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Abstract

RNA-seq data are challenging existing omics data analytics for its volume and com-

plexity. Although quite a few computational models were proposed from different

standing points to conduct differential expression (D.E.) analysis, almost all these

methods do not provide a rigorous feature selection for high-dimensional RNA-seq

count data. Instead, most or even all genes are invited into differential calls no matter

they have real contributions to data variations or not. Thus, it would inevitably affect

the robustness of D.E. analysis and lead to the increase of false positive ratios.

In this study, we presented a novel feature selection method: nonnegative singular

value approximation (NSVA) to enhance RNA-seq differential expression analysis by

taking advantage of RNA-seq count data’s non-negativity. As a variance-based fea-

ture selection method, it selects genes according to its contribution to the first singular

value direction of input data in a data-driven approach. It demonstrates robustness to

depth bias and gene length bias in feature selection in comparison with its five peer

methods. Combining with state-of-the-art RNA-seq differential expression analysis,

it contributes to enhancing differential expression analysis by lowering false discov-

ery rates caused by the biases. Furthermore, we demonstrated the effectiveness of the

proposed feature selection by proposing a data-driven differential expression analysis:

NSVA-seq, besides conducting network marker discovery.
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1. Introduction

RNA-seq provides a revolutionary way to unveil transcription by using ultra-high-

throughput sequencing technologies to generate hundreds of million short reads from

RNA molecules [1, 2, 3]. As raw RNA-seq data, the short reads usually ask several to

even hundreds of Gigabytes storage. The short reads are further assembled or aligned5

against a reference genome (e.g. human genome) to produce a transcriptome by using

assembly or alignment tools such as Bowtie, SOAPdenovo-Trans, SOAP3, or HTSeq

[4, 5, 6]. As a genome level transcription map, the transcriptome consist of the expres-

sion levels of all genes in transcription and each gene’s expression is represented as the

number of short reads mapped to the gene in the alignment or assembly [7]. In fact, the10

terminology gene refers to more general biological features in transcription such as a

gene, exon, or transcript [8, 9].

The transcription map can be represented by a nonnegative integer read count ma-

trix Xm×n ≥ 0 by collecting all read counts mapped to each gene, where each row

and column represent a gene and sample respectively. According to different sources,15

a sample can be classified as a biological or technical replicate. The former is an alter-

native sequencing of a same biological sample, and the latter is the direct sequencing

of an independent biological sample. For the convenience of description, we also use

RNA-seq data to refer to the read count matrix X of the original RNA-seq data in this

study.20

RNA-seq data are actually biased data subject to sequencing depth and gene length

by the nature of RNA-seq sequencing even after normalization [10, 11]. The sequenc-

ing depth bias means that those genes from a sample with a high sequencing depth,

usually have higher expression levels (high counts) than the same genes from a sample

with normal or low sequencing depth; The gene length bias refers to that long genes25

have more counts in RNA-sequencing than short genes. The biases bring challenges in

normalization, differential expression (D.E.) analysis, and feature selection [10, 11].

However, they share the same characteristic with traditional omics data (e.g. mi-

croarray). That is, they both are high-dimensional data, i.e. the number of variables

(genes) is generally much greater than the number of samples (observations) in a RNA-30
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seq dataset X ∈ Zn×p, i.e. n � p. Unlike the traditional omics data, RNA-seq data

are generally modeled by a poisson or negative binomial (NB) distribution instead of a

normal or log-normal distribution [7, 8, 10].

An essential issue in RNA-seq analysis is to answer the query: ’given a read count

matrix, how to robustly determine whether the observed difference for a gene across35

two or more conditions is statistically significant? ’. Quite a few differential expression

(D.E.) analysis methods were proposed to answer it from different perspectives [8, 9,

11, 12, 13, 14, 15].

They can be categorized as either parametric or non-parametric methods according

to whether they rely on statistical parameter estimation modeling approaches or not in40

D.E. analysis. The former assumes that RNA-seq data are subject to a well defined dis-

tribution and estimates corresponding parameters for the distribution before conducting

hypothesis tests. For example, DESeq and edgeR methods both model RNA-seq data

by the negative binomial (NB) distribution and estimate genes’ mean µ and variance

σ2 parameters [8, 13]; The latter does not assume data are subject to any distribution.45

Instead, its differential expression call can be based on an empirical distribution of

some statistics derived from the input data. For example, NOISeq finds differentially

expressed (DE) genes by relying on two derived statistics: absolute-expression and

log-fold change between conditions [11].

However, all the D.E. analysis methods usually invite almost all genes into D.E.50

analysis without conducting a rigorous feature selection for high-dimensional RNA-

seq data. Although they usually employ some simple filtering techniques to exclude

those genes with zero or low counts before normalization, such a low-count filtering is

by no means a desirable feature selection for high-dimensional data. Especially, such

a count-based filtering may have a risk to affect the following D.E. analysis by feeding55

it with many high-count genes due to sequencing depth and gene length biases. As a

result, it not only would increase false positives in the D.E. analysis, but also easily

lead to a misleading result that those genes are differentially expressed simply because

they have higher coverages or long gene length.

As typical high-dimensional data, RNA-seq data call for a rigorous feature selection60

algorithm, which should be robust to the depth and gene-length biases, to select poten-
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tially D.E. genes for the sake of D.E. analysis, rather than its number of read counts

only. Such a feature selection should overcome the weakness of the naive count-based

filtering by removing redundant and noise-contained genes, instead of only low-count

genes.65

In fact, those high-count genes with very low variance values can be viewed as

the redundant genes because they may not have real contributions to data variations.

Furthermore, some low count genes with several exceptional high count peaks on few

replicates in a same condition can be viewed as noise-contained genes, because the

peaks could be generated from depth-based oversampling. The genes will be falsely70

identified as D.E. genes in differential calls, even if the observed differences between

conditions are actually due to the artifacts of over-sequencing or library preparations

instead of real reactions to a treatment.

