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AUTHORS	SUMMARY		

The	recent	advances	in	pathway	generation	tools	have	resulted	in	a	wealth	of	de	novo	hypothetical	

enzymatic	 reactions,	 which	 lack	 knowledge	 of	 the	 protein-encoding	 genes	 associated	 with	 their	

functionality.	Moreover,	nearly	half	of	known	metabolic	enzymes	are	orphan,	 i.e.,	they	also	 lack	an	

associated	gene	or	protein	sequence.	Proposing	genes	for	catalytic	functions	of	de	novo	and	orphan	

reactions	is	critical	for	their	utility	in	various	applications	ranging	from	biotechnology	to	medicine.	In	

this	work,	we	propose	a	novel	computational	method	that	will	bridge	the	knowledge	gap	and	provide	

candidate	genes	for	both	de	novo	and	orphan	reactions.	We	demonstrate	that	 information	about	a	

small	chemical	structure	around	the	reactive	sites	of	substrates	is	sufficient	to	correctly	assign	genes	

to	the	functionality	of	enzymatic	reactions.	

	

ABSTRACT		

Thousands	of	biochemical	reactions	with	characterized	biochemical	activities	are	still	orphan.	Novel	

reactions	predicted	by	pathway	generation	tools	also	 lack	associated	protein	sequences	and	genes.	

Mapping	orphan	and	novel	reactions	back	to	the	known	biochemistry	and	proposing	genes	for	their	

catalytic	functions	is	a	daunting	problem.	We	propose	a	new	method,	BridgIT,	to	identify	candidate	

genes	and	protein	sequences	for	orphan	and	novel	enzymatic	reactions.	BridgIT	 introduces,	for	the	

first	 time,	 the	 information	 of	 the	 enzyme	 binding	 pocket	 into	 reaction	 similarity	 comparisons.	 It	

ascertains	the	similarity	of	two	reactions	by	comparing	the	reactive	sites	of	their	substrates	and	their	

surrounding	structures,	along	with	the	structures	of	the	generated	products.	BridgIT	compares	orphan	

and	 novel	 reactions	 to	 enzymatic	 reactions	with	 known	 protein	 sequences,	 and	 then,	 it	 proposes	

protein	sequences	and	genes	of	the	most	similar	non-orphan	reactions	as	candidates	for	catalyzing	the	

novel	or	orphan	reactions.	We	performed	BridgIT	analysis	of	orphan	reactions	from	KEGG	2011	(Kyoto	

Encyclopedia	of	Genes	and	Genomes,	published	in	2011)	that	became	non-orphan	in	KEGG	2016,	and	

BridgIT	correctly	predicted	enzymes	with	identical	third-	and	fourth-level	EC	numbers	for	91%	and	56%	

of	these	reactions,	respectively.	BridgIT	results	revealed	that	it	is	sufficient	to	know	information	about	

six	atoms	together	with	their	connecting	bonds	around	the	reactive	sites	of	the	substrates	to	match	a	

protein	sequence	to	the	catalytic	activity	of	enzymatic	reactions	with	maximal	accuracy.	Moreover,	

the	same	information	about	only	three	atoms	around	the	reactive	site	allowed	us	to	correctly	match	

87%	 of	 the	 analyzed	 enzymatic	 reactions.	 Finally,	 we	 used	 BridgIT	 to	 provide	 candidate	 protein	

sequences	for	137000	novel	enzymatic	reactions	from	the	recently	introduced	ATLAS	of	Biochemistry.	

A	web-tool	of	BridgIT	can	be	consulted	at	http://lcsb-databases.epfl.ch/BridgIT/.		
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INTRODUCTION	

The	utility	of	 genome	 scale	 reconstructions	of	metabolic	networks	 in	 correlating	 the	genome	with	

physiology	hinges	on	the	completeness	and	accuracy	of	the	annotation	of	sequenced	genomes.	Even	

the	 genome	 scale	 reconstructions	 of	well-characterized	 organisms	 such	 as	 Escherichia	 coli	 include	

orphan	reactions,	i.e.,	enzymatic	reactions	without	protein	sequences	or	genes	associated	with	their	

functionality	(3).	A	recent	review	on	orphan	reactions	reports	that	almost	half	of	enzymatic	reactions	

cataloged	 in	 KEGG	 (Kyoto	 Encyclopedia	 of	 Genes	 and	 Genomes)	 (1)	 lack	 an	 associated	 protein	

sequence	(2).	

