principal274

character, with no biological reason to anticipate any particular ancestral state. The case275

of tail colour, as discussed above, is transformational; with reductive coding, it can be276

correctly handled by our algorithm. If a red tail appears twice on a particular tree277

topology, then the fact that it is red in both instances represents an instance of278

homoplasy: an independent innovation of the colour red. Using the inapplicable token279

to denote tail colour in non-tail-bearing taxa (Table 1) causes our algorithm to recognize280

the second innovation of a red colouration as an instance of homoplasy that should281

contribute to the tree’s length.282

Neomorphic character statements are presence/absence characters that depend283

on the presence of the principal character. An example would be the presence of284

eyespots on a tail. Such characters may be scored as binary characters without the use285

of the inapplicable token, as long as there is still a separate character for286

presence/absence of tail. Given the presence of a tail, a researcher might conclude that287

the absence of eyespots, or equivalent features, is unsurprising. Two separate instances288

of a tail without eyespots would then be said to exhibit a homoplasy with respect to tail289

presence, but not with respect to the absence of eyepsots. Unlike the case of tail colour290

(a tail must have some colour when it appears), the presence of an eyespot is not291
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Tail 0 0 0 1 1 1 1 1 (0, absent; 1, present)

Tail colour - - - 0 0 1 2 ? (0, red; 1, blue; 2, green; -, inapplicable)

Tail eyespot 0 0 0 1 0 1 0 ? (0, absent; 1, present)

Table 1: Coding inapplicable data in ontologically dependent characters. “Tail” is a prin-

cipal character with two ontologically dependent characters, “Tail colour”, a transforma-

tional character that should be coded as “-” when a tail is absent, and “Tail eyespot”, a

neomorphic character that should be coded as “0” when a tail is absent.

necessarily expected. The absence is an uninformative value, and therefore would be292

more difficult to describe as homoplasious. If, on the other hand, eyespots are present293

on the two occasions that a tail appears, then the second occurrence of eyespots does294

represent an instance of homoplasy. Likewise, a secondary loss of eyespots elsewhere295

on the tree would represent an instance of convergence and should therefore contribute296

to tree length. For this reason, simple binary presence/absence coding may be297

employed, where an absence value would cover both observed absence and absence298

due to the absence of the principal character (Table 1). Even when applying our299

algorithm, inapplicable tokens should not be employed in such instances, as they300

would incorrectly penalize trees in which a tail (lacking eyespots) originated multiple301

times. If additive characters are decomposed into a series of neomorphic characters,302

then the original and decomposed characters are mathematically equivalent under this303

coding approach.304
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“Parsimony-uninformative” characters inform parsimony305

A consequence of our approach is that the distribution of inapplicable tokens conveys306

grouping information. A topology that implies that red tail colouration evolved once307

has a shorter length than one on which red tail colouration evolved twice, even if no308

other colour of tail is observed. This seemingly counterintuitive result arises because309

the algorithm prefers trees that attribute similarities to common ancestry rather than to310

chance. The effect of including ontologically dependent characters that would not be311

parsimony-informative under the standard Fitch algorithm is to up-weight the312

corresponding principal character. Care must be taken, therefore, that each313

ontologically dependent character truly reflects a biologically significant similarity, for a314

principal character might be misleadingly upweighted if trivial subordinate properties315

(e.g. “number of DNA bases in tail”) are included in a matrix.316

Missing but applicable character states317

With an implementation of the Fitch algorithm that does not consider the inapplicable318

token as equivalent to missing data, extra care should be employed when coding319

missing data. Consider an example dataset that includes fossil and extant species.320

Following the character “Tail colour” described above (Table 1), one could code a fossil321

taxon where the tail is entirely missing due to incomplete preservation. In this case, the322