On the other hand, a rigorous feature selection will strengthen RNA-seq normaliza-

tion efforts to alleviate the effects of the depth and gene length bias factors by removing75

those genes not totally ’corrected’ in normalization, in addition to lowering the com-

puting complexities in the following D.E. analysis. As such, there needs a rigorous

feature selection to glean meaningful genes to achieve a more targeted and accurate

differential expression analysis.

In this study, we present a novel feature selection method: nonnegative singular80

value approximation (NSVA) to enhance RNA-seq analysis by taking advantages of

RNA-seq data’s built-in non-negativity. The non-negativity is an important character-

istic of RNA-seq data, but it is ignored in most feature selection methods. Nonnegatvity

based analysis can contribute to enhancing data locality and capturing latent data be-

havior [20]. As a data driven feature selection, NSVA does not assume any priori85

distribution for RNA-seq data; As a variance-based feature selection, it selects genes

according to its contribution to the first singular value direction of input data.

We compare the proposed feature selection method with its five peers in state-of-

the-art RNA-seq differential expression analysis. It demonstrates robustness to depth

bias and gene length bias in feature selection and contributes to more efficient D.E.90

analysis. To further explore NSVA’s effectiveness, we propose a data-driven differen-

tial expression analysis: NSVA-seq that is a novel nonparametric D.E. analysis without

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 27, 2017. ; https://doi.org/10.1101/209841doi: bioRxiv preprint 

https://doi.org/10.1101/209841


M-D odd ratio comparisons[11]. More importantly, it overcomes the weakness of ex-

isting D.E. models for input data with a small number of samples, and demonstrates

a better sensitivity in D.E. analysis than its peers for the datasets with a few samples95

[8]. Finally, we demonstrate that the proposed feature selection method can also lead

to meaningful network marker discovery for complex diseases.

2. Methods

Various feature selection algorithms are widely available for traditional omics data

via different statistical tests [16]. However, most of these statistical tests based methods100

(e.g. t-test) can not apply to RNA-seq data directly, because they usually assume popu-

lation data are normally distributed [17]. Some nonparametric statistical tests proposed

for microarray data are available, but they are not widely employed in RNA-seq anal-

ysis probably because of their different generation mechanisms or differential analysis

approaches [7, 12, 18].105

On the other hand, traditional transform-based feature selection methods such as

principal component analysis (PCA), nonnegative matrix factorization (NMF) or their

variants can apply to RNA-seq data directly due to their purely data-driven characteris-

tics, in which no distributions are assumed for input data [19, 20, 21, 22, 23, 24]. In fact,

they transform input data into a subspace generated by principal components, or non-110

negative bases to seek meaningful linear combinations of features (genes). However,

they face difficulties in ranking each gene because it is technically hard to distinguish

an individual gene’s contribution to all genes’ linear combinations due to the nature of

the linear or nonlinear transforms.

As such, it is believed that a desirable feature selection for RNA-seq data should115

satisfy the following criteria. First, it should be a data-driven method without prior data

distribution assumption to prevent possible probabilistic modeling biases. Second, it

should avoid evaluating each gene’s significance from the linear combinations of all

genes in a subspace directly. Third, it should take consideration of the nonnegative

characteristic of RNA-seq data instead of treating them as generic data to maintain120

locality in data analysis. Fourth, it should overcome the weakness of naive count-
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based filtering and contribute to following D.E. analysis by demonstrating robustness

to depth and gene-length biases. That is, the feature selection algorithm should be

more efficient than its other peers in identifying potential differentially expressed (DE)

genes, rather than picking high-count genes or long genes only in feature selection.125

We present a novel data-driven feature selection method: nonnegative singular

value approximation (NSVA) that satisfies the criteria. It can be viewed as a special

singular value decomposition (SVD) built upon Perron-Frobenius theorem, which is

widely used in Google webpage ranking, to disclose novel findings for nonnegative

data [25, 26, 27].130

Perron-Frobenius theorem. Given matrix A ∈ <n×n, A > 0, its largest eigenvalue

λmax > 0 is always positive and its associative eigenvector v is always positive, i.e.

v > 0. For any Ax = λx, λmax 6= λ, there exists at least one entry xj ∈ x, xj < 0.

2.1. Nonnegative singular value approximation (NSVA)

Given a nonnegative matrixA ∈ <n×p, A ≥ 0 with a rank r = min(n, p), and its135

SVD decomposition A =
∑r
i=1 siuiv

T
i , where ui ∈ <n and vi ∈ <p, i = 1, 2 · · · r,

then, we have the following results,

1. Both u1 and v1 have only nonnegative entries, i.e., u1 ≥ 0, v1 ≥ 0.

2. The vectors uj and vk contain at least one negative entry when j ≥ 2, j =

1, 2 · · ·n, and k ≥ 2, k = 1, 2 · · · r140

3. Matrix A has the following first level singular value approximation:

A ∼ s1u1vT1 =

n∑
i=1

p∑
j=1

s1ui1vj1 (1)

by dropping all ui and vj , when i, j ≥ 2.

To prove nonnegative singular value approximation, we prove the following Perron-

Frobenius extension theorem at first, which extends the results of the original theorem

to nonnegative data.
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2.1.1. Lemma: Perron-Frobenius extension theorem145

Given matrix A ∈ <n×n, A ≥ 0, its largest eigenvalue λmax(A) ≥ 0 and its

associative eigenvector v is nonnegative, i.e. vmax ≥ 0. v > 0. For any For any

Ax = λx, λmax 6= λ, there exists at least one entry xj ∈ x, xj < 0.

Proof. We approximateA as a sequence of positive matrixAn such as limn→∞An =

A. For example, if A =

 1 1

1 0

 , then it can be approximated as a sequence posi-150

tive matrix An =

 1 1

1 1
n

 , i.e. limn→∞An = A.