Similar	problems	arise	in	areas	such	as	bioremediation,	synthetic	biology,	and	drug	discovery,	where	a	

need	to	explore	the	potential	of	biological	organisms	beyond	their	natural	capabilities	has	prompted	

the	development	of	tools	that	are	capable	of	generating	de	novo	hypothetical	enzymatic	reactions	and	

pathways	(1–11).	De	novo	reactions	are	behind	many	success	stories	in	biotechnology,	and	they	can	

also	be	used	in	the	gap-filling	of	metabolic	networks	(2,8,9,11–14).	These	enzymatic	reactions	have	

well-explained	biochemistry	that	can	conceivably	occur	in	metabolism.	However,	no	protein-encoding	

genes	associated	with	the	functionality	of	these	reactions	are	known,	which	limits	their	applicability	

for	the	gap-filling	of	genome	scale	models,	metabolic	engineering	and	synthetic	biology	applications	

(15).	

Computational	methods	for	identifying	candidate	genes	of	orphan	reactions	have	traditionally	been	

based	on	protein	sequence	similarity	(16–19).	Two	predominant	classes	of	these	methods	are	based	

on	gene/genome	analysis	(19–22)	and	metabolic	information	(23,24).	Several	bioinformatics	methods	

combine	 different	 aspects	 of	 these	 two	 classes	 such	 as	 gene	 clustering,	 gene	 co-expression,	

phylogenetic	 profiles,	 protein	 interaction	 data	 and	 gene	 proximity	 for	 assigning	 genes	 and	 protein	

sequences	to	orphan	reactions	(25–28).	All	of	these	methods	use	the	concept	of	sequence	similarity	

to	 determine	 the	 biochemical	 functions	 of	 orphan	 reactions.	 However,	 a	 large	 portion	 of	 known	

enzymatic	activities	is	still	missing	an	associated	gene	due	to	annotation	errors,	the	incompleteness	of	

gene	 sequences	 (29),	 and	 the	 fact	 that	homology-based	methods	 cannot	annotate	orphan	protein	

sequences	with	no	or	little	sequence	similarity	to	known	enzymes	(16,30).		

It	was	argued	that	sequence	similarity	methods	can	provide	inaccurate	results	as	small	changes	in	key	

residues	might	greatly	alter	enzyme	functionality	(31).	In	addition,	these	methods	are	not	suitable	for	

the	 annotation	 of	 de	 novo	 reactions	 since	 the	 current	 pathway	 prediction	 tools	 do	 not	 provide	

information	 about	 their	 sequences	 but	 about	 their	 catalytic	 biotransformation	 instead.	 These	

shortcomings	 motivated	 the	 development	 of	 alternative	 computational	 methods,	 based	 on	 the	

structural	 similarity	of	 reactions,	 for	 identifying	candidate	protein	 sequences	 for	orphan	enzymatic	
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reactions	 (28,31–36).	 The	 idea	 behind	 these	 approaches	 is	 to	 assess	 the	 similarity	 between	 two	

enzymatic	reactions	via	the	similarity	of	their	reaction	fingerprints,	i.e.,	the	mathematical	descriptors	

of	 their	 structural	 and	 topological	 properties	 (37).	 In	 such	methods,	 the	 reaction	 fingerprint	 of	 an	

orphan	reaction	is	compared	with	a	set	of	non-orphan	reference	reaction	fingerprints,	and	the	genes	

of	most	similar	reference	reactions	are	then	assigned	as	promising	candidate	genes	for	the	orphan	

reaction.	Reaction	 fingerprints	 can	be	generated	with	different	 similarity	metrics	 such	as	 the	bond	

change,	reaction	center	or	structural	similarity	(36).	

A	class	of	these	methods	considers	all	of	the	compounds	participating	in	reactions	for	comparison	(36).	

