




3.4. Nonnegative singular value approximation for non-parametric D.E. models

We further apply NSVA to non-parametric D.E. method NOISeq to demonstrate its

effectiveness in differential expression analysis. The NOISeq employs two statistics:445

M andD to compare these to the noise distribution to determine whether the expression

is statistically significant. The M and D values measure the log2 fold change and log2

absolute expression difference between conditions. From this comparison, NOISeq

produces the probability value of their odd ratio that, when compared to a threshold

number (q), which is set as 0.8 in our experiment, determines whether the gene is450

actually differentially expressed [11].

Applying NSVA to NOISeq. Like DESeq, NOISeq demonstrates the increase of DE ra-

tios in D.E. analysis when using NSVA feature selection [8, 11]. Figure 5 illustrates the

scatterplots of plotted (M,D) values (M-D plots) produced from our NOISeq method

for all the datasets. The M-D plot is essentially to impose an M-plot on a D-plot, which455

is similar to volcano plot in traditional microarray analysis [35].

Figure 5: The comparisons of the M-D plots of NSVA-selected genes and the original Marioni and Prostate

data in NOISeq analysis, where DE and non-DE genes are indicated by red and black dots respectively. The

non-DE genes drop remarkably in NOISeq when NSVA is applied to filter more genes
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The plots compare the M-D plots of the top 3000, 5000, and 8000 NSVA-selected

genes, along with the original dataset under NOISeq respectively. The red and black

dots represent differentially expressed genes, and non-differentially expressed genes. It

is clear that non-DE genes drop remarkably when more genes are filtered by NSVA for460

the two datasets. In other words, the corresponding DE ratio would increase for each

selected gene set under such a feature selection. Obviously, such a result is consistent

to the previous results from applying NSVA to the parametric model: DESeq [8]. It

further indicates that such a feature selection can enhance D.E. analysis by picking

meaningful genes for both parametric and non-parametric D.E. analysis models.465

Table 3 DE ratios of NSVA-selected datasets and original data under NOISeq

Selected genes DE ratios (Fly data) DE ratios (Prostate data) DE ratios (Marioni data)

2000 genes 2.4% 54.45% 81.90%

3000 genes 1.87% 47.27% 78.27%

5000 genes 1.04% 37.40% 72.56%

Total data 0.32% 22.92% 17.52%

Table 3 compares the DE ratios of NSVA-selected datasets and original data under470

NOISeq. It is clear to see that DE ratios increase for all three datasets when more genes

are filtered in NSVA-feature selection. For example, when the 2000 most significant

genes are selected from the Marioni dataset, 81.9% of those genes are determined to

be differentially expressed. But the DE ratios of the original dataset without feature

selection has only 17.52%. On the other hand, the DE ratio of the original Fly dataset475

is only 0.32%, but such a ratio reaches 2.4% when the 2000 most significant genes are

selected in feature selection.

We also conduct naive feature selection (NFS) for NOISeq by removing all genes

with count < 10. However, it can’t achieve good DE rations as NSVA. For example,

the DE ratio is only 42.92% for 5606 NFS-selected genes for the Marioni dataset, but480

the DE ratio under the 5000 NSVA-selected genes is 72.56%. In addition, the DE

ratio is only 30.93% for 1809 NFS-selected genes for the Prostate dataset, but the

DE ratio under the 2000 NSVA-selected genes is 54.45%. Such results again indicate
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the proposed feature selection performs better than naive feature selection (NFS) in

selecting meaningful genes.485

3.5. Compare NSVA-seq with peer D.E. analysis models

To demonstrate the effectiveness of proposed NSVA-seq, we apply it to the gene

set consisting of top 10% genes ranked by NSVA from each dataset normalized by

DESeq normalization [8][10]. Then, we compare its adjusted p-value distributions

with those of four peer methods: NSVA-DESeq, NSVA-edgeR and NSVA-NOISeq and490

mFET, where mFET is applied to the original normalized data. It should be noted that

the notations NSVA-DESeq/edgeR/NOISeq refers to applying DESeq/edgeR/NOISeq

analysis to the NSVA-selected genes respectively. We employ Benjamini-Hochbert

(BH) procedure to adjust all p-values under a FDR 0.01 in such a comparison.
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Figure 6: The comparisons of the adjusted p-value distributions of NSVA-Seq, mFET, NSVA-DESeq, NSVA-

edgeR, and NSVA-NOISeq. NSVA-seq demonstrates a conservative D.E. analysis for the Marioni and