It is clear that the characteristic equation ofAn: det(λI−An) will also approximate

the characteristic equation of A : det(λI −A) when n→∞. As such,

lim
n→∞

λmax(An) = λmax(A) (2)

Since all λmax(An) are positive, its limit should be nonnegative by the compactness of

the sequence convergence, that is λmax(A) ≥ 0. Similarly, we normalize correspond-

ing eigenvector vn of λmax(An) such that ||vn||1 = 1, i.e. ~1T vn = 1, where ~1 is a

vector with all entries as 1. Thus, limn→∞ vn = v.155

Do limit for the following equation for the positive sequences,

Anvn = λmax(An)vn (3)

we have Av = λmax(A)v ≥ 0. That is, v ≥ 0. Proceeding in the similar way, we

can prove v > 0. For any Ax = λx, λmax 6= λ, there exists at least one entry xj ∈ x,

xj < 0.

2.1.2. The proof of nonnegative singular value approximation.

Suppose we have a nonnegative matrix A ∈ <n×p, A ≥ 0, we assume n ≥ p160

without loss of generality. Then, AAT ∈ <n×n, ATA ∈ <p×p, both are nonnegative

semi-positive definite matrices.

By singular value decomposition (SVD): A =
∑p
i=1 siuiv

T
i , where si is the ith

singular value of A, it is easy to know u1 and v1 are the first eigenvectors of AAT

and ATA respectively. That is, their corresponding eigenvalues are the first (largest)165
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eigenvalue of AAT and ATA. The vectors uj , j = 2 · · ·n, and vk, k = 2 · · · p are the

other eigenvectors of AAT and ATA respectively.

Applying the Perron-Frobenius extension theorem, we have u1 ≥ 0, v1 ≥ 0. The

other vectors uj and vk, contain at least one negative entry. We only use the u1 and

v1 to decompose A and drop uj and vk, for j, k ≥ 2, we have A ∼ s1u1v
T
1 =170 ∑n

i=1

∑p
j=1 s1ui1vj1.

2.1.3. The biological meaning of nonnegative singular value approximation in RNA-

seq analysis

It is noted that NSVA guarantees a purely additive decomposition of a nonnegative

matrix along the first singular value direction v1. A ∼ s1u1vT1 =
∑n
i=1

∑p
j=1 s1u

(i)
1 v

(j)
1 .175

In fact, each nonnegative entry u(i)1 in u1 can be viewed as a corresponding coeffi-

cient of the row ATi , which represents the ith gene of input RNA-seq data, in the one-

dimensional “meta-sample space” spanned by all entries of v1, i.e. S = span(v
(1)
1 , v

(2)
1 · · · v

(p)
1 )

with a weight s1. Thus, from a single gene viewpoint, NSVA implies that each gene is

approximated by the projection of its corresponding entry in vector u1 on the singular180

value direction v1, i.e. ATi ∼ s1u
(i)
1 vT1 , i = 1, 2, · · ·n.

Such an approximation makes it possible to rank each gene by using its coefficient

in the meta-sample space, where each v(j)1 is the meta-sample corresponding to the

original jth sample, and u(i)1 indicates the ith gene ATi ’s contribution to all the meta-

samples. It answers the following question: what’s a gene’s contribution to all meta-185

samples along with the first singular value direction? As such, it is natural to define

u
(i)
1 as a gene contribution score (GCS) to quantify its contribution to all meta-samples.

2.1.4. Gene contribution scores (GCS)

A gene contribution score (GCS) measures a gene’s contribution to all samples of

a RNA-seq dataset A ∈ <n×p by evaluating its contribution to all meta-samples in190

a low dimensional space. The gene contribution score of the ith gene to all samples

is defined as u(i)1 ∼ s−11

∑p
j=1 aijv

(j)
1 = s−11 ATi v1 by applying nonnegative singular

value approximation. It is clear that filtering genes according to their gene contribution

scores is equivalent to filtering genes by their count variances by the nature of the GCS.
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In fact, NSVA feature selection consists of two major steps. The first step conducts195

NSVA for input data and calculates GCS for each gene. The second step ranks all genes

by their GCSs and selects the genes with large GCSs for the following D.E. analysis.

It is worthwhile to point out that the first singular value s1 is usually quite large for

a RNA-seq dataset compared with the other singular values. we define a data variation

explanation ratio as200

ρ =
s1∑p
i=1 si

(4)

It is the ratio between the first singular value and the sum of singular values, to

evaluate that the percentage of information can be represented in NSVA. The ratio ac-

tually represents the percentage of the data variances along the first singular vector

direction. In fact, we have found that the ratio usually reaches at least ρ ≥ 60% or even

90% high for most RNA-seq datasets. For examples, the data variation explanation ra-205

tios of the three datasets in this study are 60:49%, 85.60% and 90.16% for the Marioni,

Prostate and Fly embryos datasets respectively. In fact, the high data variation explana-

tion ratios demonstrated by RNA-seq data guarantee the effectiveness of the first level

singular value data approximation and the feasibility of the proposed feature selection

algorithm.210

2.2. NSVA-Seq: a data-driven differential expression analysis method

We propose a data-driven differential expression analysis method: NSVA-seq that

employs NSVA to collect potential DE genes and compares each gene’s expression

with those of remaining genes under a modified-fisher-exact-test (mFET) by comput-215

ing exact p-values. Unlike other methods (e.g. DESeq), NSVA-seq avoids parameter

estimation and tuning. Moreover, its average expression based hypothesis query under

a contingency table can somewhat avoid the limitations of the existing D.E. analysis

methods such that data with few number of replicates will not be ’discriminated’ in

D.E. analysis for its built-in disadvantage in parameter estimation or M-D odd ratio220

estimations[8, 11].
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The NSVA-seq can be simply described as: given a normalized library, NSVA-seq

applies the modified fisher exact test (mFET) to a set of genes selected by NSVA. Our

modified fisher exact test (mFET) is described as follows.