The	 application	 of	 this	 group	 of	methods	 is	 restricted	 to	 specific	 enzyme	 commission	 (EC)	 classes	

(35,38)	of	enzymatic	reactions	as	there	are	issues	in	mapping	reactions	that	involve	large	cofactors	in	

the	reaction	mechanism	(28,31–36).	Another	class	of	these	methods	uses	the	chemical	structures	of	

reactant	 pairs	 for	 comparison	 (34).	 While	 this	 class	 of	 methods	 can	 be	 applied	 to	 all	 classes	 of	

enzymatic	 reactions,	 it	neglects	 the	crucial	 role	of	cofactors	 in	 the	reaction	mechanism.	Neither	of	

these	two	classes	was	employed	for	assigning	protein	sequences	to	de	novo	reactions	(34).		

In	this	study,	we	introduce	a	novel	computational	method,	BridgIT,	to	assign	protein	sequences	to	both	

de	novo	and	orphan	reactions.	BridgIT	belongs	to	the	methods	that	use	the	reaction	fingerprints	to	

compare	enzymatic	reactions.	Compared	to	currently	existing	methods,	whose	reaction	fingerprints	

contain	information	about	the	reactants	and	products	of	reactions,	BridgIT	introduces	an	additional	

level	of	 specificity	by	capturing	 the	critical	 information	of	 the	enzyme	binding	pocket	 into	reaction	

fingerprints.	 More	 precisely,	 BridgIT	 is	 substrate-reactive-site	 centric,	 and	 its	 reaction	 fingerprints	

reflect	 the	 specificities	 of	 biochemical	 reaction	mechanisms	 that	 arise	 from	 the	 type	 of	 enzymes	

catalyzing	those	reactions.	In	BridgIT,	we	use	the	Tanimoto	score	to	quantify	the	similarity	of	reaction	

fingerprints.	Values	of	the	Tanimoto	scores	near	0	indicate	reactions	with	no	or	a	negligible	similarity,	

whereas	values	near	1	indicate	reactions	with	a	high	similarity.	

BridgIT	allows	us	to	do	the	following:	(i)	compare	a	given	novel	or	orphan	reaction	to	a	set	of	reactions	

that	 have	 associated	 sequences,	 subsequently	 referred	 to	 as	 the	 reference	 reactions;	 (ii)	 rank	 the	

identified	similar	reactions	based	on	the	computed	Tanimoto	scores;	and	(iii)	propose	the	sequences	

of	the	highest	ranked	reference	reactions	as	possible	candidates	for	encoding	the	enzyme	of	the	given	

de	novo	or	orphan	reaction.		

We	 demonstrate	 through	 several	 studies	 the	 effectiveness	 of	 utilizing	 the	 BridgIT	 fingerprints	 for	

mapping	novel	and	orphan	reactions	to	the	known	biochemistry.	We	show	that	BridgIT	is	capable	of	

correctly	predicting	enzymes	with	an	identical	third–level	EC	(39)	number	for	91%	of	orphan	reactions	

from	KEGG	2011	that	became	non-orphan	in	KEGG	2016.	We	also	study	how	the	size	of	the	BridgIT	

fingerprint	impacts	the	BridgIT	predictions,	and	we	find	that	it	is	sufficient	to	use	the	fingerprints	that	
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describe	six	atoms	along	with	their	connecting	bonds	around	the	reactive	sites	to	correctly	predict	

protein	 sequences.	 Finally,	 we	 study	 137000	 novel	 reactions	 from	 the	 ATLAS	 of	 biochemistry,	 a	

database	of	all	theoretically	possible	biochemical	reactions	(40),	and	we	provide	candidate	enzymes	

that	can	potentially	catalyze	the	biotransformation	of	these	reactions	to	the	research	community.	

	

RESULTS	AND	DISCUSSION	

Reference	database		

The	BridgIT	reference	reaction	database	consists	of	well-characterized	reactions	with	associated	genes	

and	protein	sequences,	and	it	was	built	on	the	basis	of	the	KEGG	2016	reaction	database	(Methods).	

