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Abstract 

With genome sequencing entering the clinics as diagnostic tool to study genetic            

disorders, there is an increasing need for bioinformatics solutions that enable precise causal             

variant identification in a timely manner. Background: Workflows for the identification of            

candidate disease-causing variants perform usually the following tasks: i) identification of           

variants; ii) filtering of variants to remove polymorphisms and technical artifacts; and iii)             

prioritization of the remaining variants to provide a small set of candidates for further              

analysis. Methods: Here, we present a pipeline designed to identify variants and prioritize             
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the variants and genes from trio sequencing or pedigree-based sequencing data into            

different tiers. Results: We show how this pipeline was applied in a study of patients with                

neurodevelopmental disorders of unknown cause, where it helped to identify the causal            

variants in more than 35% of the cases. Conclusions: Classification and prioritization of             

variants  into different  tiers helps to  select a  small set of  variants  for  downstream  analysis. 

 

Introduction 

Next generation sequencing (NGS) has proven to be a powerful technique to identify             

causal genes in rare genetic disorders [1,2]. The decline in sequencing cost has enabled the               

use of NGS for diagnostics in the broader clinical setting [3–5]. However, the lower cost of                

data generation resulted in a daunting task of managing, analyzing and interpreting large             

data sets [6]. The bioinformatics tools and pipelines need to be constantly improved to keep               

pace and  to  enable  a speedy analysis of the NGS data. 

There are more than 3 million variants present in individual genomes compared to             

the human reference genome [7]. For clinical sequencing projects this list needs to be              

reduced to a manageable number of candidate variants for downstream analysis. One            

strategy to effectively reduce the number of candidate variants is trio sequencing, meaning             

that  the healthy  parents  are sequenced  along with their  affected children.  

Generally, analysis workflows for trio- or pedigree-based analysis share three basic           

steps [8]. In step one, the raw sequence reads are mapped to the reference genome for                

each sample individually and variants are called for all samples together by identifying the              

differences to the reference genome and determining the genotype per sample. In step two,              

technical artifacts and variants which are common in the population are removed as these              

are highly unlikely to be the cause of rare genetic diseases. Even after this first filtering step                 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 29, 2017. ; https://doi.org/10.1101/209882doi: bioRxiv preprint 

https://doi.org/10.1101/209882
http://creativecommons.org/licenses/by/4.0/


plenty of variants remain as potential candidates, and prioritization of the variants in the              

candidate list using pedigree information and various variant  annotations is required  [8]. 

Here, we present a complete workflow for candidate variant identification and           

prioritization to analyze whole exome sequencing (WES) and whole genome sequencing           

(WGS)  data  generated from trios or from larger pedigrees. 

 

Material  and Methods 

We developed a workflow that performs the read alignment, variant calling,           

annotation, filtering and prioritization steps. A particular focus is put on various filtering and              

annotation steps to prioritize variants depending on the assumed inheritance model for            

further analysis. 

Read alignment 

Raw sequencing data were mapped to the 1000 genome reference genome (hs37d5)            

[7] using BWA [9] aln version 0.6.2 with standard parameters except setting ‘-q 20’. The               

resulting SAM files were sorted, converted to BAM format and indexed using            

SAMtools-0.1.19 [10]. Multiple lanes per sample were merged and duplicate reads marked            

using Picard [11] with the following parameter settings, ‘picard-1.61 MarkDuplicates          

VALIDATION_STRINGENCY=SILENT REMOVE_DUPLICATES=FALSE ASSUME_SORTED=TRUE   

MAX_RECORDS_IN_RAM=12500000 CREATE_INDEX=TRUE CREATE_MD5_FILE=TRUE’. 

Variant calling and annotation 

Single nucleotide variants (SNVs) and small indels (1-20 bps) were jointly called from             

all the samples in a family using Platypus [12] with following parameter settings,             

‘Platypus_0.8.1.py callVariants nCPU=10 genIndels=1 genSNPs=1 minFlank=0      

-bamFiles=$List_of_Bam_Files’ --refFile=hs37d5.fa --output=$Output_VCF’. Gene and     
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transcript definitions from Gencode v19 [13] were added using ANNOVAR [14] and the             

minor allele frequency (MAF) information from 1000 genome Phase III and Exome            

Aggregation Consortium (ExAC) [15] were added. In addition, allele frequencies from 328            

WES and 177 WGS inhouse samples (referred to as local controls) were added to the               

variants. 