225

Table 1. Modified fisher exact test (mFET)

Gene Control Treatment Total

Query gene g a b a+ b

Remaining genes c d c+ d

Total a+ c b+ d a+ b+ c+ d

The original fisher extract test is used to determine if there are non-random associa-

tions between two categorical variables [28]. In the modified fisher exact test, we query

if a gene is differentially expressed by comparing it with all the remaining genes. Table230

1 illustrates the mFET’s initial state: parameters a, b are the expression levels of a given

gene g under the control and treatment conditions respectively. Similarly, parameters c

and d are the expression levels of all remaining genes under the two conditions. All of

these parameters are all non-negative integers initially.

The null hypothesis H0 in context is to query whether a gene g has the same level

expression as all the other remaining genes. The p-value of this hypothesis test can be

calculated by a hypergeometric distribution as

p =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

a!b!c!d!n!
(5)

, where n = a+ b+ c+ d.235

To avoid large computing complexities from the large or even huge values of gene

count data, we apply a log transform to the equation and employ gamma function

Γ(n+ 1) to valuate n!. That is,

p = e(
∑4

i=1 ln(ti+1)−
∑5

i=1 ln(si+1)) (6)

where t1 = a + b, t2 = c + d, t3 = a + c, t4 = b + d, s1 = a, s2 = b, s3 = c,

s4 = d, and s5 = n. In fact, we are able to extend the calculations to any nonnegative

data instead of only nonnegative integers by the nature of the transformation. As such,

the modified fisher exact test (mFET) can be reformulated as follows.

10
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Given a RNA-seq data X ∈ <N×p, where each gene has two conditions control

(C) and treatment (T), we have the following parameter specifications in the proposed

mFET method:

a =
1

mc

∑
j:τ(j)=C

Xij (7)

b =
1

mt

∑
j:τ(j)=T

Xij (8)

where Xij is the expression level of the ith gene of the sample j, τ(j) is the con-

dition of the jth sample, and mc and mt are number of samples in the control and

treatment conditions respectively. Similarly, we have

c =
1

mc(N − 1)

∑
k 6=i

∑
j:τ(j)=C

Xkj (9)

,

d =
1

mt(N − 1)

∑
k 6=i

∑
j:τ(j)=T

Xkj (10)

The proposed NSVA-seq provides more freedom in D.E. analysis than existing D.E.240

models. It can not only work well for normalized data, but also raw read count integer

data. The proposed modified fisher exact test not only extends the input data domain

of the original fisher exact test, but also generalizes its differential expression test for

each gene by using the whole remaining gene expressions. As a nonparametric method,

NSVA-seq does not need a parameter estimation process to find the mean and variance245

parameters of a specified distribution. As such, it somewhat provides a ’fair’ D.E.

analysis environment for those datasets consisting of few samples. It can be essentially

important for clinical D.E. analysis, in which no enough samples are generally available

[9, 13, 15]. On the other hand, it does not need to do M-D odd ratio comparisons as

NOISeq for its more transparent D.E. analysis mechanism [11, 29].250

3. Result

3.1. Datasets

We include three benchmark RNA-seq datasets in our experiments and their details

are described as follows.
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Marioni data originally consist of 32,000 genes across 14 samples after Illumina-255

supplied alignment algorithm ELAND. The samples are composed of two groups: the

seven technical replicates from a kidney sample and another seven technical replicates

from a liver sample, both of which are from a single human male [7]. This dataset is an

important benchmark in normalization and D.E. analysis: it includes important gene

length information for each gene compared to other RNA-seq datasets.260

Prostate data consist of 17 million short reads and they were sequenced under the

Illumina technology for two types of samples: four prostate cancer cells treated with

androgen/DHT (DHT-treated), and three prostate cancer LNCap cells without DHT

treatment (Mock-treated) [34]. We employed Bowtie and SAMtools to align its raw

data with respect to the the human genome indexes (NCBI version 37), and obtained265

a nonnegative integer matrix with 4 DHT-treated and 3 Mock-treated samples across

23,068 genes [5, 30].

Fly embryos data consist of 17,605 genes across four samples. The four samples

are composed of two biological replicates at conditions “A” (treated) and “B” (con-

trol) respectively. This dataset consists of only four samples and usually demonstrate270

some disadvantage in the existing D.E. models that require relatively more samples to

complete parameter estimation [8, 13, 15].

3.2. DESeq analysis with nonnegative singular value approximation (NSVA) feature

selection

To verify the effectiveness of the proposed feature selection, we firstly combine it275

with DESeq model, which is a typical parametric D.E. analysis model, to answer the

query: ’what will happen to DESeq analysis when NSVA feature selection is applied

to input data?’ Figure 1 evaluates the performance of three NSVA-selected gene-sets

consisting of 2,000, 3,000, and 5,000 genes and original data under DESeq. The false

discovery ratio (FDR) cutoff was uniformly chosen as 0.001 in our experiments. Each280

horizontal and vertical axis in the subplots represent the mean expression of each gene

and its corresponding log2 fold changes under two different conditions respectively.

The differentially expressed (DE) and non-DE genes are represented by red and blue

markers respectively.
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Figure 1: The scatter plots of normalized data mean versus log2 fold change for original data and different

NSVA-selected gene sets under DESeq on Marioni and Prostate datasets. The D.E. and non-D.E. genes

are represented by red and gray markers respectively. The non-D.E. genes dropped remarkebaly in DESeq

analysis when NSVA is applied to filter more genes.

Interestingly, The non-D.E. genes seem to drop remarkably under DESeq when285

NSVA is applied to each dataset. It indicates that the proposed NVSA feature selection

demonstrates a good sensitivity to filter those non-differentially expressed (non-DE)

genes for each dataset by picking the genes with large gene contribution scores (GCS).