The	 KEGG	 reaction	 database	 is	 the	 most	 comprehensive	 database	 of	 enzymatic	 reactions,	 and	 it	

provides	information	about	the	biochemical	reactions	together	with	their	corresponding	enzymes	and	

genes.	However,	half	of	KEGG	reactions	 lack	associated	genes	and	protein	sequences,	and	they	are	

hence	considered	to	be	orphan	reactions.	The	reference	database	was	built	with	KEGG	reactions	that	

(i)	are	non-orphan	and	elementally	balanced	and	(ii)	can	be	reconstructed	by	the	existing	BNICE.ch	

generalized	 reaction	 rules.	 As	 a	 result,	 the	 reference	 reaction	 database	 contains	 information	 on	

approximately	5049	out	of	9556	KEGG	reactions	(Supplementary	material	S1).		

	

From	 reaction	 chemistry	 to	 detailed	 enzyme	mechanisms.	 Approximately	 15%	of	 KEGG	 reactions	

(1532	 reactions)	 are	 assigned	 to	more	 than	 one	 enzyme	 (EC	 number),	 i.e.,	 multiple	 enzymes	 can	

catalyze	 their	 biotransformation	 through	 different	 enzymatic	 mechanisms.	 For	 example,	 KEGG	

reaction	R00217	is	assigned	to	three	different	enzymes,	1.1.1.40,	1.1.1.38	(malate	dehydrogenase)	and	

4.1.1.3	(oxaloacetate	carboxy-lyase),	and	it	can	undergo	two	different	enzymatic	mechanisms	(Figure	

1).	For	the	4.1.1.3	enzyme,	the	reaction	mechanism	is	well	understood,	as	this	enzyme	belongs	to	the	

carboxy-lyases,	where	a	carbon-carbon	bond	is	broken	and	a	molecule	of	CO2	is	released.	In	contrast,	

for	the	1.1.1.40	and	1.1.1.38	enzymes,	there	is	ambiguity	about	their	detailed	enzyme	mechanisms.	

As	discussed	in	Swiss-Prot	(41),	these	two	enzymes	are	NAD-dependent	dehydrogenases,	but	they	also	

have	 the	 ability	 to	 decarboxylate	 oxaloacetate.	 These	 enzymes	 are	 found	 in	 bacteria	 and	 insects	

(1.1.1.38)	as	well	as	in	fungi,	animals	and	plants	(1.1.1.40).	

We	applied	the	BridgIT	algorithm	to	R00217,	and	we	obtained	two	distinct	reaction	fingerprints	that	

corresponded	 to	 the	 two	 different	 enzyme	mechanisms.	More	 precisely,	 the	 BNICE.ch	 generalized	

reaction	rules	1.1.1.-	and	4.1.1.-	reacted	upon	two	different	reactive	sites	of	oxaloacetate	to	break	the	

carbon-carbon	bond	and	release	CO2	and	pyruvate	(Figure	1).	The	1.1.1.-	rules	recognized	a	larger,	i.e.,	

more	specific,	reactive	site	compared	to	the	one	recognized	by	4.1.1.-	(Figure	1).		
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Therefore,	 a	 reaction	 from	 KEGG	 can	 be	 translated	 into	more	 than	 one	 fingerprint	 in	 the	 BridgIT	

reference	database.	In	addition,	BNICE.ch	describes	approximately	42%	of	the	reactions	assigned	to	a	

single	enzyme	in	KEGG	with	multiple	reaction	rules.	Consequently,	multiple	reaction	fingerprints	can	

describe	the	biotransformation	of	each	of	such	reactions.	

This	way,	by	virtue	of	preserving	the	information	about	enzyme	binding	pockets,	the	reconstructed	

BridgIT	 reference	 reaction	 database	 expands	 from	 5049	 reactions	 to	 17657	 reaction	 fingerprints	

corresponding	to	17657	detailed	reaction	mechanisms.	

	

Comparison	of	BridgIT	and	BLAST	predictions	

As	a	means	to	relate	reaction	structural	similarity	with	reaction	sequence	similarity,	we	simultaneously	

applied	BridgIT	on	a	subset	of	reactions	from	the	reference	reaction	database	together	with	BLAST	

(42)	 on	 their	 corresponding	 protein	 sequences.	 Based	 on	 the	 assumption	 that	 similar	 protein	

sequences	have	similar	functions	(43),	we	compared	the	similarity	results	of	BridgIT	with	those	from	

BLAST,	and	we	statistically	assessed	BridgIT	performance	using	ROC	curve	analysis	(Figure	2).		