“Tail colour” should be coded as “?” (it is uncertain whether the tail was red, blue or323

green or whether the tail was present at all). If we now consider another fossil taxon324
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were the tail is clearly preserved but the colour is not observable, the character state325

ambiguity could be coded in one of three ways:326

• If, as is the usual case, there is no a priori information indicating whether or not a327

tail is homologous with those of other taxa, tail colour should be coded as328

uncertain (“?”, treated by the algorithm as (-012)).329

• If the tail of the fossil taxon is known to be homologous with the tails of other330

taxa, then an optimal character reconstruction will assert that its colour is one of331

the colours that has been observed in other taxa (the ambiguity should be coded332

as “red, blue or green” (012)).333

• If the tail of the fossil taxon is known not to be homologous with the tails of other334

taxa, then an optimal character reconstruction will assert that its colour is different335

from any colour that has been observed, because a second innovation of a336

colouration observed elsewhere on the tree would represent an instance of337

homoplasy. In this case, tail colour should be coded as inapplicable (-), the338

character’s definition being effectively “colour of tail of homologous type”.339

Comparing approaches to phylogenetic reconstruction340

341

In order to evaluate how this approach impacts phylogenetic results, we analyzed 30342

discrete morphological matrices under three approaches: (i), reductively coded datasets343
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treated under traditional Fitch parsimony, with inapplicable treated as missing (here344

termed the “missing” approach); (ii), the “extra state” approach, using compound345

coding with inapplicability as a separate state; and (iii), the “inapplicable” approach,346

which applies our new algorithm.347

Before beginning our analysis, every inapplicable token in each neomorphic348

character was replaced with the token corresponding to the presumed non-derived349

condition (typically “absent”). Each matrix was then subjected to phylogenetic tree350

search: the “missing” and “extra state” approaches used TNT, employing the parsimony351

ratchet, sectorial search and tree drifting algorithms (Goloboff, 1999; Nixon, 1999;352

Goloboff and Catalano, 2016); the inapplicable approach used R (R Core Team, 2017) for353

tree search, using the parsimony ratchet as deployed in our new package inapplicable354

(see Implementation section below). Although this latter search approach is inefficient,355

it nevertheless converges on an optimal tree length within minutes (<50 tips) to hours356

(<80 tips). Whilst it is difficult to guarantee that every optimal tree will be identified,357

we ensured a wide sampling of tree space by conducting 100 independent tree searches358

in TNT, and by sampling shortest trees in R until the shortest length had been found by359

250 ratchet iterations.360

In order to establish whether the three methods recovered different sets of361

optimal trees, the number of trees that occurred in the optimal sets of one, two, or all362

three approaches was tallied. In addition, a strict consensus tree was calculated for all363

trees in each optimal set, the number of bipartitions present in each set serving as a364
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proxy for the disparity of trees that is optimal under each approach. Finally, each set of365

optimal trees was plotted in a two-dimensional space (Hillis et al., 2005) by366

decomposing a matrix of pairwise quartet distances (Estabrook et al., 1985), calculated367

using the tqDist R library (Sand et al., 2014), into two dimensions by minimising the368

Kruskal-1 stress function (Borg and Groenen, 2005), following Hillis et al. (2005).369

Results370

In most cases, the three different methods identified different sets of optimal trees.371

Indeed, only in one of the thirty examined datasets were the optimal trees recovered by372

each method also optimal under the other two (Fig. 4a). In ten datasets (Fig. 4b), a373

subset of trees are optimal under all methods, but other trees are optimal under one374

method and a few steps longer under another. In nine datasets (Fig. 4c), the forests of375

trees that are optimal under two methods (here, “missing” and “extra state”) partially376

overlap, but in one method (here, “inapplicable”), no optimal trees were found that are377

also optimal under either other method. In the final ten datasets (Fig. 4d), each method378

generates a distinct set of optimal trees. Summing across all datasets, only 4% of trees379

that were optimal under one method were also optimal under the other two (Fig. 5a).380

How topologically different were the trees that each method described as381

optimal? One qualitative way to explore the difference between multiple forests of trees382

is to generate a two-dimensional treespace from the distances between pairs of trees.383

This approach demonstrates that it is difficult to predict which methods will identify384
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Figure 4: Different methods recover different optimal tree sets. Each histogram details

the distribution of tree scores when a each of the optimal trees recovered under method

P is scored using method Q. Scores are presented relative to the lowest score recovered

by method Q for each dataset. Histograms for all examined datasets are presented in

the supplementary information.
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Figure 5: Venn diagrams depicting (a), proportions of optimal trees that are optimal

under one, two or three methods; (b), proportion of nodes present in every optimal tree

recovered under one, two or three methods. Results are summed across all datasets;

figures for individual datasets are available in the supplementary information.
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Figure 6: Distribution of optimal trees in MDS treespace for each dataset. Shaded re-

gions correspond to convex hulls surrounding all optimal trees recovered using a given

approach. No method is consistently more precise or more similar to any other method.
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the most similar sets of optimal trees, and that the regions of treespace identified as385

optimal by the different methods may be very different or very similar (Fig. 6).386