In other words, NSVA seems to be able to select more potential DE genes, which have

more contributions to variance on behalf of the first singular value direction. Such a290

feature selection makes the following DESeq analysis more focused on the potential

DE genes and contributes to decreasing false positives in D.E. analysis. Such a re-

sult suggests that the proposed feature selection can enhance D.E. analysis by picking

meaningful genes.
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3.2.1. The impacts of NSVA feature selection on the DESeq model295

In addition to comparing NSVA-DESeq with DESeq from a performance stand

point, we have the following findings about NSVA’s impacts on the DESeq model

itself.

First, we have found that NSVA feature selection will contribute to a better size

factor estimation in normalization because of filtering outliers (e.g., genes with very300

low counts). The size factor sj of a sample j in DESeq model is a normalization factor

to make the sample, which may be subject to different sequencing depth, comparable

with the others. However, the size factors actually relies on a pseudo-reference sample,

which is a virtual sample consisting of geometric means of all genes [8]. Filtering the

outliers will prevent their geometric means from being entries of the pseudo-reference305

sample, which will cause the size factor estimation to be closer to the ’truth’ and miti-

gate the bias caused by the sequencing depth.

Second, NSVA feature selection makes the parameter estimations of uij and σ2
ij ,

which are mean and variance parameters of gene xij (the ith gene on the jth sample),

under a negative binomial (NB) distribution, more robust. This was partially because310

both parameter estimations were strongly dependent on the estimation of the size factor

sj [8]. More interestingly, we found that the smooth function used by the DESeq

method to model the dependence of the raw variance on the mean was fitted much

better using NSVA-selected genes than the all genes in the local regression.

Figure 2 illustrated the means and raw variances of seven liver samples in the Mar-315

ioni data, and the fitting of the raw variances with respect to the means (red lines) using

all 15,514 genes and only 2000 NSVA-selected genes, in the NW and NE plots respec-

tively. The similar results can be also found for the Fly embryos data with 4 samples

but more than 17000 genes, in the SW and SE plots of Figure 2. It is clear that the

fits under the NSVA-selected genes are much better than those under all genes. More320

importantly, such a good fitting contributes to more accurate variance parameter esti-

mation in DESeq, which will enhance the accuracy of the following hypothesis test in

the differential expression call.

Last, NSVA feature selection contributed to decreasing the complexity of the hy-
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Figure 2: The plots of the sample variances with respect to the means of 7 Liver samples of the Marioni

dataset under all 15,514 genes and NSVA-selected 2000 genes and the similar plots for the Fly embryos data.

The red lines represent the fits of raw variances with respect to the means of the Liver (Fly embryos) samples

respectively.

pothesis test in DESeq due to the fact that a lot of genes were filtered by NSVA, which325

actually avoids quite a lot computing burden because calculating the p-value for each

gene in DESeq requires to enumerate all possible count sum combinations of two con-

ditions (e.g., treated vs untreated) from a given total count sum [8].

3.3. Compare nonnegative singular value approximation with peer methods

We further compare our NSVA feature selection with other peer methods to demon-330

strate its advantage in picking potential DE genes. These methods include count-based

naive feature selection (NFS), principal component analysis (PCA), nonnegative ma-

trix factorization (NMF), signal-noise-ratio (SNR), and geometric signal-noise-ratio

(GSNR) [20, 19, 31, 32, 33]. All the five comparison methods are data-driven methods

as NSVA.335

In fact, the count-based naive feature selection (NFS) is just the widely used low-

count filtering method. PCA and NMF both belong to variance-based feature selection

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 27, 2017. ; https://doi.org/10.1101/209841doi: bioRxiv preprint 

https://doi.org/10.1101/209841


methods as NSVA though they use different variance metrics in feature selection. SNR

and GSNR belong to signal-noise based feature selection method that rank each gene

via comparing signal-noise ratios.340

Count-based naive feature selection (NFS). As a coverage-based feature selection method,

NFS filters the genes with low counts and keeps those with high counts before D.E.

analysis. It selects all genes ≥ the median gene count of the input data, sorts all genes

according to its coverage, i.e., the sum of its counts, and picks the top-ranked genes

before D.E. analysis [8, 13].345

3.3.1. Principal component analysis (PCA).

As a variance-based feature selection method, PCA ranks each gene by using the

2-norm of its projection in the subspace spanned by the first three principal components

(PCs) by measuring the gene’s contribution to the three most significant PCs [19, 32].

It is noted that the three major PCs usually have a quite high variance explained ratio350

(e.g., 99%) for each dataset. The PCA feature selection consists of the following three

steps.

The first step conducts PCA for input data X ∈ <n×p to obtain the principal com-

ponent (PC) matrix: U ← princomp(X), and projected data to the first three PCs, i.e.

P ← X∗ × U(:, 1 : 3), X∗ = X − 1
n
× ~1 × (~1)T × X, where ~1 ∈ <n is a vector with all355

entries ’1’. The second step calculates the 2-norm for the projection data of each gene

in the subspace spanned by the three PCs: τi = (
∑n

i=1 p
2
i )

1/2, where pi is the ith row

of the projection matrix P ∈ <n×3, i = 1, 2 · · ·n. Finally, the third step sorts the genes

according to τi and selects the top-ranked genes.

3.3.2. Nonnegative matrix factorization (NMF)360

Similar to PCA, NMF is a variance-based feature selection but requires the non-

negativity of input data [20]. Given an input RNA-seq data X ≥ 0 ∈ <n×p, NMF

conducted the following decomposition: X ∼ WH at rank p − 1 firstly, where

W = [w1, w2 · · ·wn]T , wi ∈ <p−1, i = 1, 2, · · ·n, and H ∈ <(p−1)×p, Then, ||wi||2
is used to rank the ith gene’s contribution to the whole data variance. Finally, the365

top-ranked genes were selected by sorting the values of ||wi||2.
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3.3.3. Signal-Noise ratio (SNR) and geometric signal-noise ratio (GSNR)

This data-derive feature selection method ranks each gene by the ratio of gene

mean and standard deviation: τi = µi

σi
,where µi and σi are estimated as (

∑p
j=1Xij)/p

and
∑p

j=1(Xij−µi)
2

p−1 respectively for given X ∈ <n×p. These genes with large SNR370

values are believed to be more meaningful genes. It is noted that the infinite SNR

values are set as zeros automatically in our feature selection [31].