We	chose	E.	coli	BW29521	(EBW)	as	our	benchmark	organism	for	this	analysis.	We	extracted	all	of	the	

non-orphan	 reactions	 of	 EBW	 from	 the	 BridgIT	 reference	 database	 together	with	 their	 associated	

protein	 sequences	 (Supplementary	 material	 S1).	 There	 were	 531	 non-orphan	 reactions	 in	 EBW	

associated	 with	 413	 protein	 sequences.	 In	 total,	 there	 were	 731	 reaction-gene	 associations	

(Supplementary	material	S1),	as	there	were	reactions	with	more	than	one	associated	gene,	and	there	

were	also	genes	associated	with	more	than	one	reaction	(Figure	2,	vignette	1).	We	then	used	BridgIT	

to	 assess	 the	 structural	 similarity	 of	 531	 EBW	 reactions	 to	 BridgIT	 reference	 reactions	 using	 the	

Tanimoto	score	(Figure	2,	vignette	2),	and	we	also	applied	BLAST	to	quantify	the	similarity	of	the	413	

EBW	protein	sequences	to	the	KEGG	protein	sequence	database	using	e-values	(Figure	2,	vignette	3).	

We	provided	a	list	of	BridgIT	reaction-reaction	comparisons	together	with	BLAST	sequence-sequence	

comparisons	(Supplementary	material	S2).	

	

Comparing	reaction	and	sequence	similarity	scores.	We	considered	two	sequences	to	be	similar	 if	

BLAST	reports	an	e-value	less	than	10-10	for	their	alignment.	For	a	chosen	discrimination	threshold,	DT,	

of	 the	 global	 Tanimoto	 score,	we	 considered	 the	 BridgIT	 prediction	 of	 similarity	 between	 an	 EBW	

reaction	and	a	BridgIT	reference	reaction	with	a	Tanimoto	score	of	TG	as:	

(i)	True	Positive,	TP,	if	TG	>	DT	and	their	associated	sequence(s)	were	similar	(e-value	<10-10);	

(ii)	True	Negative,	TN,	if	not	similar	for	both	BridgIT	(TG<DT)	and	BLAST+	(e-value	>10-10);	

(iii)	False	Positive,	FP,	if	similar	for	BridgIT	(TG>DT)	but	not	similar	for	BLAST+	(e-value	>10-10);	

(iv)	False	Negative,	FN,	if	not	similar	for	BridgIT	(TG<DT)	but	similar	for	BLAST+	(e-value	<10-10).	
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We	then	counted	the	number	of	TPs,	TNs,	FPs	and	FNs	for	all	531	reactions,	and	we	summed	up	these	

quantities	 to	 obtain	 the	 total	 number	 of	 TPs,	 TNs,	 FPs	 and	 FN	 per	 chosen	 DT.	 We	 repeated	 this	

procedure	for	a	set	of	DT	values	varying	across	the	interval	between	0	and	1	(Figure	2,	vignette	4).		

Finally,	we	used	 the	 total	number	of	TPs,	TNs,	FPs	and	FNs	 to	compute	 the	 true	positive	and	 false	

positive	rates	for	the	ROC	curve	analysis	(Figure	2,	vignette	5).		

The	ROC	curve	indicated	that	the	reaction	comparison	based	on	reaction	structural	similarity	(BridgIT)	

is	comparable	to	the	one	based	on	reaction	sequence	similarity	(BLAST).	 Indeed,	the	obtained	AUC	

score	for	the	BridgIT	classifier	was	0.91	(Figure	3,	panel	A).	We	next	studied	if	the	type	of	compared	

reactions	affected	the	accuracy	of	BridgIT	predictions.	We	categorized	reactions	according	to	their	first	

level	EC	class,	and	we	performed	the	ROC	analysis	for	each	class	separately	(Figure	3,	panel	A).	The	

analysis	revealed	that	BridgIT	performed	well	with	all	enzyme	classes.	For	all	the	classes,	we	obtained	

high	AUC	scores,	ranging	from	0.88	(EC	1)	to	0.96	(EC	5).		