Prostate datasets. But it overcomes the weakness of its peers in D.E. analysis of the Fly embryos dataset

with few samples.

495

Figure 6 illustrates the scale of the adjusted p-values from NSVA-seq is in a quite

small range compared with those of the others. Such a result strongly suggests that
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NSVA-seq is more sensitive to identify those genes with quite small adjusted p-values

in differential expression analysis than the others. For example, almost all adjusted

p-values are less than 0.03 that indicates these identified DE genes have a strong p-500

value support. In contrast, mFET generates a large amount of non-DE genes without

NSVA feature selection for each dataset. It implies that NSVA tends to pick DE genes

in feature selection, which directly contributes to the high DE ratios of NSVA-seq. As

such, NSVA-seq has a much lower false positive ratio than mFET.

On the other hand, NSVA-DESeq and NSVA-edgeR have similar distribution pat-505

terns due to the same underlying assumption on the count data distribution of the DE-

Seq and edgeR models. It is even hard to claim the advantage of DESeq than edgeR in

D.E. analysis under NSVA-feature selection [8, 13, 15]. Such a result further implies

that power of NSVA in selecting potential DE genes.

Interestingly, NSVA-seq seems to be more conservative in D.E. analysis than NSVA-510

DESeq and NSVA-edgeR for the Prostate and Marioni datasets. However, it actually

identifies more DE genes for the Fly embryos dataset that has only 4 samples than

the other methods, which seem to identify almost all genes as non-DE genes. This

is because the datasets with few samples have some disadvantage in estimating accu-

rate mean and variance parameters parameters for parametric D.E. analysis models like515

DESeq and edgeR [8, 13]. For example, a dataset with few samples may cause diffi-

culties for the local fit procedure in the DESeq model [8, 15]. On the other hand, too

small sample size can lead to low odd-ratios of M and D in NOISeq due to the lack of

replicates and the likelihood to miscount meaningful expression signals as noise [11].

However, our NSVA-seq avoids parameter estimation or M-D odd ratio comparisons520

by comparing each gene’s average expression with a set of selected genes’ average ex-

pressions. It mitigates the side-effect from the small number of samples and provides

a fair D.E. analysis environment for RNA-seq datasets. It is worthwhile to point out

that similar results can be obtained when TMM is employed as the procedure in data

normalization rather than DESeq normalization [8, 9].525

Furthermore, NSVA-seq has a more transparent D.E. analysis mechanism than

NOISeq though both are nonparametric D.E. analysis models. Its modified FET based

D.E. analysis under NSVA-feature selection is more direct than NOIseq that relies on
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M-D odd ratio comparisons [9]. However, NSVA-seq demonstrates advantages in over-

coming the weakness of the existing D.E. models in handling datasets with few sam-530

ples, besides more conservative D.E. analysis results for other datasets. Such a charac-

teristic can be essentially useful for clinical D.E. analysis, in which no enough samples

are generally available [9, 13, 15].

3.5.1. Nonnegative singular value approximation based biomarker discovery, a case

study535

We further demonstrate the effectiveness of NSVA in biomarker discovery from

by using jActiveModule to search active subnetwork modules [37]. We use the top-

ranked 2000 genes with smallest probability values under NSVA-DESeq to find possi-

ble biomarkers for the Prostate data, in which input dataset consisting of 5000 genes

selected by NSVA from the original Prostate data. We have found that there are several540

networks with varying active path scores of: 4.97, 5.22, 5.24, 5.29, and 5.98. We use

the module with the highest score: 5.98, as our network marker that has 179 nodes and

630 edges.