Variant filtering 

Variants that passed all the Platypus internal filters were considered further.           

Frequent variants were removed based on MAF threshold of 0.1% from ExAC and the 1000               

genome phase III database. To remove technical artifacts specific to our pipeline, variants             

that were present in the local controls above the threshold of 2% were considered as               

artifacts  and were removed. 

In the trio sequencing setting variant information from the patient and the healthy             

parents was combined to efficiently reduce the number of candidates. Only variants fulfilling             

an inheritance model for a disease were considered further. For an autosomal dominant             

(AD) disease, only de novo variants, i.e. variants which are present in the patient but not in                 

any of the parents were considered as candidates. In case of autosomal recessive (AR)              

inheritance of consanguineous parents, we expected for the genotype to be homozygous in             

the patients and heterozygous in both parents. Hemizygous variants had to be heterozygous             

in only one of the parents and homozygous in the patient. Candidates for X-linked (XL)               

variants had to be heterozygous in the mother and hemizygous in the male patient. Finally,               

to identify candidates for compound heterozygous inheritance of AR diseases, SNVs and            

indels were combined to find two different heterozygous mutations in the patient in the              

same gene  that  were inherited one  from each of the parents.  
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Variants were further checked for their genotype quality in all the samples in the              

family and low genotype quality variants (Phred score <20) were filtered out. The remaining              

variants were prioritized to select a list of candidate causal variants for further downstream              

analysis. 

Variant prioritization 

 Both variants and genes were prioritized by different measures and classified into            

different  tiers, from which the final candidates were selected. 

Variants were prioritized based on their effects on protein function, which were            

predicted from various conservation scores. To this end, various annotations from dbNSFP            

[16] including the GERP score [17] and CADD scores [18] were added to the variants. The                

GERP score [17] measures the evolutionary conservation of the sequences across species; a             

position with a score greater than two is considered as a highly conserved nucleotide and its                

disturbance is likely to have a high functional impact. CADD scores [18] integrate various              

annotations including sequence conservation scores and ENCODE project functional         

annotations to measure the deleteriousness of the variants. A CADD score of 13 in Phred               

scale was used as threshold, which means that prioritized variants are considered to be in               

the top  5% of  the deleterious  variants  in the human genome. 

Genes were prioritized based on their intolerance towards functional mutations.          

Intolerance missense z scores or pLI from ExAC were added if the variant was a missense or                 

loss of function (LoF, includes stop gain/loss, splice acceptor/donor or frameshift indels),            

respectively. An increasing positive z-score indicates increasing intolerance to a missense           

mutation and we consider a z-score above +2 as an outlier intolerant gene, and a pLI score >                  

0.9  is considered intolerant to  a LoF variant. 
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Finally, variants were categorized into two tiers which each contained three levels.            

Level 0 of both tiers contained the whole variant set before prioritization. In Tier 1 only LoF                 

variants were moved to level 1. LoF variants with CADD score above the threshold were               

moved further into level 2. Finally, variants in level 2 which affect genes with pLI score                

above the threshold were moved into level 3. The missense variants in level 0 were moved                

into level 1 of Tier 2 and further prioritized into different levels of Tier 2, accordingly. Here,                 

instead of the ExAC pLI score the ExAC missense Z-score is used to prioritize variants into                

level 3. In the downstream analysis, initially only the variants in level 3 of both tiers were                 

considered. Only if there were no candidates found in level 3, variants in lower levels were                

examined. 

In addition, these prioritized variants were further classified using the guidelines           

providing by the American College of Medical Genetics and the Association for Molecular             

Pathology  [19] by  medical geneticists  during reporting. 
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Figure  1: Germline variant  analysis pipeline for  rare genetic disorders 

 

Results 

Recently we published results from our clinical exome initiative [4], where we            

analyzed exome data from 60 families with undiagnosed neurodevelopmental disorders          

(NDD), neurometabolic disorders (NMD) and dystonias and overall found causal variants in            

35% of the families. In this current manuscript, we will use the results from 39 families in                 
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the NDD cohort to show how the germline analysis pipeline effectively filtered and             

prioritized variants  identified from WES  data  in a trio  sequencing setting. 