We	next	analyzed	the	accuracy	of	BridgIT	classification	as	a	function	of	the	discrimination	threshold	of	

the	Tanimoto	score,	DT	 (Figure	3,	panel	B).	The	accuracy	 ranged	 from	43%	for	DT=0.01	 to	85%	 for	

DT=0.29.	For	values	of	DT	>	0.29,	the	accuracy	was	monotonically	decreasing	toward	a	value	of	62%	

for	 DT=1.	 The	 classifier	was	 overly	 conservative	 for	 values	 of	 DT	 >	 0.29,	 and	 it	was	 rejecting	 true	

positives	(Figure	3,	panel	B).	More	specifically,	for	DT=0.29,	the	TP	percentage	was	38%,	whereas	for	

DT=1,	it	was	reduced	to	3%.	In	contrast,	the	TN	percentage	increased	very	slightly	for	the	values	of	DT>	

0.29,	where	 for	DT=0.29,	 it	was	 46%,	 and	 for	DT=1,	 it	was	 57%	 (Figure	 3,	 panel	 B).	 Based	 on	 this	

analysis,	we	have	chosen	a	DT	of	0.29	as	an	optimal	threshold	value	for	further	studies.	

Details	about	the	statistical	procedure	are	provided	in	Supplementary	material	S3.	

	

BridgIT	analysis	of	KEGG	reactions	

We	applied	BridgIT	to	5270	KEGG	reactions	that	could	be	reconstructed	by	the	BNICE.ch	generalized	

reaction	rules	(Supplementary	material	S1).	Among	them,	5049	reactions	were	non-orphan,	and	they	

existed	in	the	BridgIT	reference	reaction	database,	whereas	the	remaining	221	reactions	were	orphan.	

BridgIT	correctly	mapped	each	of	the	5049	non-orphan	reactions	to	 itself	 in	the	reference	reaction	

database.	Additionally,	BridgIT	identified	the	reference	reactions	with	Tanimoto	scores	higher	than	the	

optimal	threshold	value	of	0.29	for	92%	of	the	orphan	reactions.	The	remaining	8%	of	orphan	reactions	

had	a	low	similarity	with	the	reference	reactions.		

	

BridgIT	reaction	fingerprints	offer	improved	predictions.	We	repeated	the	analysis	from	the	previous	

section	using	the	standard	reaction	difference	fingerprint	(Methods),	which	is	utilized	in	methods	such	

as	RxnSim	(32)	and	RxnFinder	(33),	to	assess	the	benefits	of	 introducing	the	 information	about	the	
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reactive	site	of	substrates	into	the	reaction	fingerprints.	Comparison	of	the	two	sets	of	predictions	on	

5049	non-orphan	reactions	showed	that	the	predictions	obtained	with	BridgIT	modified	fingerprints	

were	 significantly	 better	 than	 the	 standard	 ones.	 The	 BridgIT	 fingerprints	mapped	 all	 non-orphan	

reactions	correctly,	whereas	the	standard	fingerprints	mismatched	approximately	29%,	i.e.,	1464	of	

non-orphan	reactions.	

The	mismatch	arose	from	cancelations	of	the	fragments	from	the	substrate	and	product	sets	inside	

fingerprint	 description	 layers	 (Methods).	 More	 specifically,	 the	 fragments	 from	 the	 substrate	 and	

product	sets	were	canceled	out	during	algebraic	summation	in	all	eight	description	layers	for	246	non-

orphan	reactions,	 i.e.,	 their	standard	fingerprints	were	empty.	The	 information	about	reactive	sites	

introduced	in	the	BridgIT	reaction	fingerprints	prevents	such	cancellations.	For	example,	the	standard	

reaction	fingerprint	of	KEGG	reaction	R00722	was	empty	(Figure	4,	panel	A).	In	contrast,	we	identified	

R00722	 and	 R00330	 as	 the	most	 similar	 reactions	 to	 R00722	with	 the	 BridgIT	 fingerprint.	 Indeed,	

according	to	the	KEGG	database,	the	enzyme	2.7.4.6	catalyzes	both	of	these	reactions.		