An alternative way to explore how much trees in the three optimal sets have in387

common is to count the number of nodes held in common between trees within a set –388

or, in other words, the number of nodes present on the strict consensus of all trees in389

that set. On this approach, averaged across all datasets, 76% of the nodes that are390

present in every tree that is optimal under the “inapplicable” approach are also present391

in every tree that is optimal under the “missing” approach, and 82% are present in392

every tree that is optimal under the extra-state approach; only 70% are present in all393

trees recovered by all methods (Fig. 5b).394

Even though, in any one dataset, the number of trees identified as optimal can395

vary considerably between the three methods, we were unable to identify any396

systematic trend in the disparity of optimal trees. Neither the number of distinct trees397

in the optimal tree set, the resolution of the strict consensus tree, nor the area of398

treespace occupied by the trees showed any systematic variation.399

Implications400

The accuracy of a method measures whether the method will reconstruct the “true” tree401

from a given dataset. As the “true” evolutionary tree is unknown, attempts to measure402

the accuracy of phylogenetic methods rely on data simulated from a predetermined tree403

topology. In the absence of a robust and testable model that can realistically simulate404

inapplicable morphological data, it is not possible to objectively compare the accuracy405
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of different approaches. This said, the fact that the three approaches each identify406

different trees as optimal indicates that the methods differ in their accuracy. Because407

the “inapplicable” approach does not incorporate the errors that accompany the other408

approaches, we suggest that its results are the most likely to be phylogenetically409

accurate. This is not the same as claiming that this method improves the statistical410

consistency of parsimony, as it makes the same basic probabilstic assumptions. Rather,411

it eliminates a deficiency of parsimony methods as they are applied in practice.412

The precision of an approach is more readily quantified; it represents a measure413

of the number or variety of trees that have an equal length under a particular counting414

regime. Our inapplicable method proves to be more precise than the other approaches415

as often as it is less precise, meaning that any improvement or loss of accuracy416

associated with the method comes with no effect on the precision or resolution of417

results.418

Conclusion419

We have presented a single-character modified Fitch algorithm for ancestral state420

reconstructions that is aware of a special “inapplicable” token. This algorithm correctly421

reconstructs ancestral states by acknowledging that applicable state distributions rely422

on the prior resolution of applicable/inapplicable dichotomies. Because applicable state423

assignments depend on the resolution of the outcome of applicable/inapplicable424

relations, up to four passes may be required to correctly calculate tree length.425
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Furthermore, missing data need to be updated at the tips – initially as either applicable426

or inapplicable – in order to complete ancestral state sequences. Our tree scoring427

procedure follows De Laet (2015) in penalizing increasing amounts of homoplasy428

without redundant penalties. Up to three traversals are necessary in order to count the429

number of transformations on a tree, which can be achieved during the second430

downpass. However, a final estimate of the number of regions on the tree is counted on431

the fourth traversal (final uppass). The method, unsurprisingly, takes additional time,432

though this is expected to be mostly in proportion to the number of characters having433

inapplicable tokens. Nevertheless, some economies are possible, because only434

characters with three or more inapplicable tokens need to be treated with this435

algorithm. The method provides a means of evaluating existing datasets with minimal436

modification, and without a need to specify explicit relationships between characters437

(because presence/absence information is already implicit in the438

applicable/inapplicable distinction). Preliminary results show that analyses with large439

amounts of inapplicable data are likely to be considerably affected by inapplicable data.440

In some cases, the set of trees that are optimal under our new algorithm does not441

overlap with the optimal sets obtained by existing approaches, suggesting that our442

method allows a gain in accuracy with no corresponding loss of precision.443

Implementations444

The algorithm described throughout this paper is implemented at different levels in445

different projects. The main C implementation of the algorithm and associated tools is446
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available at http://www.morphyproject.org/. An R implementation based on the447

former is available in the inapplicable package at448

https://github.com/ms609/inapplicable. Finally, a shiny (R) visualisation of the449

algorithm is available via the Inapp package at450

https://github.com/TGuillerme/Inapp. Permanent archives of the above451

implementations are available on FigShare,452

http://dx.doi.org/10.6084/m9.figshare.c.3911821453
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