Among the 127 WES samples from 39 families, on average 201,687 SNVs and 38,186              

indels were present with a minimum coverage of 10X. Among them, 152,641 SNVs and              

14,912 indels were present in ExAC or 1000 genome phase III with an MAF above 0.1%, or in                  

our Local controls with a frequency above 2%, and were discarded. On average there were               

6,368 SNVs  and 451 indels  remaining  which were used  for  further analysis.  

In the next step, all variants outside of exonic regions (+/- two base pairs to account                

for splice sites) as defined by the Gencode v19 gene model were removed. The remaining               

variants were classified on how they affect protein function and variants that cause             

missense and LoF mutations were selected further. On average there were 528 SNVs and 29               

indels  which are functional and rare/private remaining  per sample. 

For all 39 families of the NDD cohort, trio sequencing was performed. In some               

families in addition to the patient and parents, the affected or unaffected siblings were also               

sequenced, which enables more efficient variant filtering for recessive and X-linked           

diseases. For analysis, we considered such cases as separate trio families and only in the               

final steps of the pipeline the results were merged and then reported family-wise. The              

pedigree information was used to classify the variants into de novo, homozygous,            

hemizygous and heterozygous variants (Figure 2). The heterozygous SNVs and indels were            

further combined to find the compound heterozygous variants present in these families. At             

the end of the variant filtering steps, an average of 4 de novo, 5 homozygous, 1 hemizygous                 

and 2 pairs of compound heterozygous small variants, respectively, remain per family. These             

variants were further prioritized into different tiers to select the best candidate causal             

variants/genes for  further analysis  and confirmation. 
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In Tier 1, 69 LoF variants were found in level 1 from all the samples, on average 1 LoF                   

variant per sample, and 49 of those variants have CADD score greater than 13 were in level                 

2, and 12 variants were in genes that are intolerant to a new LoF variants in level 3 (Figure                   

3). In Tier 2, there are 529 total missense variants and 296 of them have CADD score above                  

13, among them 67 variants are in the genes with ExAC mis_z score greater than 2 (Figure                 

4). 

Using this approach, the causal variants could be identified in 15 in the NDD cohort               

(table 3, [4]), The inheritance pattern was AD in 6 of these families, AR in 7 families, and XL                   

in 2 families. Five of the AD causal variants and 2 XL causal variants were found in level 3 of                    

Tier 1 or 2, where the variants and genes satisfied all the thresholds in the prioritization                

step. Among the 7 AR families 8 AR variants; including the IFT140 AR variant were found                

only in one case in the family 4, only one variant was in the top level of tier 2. The other AR                      

causal variants had high variant deleteriousness scores, but the genes were predicted to be              

tolerant to new functional mutations. We have to note that the intolerance scores are not               

developed for AR inheritance models, so in general, for the AR disease inheritance, the gene               

intolerance score based  prioritization level have to  be relaxed to  find the causal variants.  
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Figure  2: Variant filtering in TRIO  WES  analysis. The  number  of candidate variants  after the 

different  filtering steps  is shown for  the 39 families from the NDD cohort. After the basic 

quality filters, functional variants  are identified and patient and parents  data  are combined. 

Based  on the pedigree information the functional variants  are further classified  into 

different  genetic models.  The  sample  A1434301 has a high number  of de novo variants  due 

to  poor DNA quality. 
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Figure  3: LoF variant  prioritization. The  LoF variants  are classified into different  levels in Tier 

1.  LoF variants  with CADD  score >  13 and  ExAC  pLI score >  0.9  are in level 3.  They constitute 

the first  set of candidate variants  to  be considered for  further downstream  analysis. The 

outlier A1434301 is removed from the visualization. 
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Figure  4: Missense  variants  prioritization. Missense  variants  are classified into different 

levels of  Tier 2.  Only missense  variants  with CADD  score >  13 and  ExAC  missense  z-score >  2 

are in level 3.  These variants  constitute the second set of  variants  to  be considered after the 

level 3 variants  in Tier 1.  The  outlier A1434301 is removed from the visualization. 