Different to the SNR feature selection, this method ranks each gene by using the

geometric signal-noise ratio to rank each gene. GSNR is defined as the ratio of the

geometric mean and geometric standard deviation as τ (g)i =
µ
(g)
i

σ
(g)
i

, where µ(g)
i =375

(Xi1Xi2 · · ·Xip)
1/p and σ(g)

i = exp(

√∑p
i=1(lnAi/µ

(g)
i )2

p respectively for given X ∈

<n×p. These genes with large τ (g)i values are believed to be more meaningful genes in

feature selection [33].

3.3.4. NSVA is robust to depth and gene-length biases

We need to answer the following two questions: 1) Is NSVA more efficient than380

its peers in identifying potential DE genes? 2) Is NSVA a depth-dependent feature

selection method, where high-count genes are more likely to be identified as DE genes?

To answer the queries, we compare proposed NSVA with its peers on two measures

under DESeq analysis: DE ratios and DE gene median counts. The DE ratio refers

to the ratio between the number of DE genes identified by a differential expression385

analysis Ω, which is employed as DESeq analysis in this context, and the total number

of genes: N of the input data, where ε is a significant level cutoff (e.g. 0.01) and θ is a

feature selection method employed before differential expression analysis, namely,

η =
|{g : (g.pvalue|Ω, θ) < ε}|

N
(11)

It measures the efficiency of a feature selection method. An efficient feature se-

lection method θ should produce a high DE ratio for a dataset under a specified DE

analysis Ω. The DE gene median count τ is the read count median among all DE genes

τ = median{g.count : (g.pvalue|Ω, θ) < ε} (12)
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under Ω and θ. A feature selection method would be a depth-dependent method, pro-

vided it had high median counts for DE genes.390
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Figure 3: The comparisons of DE ratios and DE gene median counts for NSVA and its peers under DESeq

analysis on two datasets. The proposed NSVA feature selection demonstrates strong advantages in selecting

potential DE genes than its competing methods by producing highest DE ratios. The DE gene median counts

of NSVA are generally lower than those of other peers for the two datasets.

Figure 3 demonstrates the DE ratios and DE gene median counts of proposed NSVA

and its five peers on the Marioni and Prostate data, when 2000, 3000, 5000, and 8000

genes are selected in feature selection [7, 34]. Interestingly, the results suggest that

NSVA is a more efficient method compared with its peers. It achieves the highest DE395

ratios for each case among all feature selection methods. The NFS feature selection

performs a little bit better than NMF, PCA and GSNR. It indicates that complicate

transform-based feature selection methods (e.g. NMF) may not contribute to DE anal-

ysis. SNR has the worst DE ratios. It indicates that simple feature selection methods

like SNR can not contribute to DE analysis either.400
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In addition, NSVA has the shortest median DE gene count values than all the other

methods for Prostate data. On the other hand, the DE gene median counts of NSVA

are generally lower than those of PCA and NFS, equivalent to that of NMF, and higher

than those of GSNR and SNR for the Marioni data. Those results strongly suggest that

NSVA should not be a depth-dependent feature selection method like NFS.405

Does NSVA only pick long genes in feature selection?. That is, NSVA can contribute

to avoiding gene-length bias in RNA-seq analysis? To answer this query, Figure 4

compares the gene length medians of the genes selected by the six feature selection

methods and the DE genes among the selected ones for the Marioni data. The other

two datasets have no gene length information available.410
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Figure 4: The comparisons of the gene length medians of the genes selected by different feature selection

methods and DE genes among the selected genes for the Marioni data. The DE genes generally have longer

gene length than those selected genes from almost all methods. The NSVA-selected genes and their DE

genes are shorter than those from their peers like NFS, and NMF.

It is interesting to see that the DE genes generally have longer gene length than

those selected genes from almost all methods except SNR. Such a result is consistent

with the consensus that long genes are more likely to be selected as DE genes in RNA-

seq D.E. analysis. Furthermore, NSVA-selected genes and its DE genes are shorter than415

those from NFS and NMF, but longer than those from PCA and SNR. For example, The

median gene lengths of NSVA-selected genes in all the four gene-selection cases are

19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 27, 2017. ; https://doi.org/10.1101/209841doi: bioRxiv preprint 

https://doi.org/10.1101/209841


higher than the DE gene median length (26,445 bp) of all genes for the Marioni data

[7]. Furthermore, its DE gene median length has reached 27,659 bp on the 2,000 gene

selection case, which is much lower than that of NFS (29,328 bp) and NMF (28, 513420

bp). GSNR has an almost same level gene median length as NSVA, but it has relatively

lower DE ratios than NSVA.

Table 2 compares the six methods on behalf of DE ratios, DE gene count median,

gene-median-length and DE gene-median-length. The gene-median-length and DE

gene-median-length refer to the gene median length of NSVA-selected genes and DE425

genes among the NSVA-selected genes respectively. It is clear that NSVA is more

efficient than its peers in identifying potential DE genes for its highest DE ratios. NSVA

also demonstrates it is not a depth-dependent feature selection method, where high-

count genes are more likely to be identified as DE genes for its low DE gene-count-

medians. Furthermore, NSVA selects ’median-long’ genes instead of only long genes430

or short genes from the gene median length of the NSVA-selected genes and DE genes

among them.

As such, NSVA seems to be the best one among the six feature selection methods

for its robustness in depth bias and gene length biases. It not only avoids only picking

those long genes or high-count genes like NFS/NMF, but also the short genes or low-435

count genes as PCA/SNR by considering its high DE ratios and low DE gene medians

counts. That is, it can contribute to picking potentially DE genes and decreasing the

false positives in DE analysis.