Furthermore,	the	first	description	layer	of	the	standard	fingerprint	was	empty	for	an	additional	1129	

reactions,	 which	 indicated	 that	 these	 fingerprints	 did	 not	 represent	 the	 bond	 changes	 during	 the	

course	of	the	reaction.	The	remaining	89	mismatched	non-orphan	reactions	had	partial	cancelations	

in	 the	 fingerprint	 description	 layers	 (Supplementary	 material	 S1).	 For	 example,	 we	 incorrectly	

identified	R03132	as	the	most	similar	to	R00691	with	the	standard	fingerprint,	whereas	we	identified	

R00691	and	R01373	as	 the	most	similar	 to	R00691	with	 the	BridgIT	 fingerprint	 (Figure	4,	panel	B).	

KEGG	reports	that	both	R00691	and	R01373	can	be	catalyzed	by	either	EC	4.2.1.51	or	EC	4.2.1.91.		

	

BridgIT	 analysis	 of	 known	 reactions	with	 common	enzymes.	 The	5049	 reactions	 in	 the	 reference	

database	were	catalyzed	by	2983	enzymes,	i.e.,	there	were	promiscuous	enzymes	that	catalyzed	more	

than	one	reaction.	Out	of	2983	enzymes,	844	were	promiscuous,	and	they	catalyzed	2432	reactions	

(Supplementary	material	S1).	BridgIT	analysis	of	these	2432	reactions	indicated	that	more	than	80%	

of	them	were	correctly	identified	within	the	groups	catalyzed	by	the	same	enzyme.	An	example	of	such	

a	group	is	given	in	Table	1.	

We	investigated	the	remaining	20	percent	of	reactions	in	depth,	and	we	observed	that	the	Tanimoto	

scores	 of	 the	 first	 two	 description	 layers	 (Methods)	 indicated	 a	 very	 low	 similarity	 between	 the	

reactions	catalyzed	by	the	same	enzyme.	This	result	suggested	that	such	enzymes	were	either	multi-

functional,	 i.e.,	 they	 had	more	 than	 one	 reactive	 site	 (Figure	 5),	 or	 incorrectly	 classified	 in	 the	 EC	

classification	system.	
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BridgIT	 predicts	 correct	 enzymes	 for	 KEGG	 2011	 orphan	 reactions.	We	 compared	 the	 number	 of	

orphan	reactions	in	the	two	versions	of	the	KEGG	reaction	database,	KEGG	2011	and	KEGG	2016.	We	

found	that	64	orphan	reactions	from	KEGG	2011	were	later	associated	with	enzymes	in	KEGG	2016,	

i.e.,	they	became	non-orphan	reactions	(Supplementary	material	S1).	We	used	these	64	reactions	as	

a	benchmark	to	assess	BridgIT	performance.	For	34	out	of	64	(53%)	reactions,	the	BridgIT	algorithm	

proposed	the	same	enzymes	that	KEGG	2016	assigned	to	these	reactions	(Figure	6,	Supplementary	

material	S1).		

We	 also	 compared	 BridgIT	 results	 with	 the	 KEGG	 2016	 assignments	 up	 to	 the	 third	 EC	 level,	 and	

strikingly,	 BridgIT	 and	 KEGG	 2016	 assigned	 enzymes	 matched	 to	 the	 third	 EC	 level	 for	 58	 (91%)	

reactions	 (Figure	6,	 Supplementary	material	 S1).	A	high	matching	 score	 in	 this	 comparison	 is	 likely	

because	BridgIT	uses	BNICE.ch	generalized	reaction	rules,	which	describe	the	biotransformations	of	

reactions	with	specificity	up	to	the	third	EC	level.		

	

Sensitivity	analysis	of	the	BridgIT	fingerprint	size.	The	defining	characteristic	of	the	BridgIT	reaction	

fingerprint	 is	 that	 it	 is	 centered	around	 the	 reactive	 site	of	 the	 reaction	 substrate.	 The	number	of	

description	 layers	 in	 the	BridgIT	 fingerprint,	 i.e.,	 its	 size,	defines	how	 large	of	a	 chemical	 structure	

around	the	reactive	site	we	consider	when	evaluating	the	similarity	(Methods).	To	investigate	to	what	

extent	the	fingerprint	size	affects	the	similarity	results,	we	performed	sensitivity	analysis.	