 

Discussion 

Next-generation sequencing offers the possibility to identify causal variants of genetic           

diseases without prior hypothesis about the affected gene. The rapidly decreasing costs for             
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NGS allow now the application of whole exome or even whole genome sequencing as              

routine diagnostic tool in clinical settings. However, such hypothesis-free sequencing results           

in long lists of candidate variants. As manual variant filtering and candidate selection based              

on background knowledge is prohibitive in large studies and routine clinical application,            

there is a high need for bioinformatics workflows to extract short lists of prioritized              

candidates. Our germline analysis pipeline outlined here achieves this by making use of trio              

sequencing or larger pedigree sequencing data. Without the pedigree information, many           

variants  will remain and it  is much  harder to  pick  a  candidate from the prioritized gene list.  

Generally, workflows for identification of disease-relevant variants rely on         

prefiltering steps to remove common polymorphisms and technical artifacts, usually using           

publicly available and private databases. Of note, the majority of the samples in the public               

databases like ExAC and 1000 genome are from the Central European Population (CEP). The              

majority of the samples analyzed in our study were also from CEP so the combined MAF                

from all populations was used. However, it is recommended to use population-specific MAF             

if the samples are from other populations than CEP. It is also recommended to aggregate AF                

from the samples sequenced on the same platform and processed with the same pipeline to               

remove technical artifacts  arising specifically on the sequencing platform and pipeline used.  

After the filtering steps, predictions about the functional impact of variants are used             

to narrow down the set of candidates. Many deleteriousness prediction tools are based on              

sequence conservation of the affected position [20]. However, individual tools are often not             

in a good agreement, so that it is recommended to use a consensus vote of multiple tools or                  

to use meta-tools that combine the results of multiple individual prediction algorithms [8]             

[16]. For these reasons, our workflow relies on the CADD score [18], which integrates              
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multiple levels of information including conservation and functional data, for variant           

prioritization.  

A complementary information to the deleteriousness of the variant is the tolerance            

of the affected gene to new functional mutations. The intolerance or constraint score of a               

particular gene is calculated from the deviation of the observed number of functional             

mutations in a gene in large populations from the expected number which is based on the                

total amount of variation in this gene [21]. However, also the gene intolerance score can be                

misleading, as it does for example predict major cancer predisposition genes to be tolerant              

to new functional mutations [20]. Since there are subregions of the genes which are much               

more intolerant to functional mutations than other regions, a region-based or exon-based            

intolerance score could achieve a higher resolution and hence enable better predictions.            

Furthermore, as noted earlier in the results section, the gene intolerance score performs             

poorly for AR variants. So, a new gene intolerance score calculated solely from the              

homozygous variants in the gene should be used to prioritize variants in the AR inheritance               

model. 

Current studies to identify causal variants in genetic diseases, focus usually only on             

exonic, functional variants and investigate only SNVs and small indels. In these studies, for              

up to 60% of the investigated cases no causal variants could be identified [3,4,22]. A               

possible explanation might be that in these cases the causal variants are focal copy number               

variants (CNVs) or structural variants (SVs), and might also be interested to look into +/- 10                

bases around the splice sites, which cannot comprehensively be identified from WES data             

and thus require WGS for full exploration. Alternatively, causal variants might affect non             

protein-coding regions of the genome. While these variants can be identified from WGS             

data, their interpretation and functional effect prediction is much more challenging than for             
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coding variants. Multiple efforts have been made recently to produce more accurate tools             

to predict effect of non-coding variants in Mendelian diseases [23,24], so that in the future               

the inclusion  of non-coding variants  into prioritization workflows  should be possible. 

 

Conclusion: 

The rapid decrease in sequencing costs opened the door for broad application of             

genome sequencing in research as well as in clinical settings. The resulting massive             

sequence data production made data analysis and interpretation a daunting task in clinical             

genomics. We have developed an automated variant identification and prioritization          

pipeline for genetic disorders. With the classification of variants and genes into different             

tiers, the pipeline makes it easy to focus on a small set of candidate variants for downstream                 

analysis. The pipeline will continuously be updated by adding new better accurate tools and              

scores to improve its performance and will eventually also allow to include SVs, CNVs, and               

non-coding variants. 
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