Table 2 The comparisons of six feature selection methods440

Methods DE ratios DE gene count median gene-median-length DE gene-median-length

NSVA highest low middle middle

PCA low low short short

SNR lowest low short short

GSNR high instable long long

NFS high low long long

NMF middle instable long long
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3.4. Nonnegative singular value approximation for non-parametric D.E. models

We further apply NSVA to non-parametric D.E. method NOISeq to demonstrate its

effectiveness in differential expression analysis. The NOISeq employs two statistics:445

M andD to compare these to the noise distribution to determine whether the expression

is statistically significant. The M and D values measure the log2 fold change and log2

absolute expression difference between conditions. From this comparison, NOISeq

produces the probability value of their odd ratio that, when compared to a threshold

number (q), which is set as 0.8 in our experiment, determines whether the gene is450

actually differentially expressed [11].

Applying NSVA to NOISeq. Like DESeq, NOISeq demonstrates the increase of DE ra-

tios in D.E. analysis when using NSVA feature selection [8, 11]. Figure 5 illustrates the

scatterplots of plotted (M,D) values (M-D plots) produced from our NOISeq method

for all the datasets. The M-D plot is essentially to impose an M-plot on a D-plot, which455

is similar to volcano plot in traditional microarray analysis [35].
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Figure 5: The comparisons of the M-D plots of NSVA-selected genes and the original Marioni and Prostate

data in NOISeq analysis, where DE and non-DE genes are indicated by red and black dots respectively. The

non-DE genes drop remarkably in NOISeq when NSVA is applied to filter more genes
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The plots compare the M-D plots of the top 3000, 5000, and 8000 NSVA-selected

genes, along with the original dataset under NOISeq respectively. The red and black

dots represent differentially expressed genes, and non-differentially expressed genes. It

is clear that non-DE genes drop remarkably when more genes are filtered by NSVA for460

the two datasets. In other words, the corresponding DE ratio would increase for each

selected gene set under such a feature selection. Obviously, such a result is consistent

to the previous results from applying NSVA to the parametric model: DESeq [8]. It

further indicates that such a feature selection can enhance D.E. analysis by picking

meaningful genes for both parametric and non-parametric D.E. analysis models.465

Table 3 DE ratios of NSVA-selected datasets and original data under NOISeq

Selected genes DE ratios (Fly data) DE ratios (Prostate data) DE ratios (Marioni data)

2000 genes 2.4% 54.45% 81.90%

3000 genes 1.87% 47.27% 78.27%

5000 genes 1.04% 37.40% 72.56%

Total data 0.32% 22.92% 17.52%

Table 3 compares the DE ratios of NSVA-selected datasets and original data under470

NOISeq. It is clear to see that DE ratios increase for all three datasets when more genes

are filtered in NSVA-feature selection. For example, when the 2000 most significant

genes are selected from the Marioni dataset, 81.9% of those genes are determined to

be differentially expressed. But the DE ratios of the original dataset without feature

selection has only 17.52%. On the other hand, the DE ratio of the original Fly dataset475

is only 0.32%, but such a ratio reaches 2.4% when the 2000 most significant genes are

selected in feature selection.

We also conduct naive feature selection (NFS) for NOISeq by removing all genes

with count < 10. However, it can’t achieve good DE rations as NSVA. For example,

the DE ratio is only 42.92% for 5606 NFS-selected genes for the Marioni dataset, but480

the DE ratio under the 5000 NSVA-selected genes is 72.56%. In addition, the DE

ratio is only 30.93% for 1809 NFS-selected genes for the Prostate dataset, but the

DE ratio under the 2000 NSVA-selected genes is 54.45%. Such results again indicate
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the proposed feature selection performs better than naive feature selection (NFS) in

selecting meaningful genes.485

3.5. Compare NSVA-seq with peer D.E. analysis models

To demonstrate the effectiveness of proposed NSVA-seq, we apply it to the gene

set consisting of top 10% genes ranked by NSVA from each dataset normalized by

DESeq normalization [8][10]. Then, we compare its adjusted p-value distributions

with those of four peer methods: NSVA-DESeq, NSVA-edgeR and NSVA-NOISeq and490

mFET, where mFET is applied to the original normalized data. It should be noted that

the notations NSVA-DESeq/edgeR/NOISeq refers to applying DESeq/edgeR/NOISeq

analysis to the NSVA-selected genes respectively. We employ Benjamini-Hochbert

(BH) procedure to adjust all p-values under a FDR 0.01 in such a comparison.
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Figure 6: The comparisons of the adjusted p-value distributions of NSVA-Seq, mFET, NSVA-DESeq, NSVA-

edgeR, and NSVA-NOISeq. NSVA-seq demonstrates a conservative D.E. analysis for the Marioni and

Prostate datasets. But it overcomes the weakness of its peers in D.E. analysis of the Fly embryos dataset

with few samples.

495

Figure 6 illustrates the scale of the adjusted p-values from NSVA-seq is in a quite

small range compared with those of the others. Such a result strongly suggests that
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NSVA-seq is more sensitive to identify those genes with quite small adjusted p-values

in differential expression analysis than the others. For example, almost all adjusted

p-values are less than 0.03 that indicates these identified DE genes have a strong p-500

value support. In contrast, mFET generates a large amount of non-DE genes without

NSVA feature selection for each dataset. It implies that NSVA tends to pick DE genes

in feature selection, which directly contributes to the high DE ratios of NSVA-seq. As

such, NSVA-seq has a much lower false positive ratio than mFET.

On the other hand, NSVA-DESeq and NSVA-edgeR have similar distribution pat-505

terns due to the same underlying assumption on the count data distribution of the DE-

Seq and edgeR models. It is even hard to claim the advantage of DESeq than edgeR in

D.E. analysis under NSVA-feature selection [8, 13, 15]. Such a result further implies

that power of NSVA in selecting potential DE genes.