Figure 7 illustrates the network marker by high-lightening those genes with most

protein-protein interactions. Although detailed analysis of such a network marker is545

beyond the scope this study, we would like to analyze the genes with the largest inter-

actions in the network marker. YWHAE, TARDBP, and CALM1 are the three genes

with the most interactions among the network marker. It is interesting to see that all

of them have much closer relationships with prostate cancer. For example, YWHAE

belongs to the 14-3-3 family of proteins which mediate signal transduction by binding550

to phosphoserine-containing proteins and has been reported to have express in prostate

cancer [38]. Furthermore, it was reported to interact with YWHAZ, a widely known

biomarker of prostate cancer [39, 40]. In addition, TARDBP has been found to have

multiple functions in transcriptional repression, pre-mRNA splicing and translational

regulation. It was reported as one of biomarkers to distinguish prostate cancer from555

benign prostatic hyperplasia in patients[41]. Moreover, CALM1’s mutation was re-

ported to connect with prostate cancer and was one of verifiable biomarkers of prostate

analysis using urinary shotgun proteomics [42, 43]. Such a meaningful biomarker cap-
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turing indicates the usefulness of our network marker though more detailed analysis

can be done for this network marker to retrieve more comprehensive information. Al-560

ternatively, it demonstrate the effectiveness of NSVA in D.E. analysis and biomarker

discovery.

Conclusion

In this study, we propose a novel NSVA feature selection and NSVA-seq differ-

ential expression analysis method for RNA-seq data. The NSVA feature selection is565

rooted in a rigorous mathematical result from singular value decomposition for non-

negative RNA-seq read count data. The proposed NSVA-based feature selection al-

gorithm demonstrates robustness to depth and gene length robustness by overcoming

the weakness of widely used naive count feature selection (NFS). It demonstrates ad-

vantages in picking meaningful potential DE genes for different D.E. analysis models570

by enhancing the efficiency of D.E. analysis by comparing with its five peer feature

selection methods.

As a data-driven D.E. analysis, NSVA-seq provides more freedom in D.E. analy-

sis by allowing both original count data and normalization data in D.E. analysis. It

not only avoids the parameter estimation process, but also provides a more direct and575

transparent nonparametric D.E. analysis, which contributes to easy understanding and

implementation. More importantly, it overcomes the limitations of the existing D.E.

analysis models by providing a fair D.E. analysis for those datasets with few samples

besides producing a relatively conservative D.E. analysis for the other datasets. Fur-

thermore, the biomarker discovery results demonstrate the effectiveness of NSVA in580

capturing meaningful genes, and its positive impacts on D.E. analysis and meaningful

gene marker capturing for complex diseases.

However, how to achieve an optimal feature selection for the sake of robust dif-

ferential expression analysis remains a challenge for this method. We are employing

information measures such as mutual information or entropy to explore its potential in585

NSVA feature selection [44]. Moreover, we are interested in conducting novel path-

way analysis for the network marker obtained in this study to dig more knowledge and
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Figure 7: The network marker of the Prostate dataset based on the 2000 most significant genes from NSVA-

DESeq. The top three gene with most interaction are YWHAE, TARDBP, an CALM1.
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further enhance its repeatability and validity [45].

In addition, we are applying NSVA and NSVA-seq to RNA-seq datasets retrieved

from TCGA portal, which are a type of structured big data, to further investigate the590

effectiveness of our methods [46, 47]. Those datasets can be high-dimensional imbal-

anced data (HDI): high-dimensional data with skewed label distributions. They usually

bring hard time in disease diagnosis when there is no feature selection done [48]. We

are interested in investigating the impacts of NSVA feature selection on such data to

further explore its potential in disease diagnosis.595
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