Interestingly, NSVA-seq seems to be more conservative in D.E. analysis than NSVA-510

DESeq and NSVA-edgeR for the Prostate and Marioni datasets. However, it actually

identifies more DE genes for the Fly embryos dataset that has only 4 samples than

the other methods, which seem to identify almost all genes as non-DE genes. This

is because the datasets with few samples have some disadvantage in estimating accu-

rate mean and variance parameters parameters for parametric D.E. analysis models like515

DESeq and edgeR [8, 13]. For example, a dataset with few samples may cause diffi-

culties for the local fit procedure in the DESeq model [8, 15]. On the other hand, too

small sample size can lead to low odd-ratios of M and D in NOISeq due to the lack of

replicates and the likelihood to miscount meaningful expression signals as noise [11].

However, our NSVA-seq avoids parameter estimation or M-D odd ratio comparisons520

by comparing each gene’s average expression with a set of selected genes’ average ex-

pressions. It mitigates the side-effect from the small number of samples and provides

a fair D.E. analysis environment for RNA-seq datasets. It is worthwhile to point out

that similar results can be obtained when TMM is employed as the procedure in data

normalization rather than DESeq normalization [8, 9].525

Furthermore, NSVA-seq has a more transparent D.E. analysis mechanism than

NOISeq though both are nonparametric D.E. analysis models. Its modified FET based

D.E. analysis under NSVA-feature selection is more direct than NOIseq that relies on
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M-D odd ratio comparisons [9]. However, NSVA-seq demonstrates advantages in over-

coming the weakness of the existing D.E. models in handling datasets with few sam-530

ples, besides more conservative D.E. analysis results for other datasets. Such a charac-

teristic can be essentially useful for clinical D.E. analysis, in which no enough samples

are generally available [9, 13, 15].

3.5.1. Nonnegative singular value approximation based biomarker discovery, a case

study535

We further demonstrate the effectiveness of NSVA in biomarker discovery from

by using jActiveModule to search active subnetwork modules [37]. We use the top-

ranked 2000 genes with smallest probability values under NSVA-DESeq to find possi-

ble biomarkers for the Prostate data, in which input dataset consisting of 5000 genes

selected by NSVA from the original Prostate data. We have found that there are several540

networks with varying active path scores of: 4.97, 5.22, 5.24, 5.29, and 5.98. We use

the module with the highest score: 5.98, as our network marker that has 179 nodes and

630 edges.

Figure 7 illustrates the network marker by high-lightening those genes with most

protein-protein interactions. Although detailed analysis of such a network marker is545

beyond the scope this study, we would like to analyze the genes with the largest inter-

actions in the network marker. YWHAE, TARDBP, and CALM1 are the three genes

with the most interactions among the network marker. It is interesting to see that all

of them have much closer relationships with prostate cancer. For example, YWHAE

belongs to the 14-3-3 family of proteins which mediate signal transduction by binding550

to phosphoserine-containing proteins and has been reported to have express in prostate

cancer [38]. Furthermore, it was reported to interact with YWHAZ, a widely known

biomarker of prostate cancer [39, 40]. In addition, TARDBP has been found to have

multiple functions in transcriptional repression, pre-mRNA splicing and translational

regulation. It was reported as one of biomarkers to distinguish prostate cancer from555

benign prostatic hyperplasia in patients[41]. Moreover, CALM1’s mutation was re-

ported to connect with prostate cancer and was one of verifiable biomarkers of prostate

analysis using urinary shotgun proteomics [42, 43]. Such a meaningful biomarker cap-
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turing indicates the usefulness of our network marker though more detailed analysis

can be done for this network marker to retrieve more comprehensive information. Al-560

ternatively, it demonstrate the effectiveness of NSVA in D.E. analysis and biomarker

discovery.

Conclusion

In this study, we propose a novel NSVA feature selection and NSVA-seq differ-

ential expression analysis method for RNA-seq data. The NSVA feature selection is565

rooted in a rigorous mathematical result from singular value decomposition for non-

negative RNA-seq read count data. The proposed NSVA-based feature selection al-

gorithm demonstrates robustness to depth and gene length robustness by overcoming

the weakness of widely used naive count feature selection (NFS). It demonstrates ad-

vantages in picking meaningful potential DE genes for different D.E. analysis models570

by enhancing the efficiency of D.E. analysis by comparing with its five peer feature

selection methods.

As a data-driven D.E. analysis, NSVA-seq provides more freedom in D.E. analy-

sis by allowing both original count data and normalization data in D.E. analysis. It

not only avoids the parameter estimation process, but also provides a more direct and575

transparent nonparametric D.E. analysis, which contributes to easy understanding and

implementation. More importantly, it overcomes the limitations of the existing D.E.

analysis models by providing a fair D.E. analysis for those datasets with few samples

besides producing a relatively conservative D.E. analysis for the other datasets. Fur-

thermore, the biomarker discovery results demonstrate the effectiveness of NSVA in580

capturing meaningful genes, and its positive impacts on D.E. analysis and meaningful

gene marker capturing for complex diseases.

However, how to achieve an optimal feature selection for the sake of robust dif-

ferential expression analysis remains a challenge for this method. We are employing

information measures such as mutual information or entropy to explore its potential in585

NSVA feature selection [44]. Moreover, we are interested in conducting novel path-

way analysis for the network marker obtained in this study to dig more knowledge and
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Figure 7: The network marker of the Prostate dataset based on the 2000 most significant genes from NSVA-

DESeq. The top three gene with most interaction are YWHAE, TARDBP, an CALM1.
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further enhance its repeatability and validity [45].

In addition, we are applying NSVA and NSVA-seq to RNA-seq datasets retrieved

from TCGA portal, which are a type of structured big data, to further investigate the590

effectiveness of our methods [46, 47]. Those datasets can be high-dimensional imbal-

anced data (HDI): high-dimensional data with skewed label distributions. They usually

bring hard time in disease diagnosis when there is no feature selection done [48]. We

are interested in investigating the impacts of NSVA feature selection on such data to

further explore its potential in disease diagnosis.595
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