To	ensure	an	unbiased	assessment	of	the	effects	of	the	fingerprint	size	on	the	similarity	results,	we	

started	by	removing	416	out	of	the	5049	non-orphan	reactions	whose	substrates	could	be	described	

with	less	than	seven	description	layers	(Figure	7,	panel	A).	We	then	formed	the	reaction	fingerprints	

that	contained	only	the	description	 layer	0	 (fingerprint	size	0),	and	we	evaluated	how	many	out	of	

remaining	4626	reactions	BridgIT	could	correctly	match.	We	next	formed	the	reaction	fingerprints	with	

only	the	description	layers	0	and	1	(fingerprint	size	1),	and	we	performed	the	evaluation	again.	We	

repeated	this	procedure	until	 the	final	step,	where	we	formed	the	reaction	fingerprints	with	seven	

description	layers	(fingerprint	size	7).	As	expected,	the	more	description	layers	that	were	incorporated	

into	 the	BridgIT	 fingerprint,	 the	more	accurately	BridgIT	matched	 the	analyzed	 reactions	 (Figure	7,	

panel	B).	BridgIT	correctly	matched	96.5%	of	analyzed	reactions	for	a	fingerprint	size	5,	and	it	matched	

all	of	analyzed	reactions	for	a	fingerprint	size	7.	Considering	that	the	description	layers	0	and	1	describe	

the	single	atoms	and	the	connected	pairs	of	atoms	of	the	reactive	site	(Methods),	layers	2	to	7	also	

describe	the	chemical	structure	around	the	reactive	site	that	contains	up	to	eight	atoms	and	seven	

bonds.	 Therefore,	 the	 information	 about	 six	 atoms	 along	with	 their	 connecting	 bonds	around	 the	

reactive	sites	is	sufficient	for	BridgIT	to	correctly	match	all	non-orphan	KEGG	reactions.	Furthermore,	

we	correctly	matched	87.7%	of	the	analyzed	enzymatic	reactions	using	the	same	information	for	only	
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three	atoms	around	the	reactive	site	(fingerprint	size	4),	which	surpasses	the	71%	of	matched	reactions	

when	using	 the	 standard	 reaction	 fingerprints	 (fingerprint	 size	 7).	 The	 enzymes	 that	 catalyzed	 the	

12.3%	of	reactions	that	we	could	not	match	with	the	BridgIT	fingerprints	of	size	4	acted	mostly	upon	

reactive	sites	that	involve	ring	structures.	

	

BridgIT	analysis	of	novel	ATLAS	reactions	

The	 ATLAS	 of	 biochemistry	 provides	 a	 comprehensive	 catalog	 of	 theoretically	 possible	

biotransformations	between	KEGG	compounds,	and	it	can	be	mined	for	novel	biosynthetic	routes	for	

a	wide	range	of	applications	in	metabolic	engineering,	synthetic	biology,	identification	of	drug	targets	

and	bioremediation	(40).	

We	utilized	BridgIT	to	identify	candidate	enzymes	of	more	than	137000	de	novo	ATLAS	reactions.	If	the	

identified	 candidate	 enzymes	 can	 catalyze	 their	 ATLAS	 reactions,	 we	 can	 use	 them	 directly	 in	 the	

systems	biology	designs.	Otherwise,	we	can	use	their	amino	acid	sequences	as	initial	guesses	in	protein	

engineering.	We	found	that	7%	of	ATLAS	novel	reactions	were	matched	to	known	KEGG	reactions	with	

a	Tanimoto	score	of	1,	while	88%	were	similar	to	KEGG	reactions	with	a	Tanimoto	score	higher	than	

0.29.	The	remaining	5%	of	the	ATLAS	novel	reactions	were	not	similar	to	the	well-characterized	known	

enzymatic	reactions.	

We	 illustrated	 the	 procedure	 of	 identifying	 candidate	 enzymes	 of	 de	 novo	 reactions	 through	 an	

example.	We	applied	the	generalized	reaction	rules	to	the	substrates	of	the	novel	ATLAS	reaction	rat	

127359	 (Figure	 8,	 panel	 1),	 and	 three	 rules,	 3.1.2.-,	 3.3.1.-	 and	 6.3.1.-,	 were	 able	 to	 describe	 this	

reaction	(Figure	8,	panel	2).	We	then	constructed	reaction	fingerprints	around	three	identified	reactive	

sites,	and	we	compared	them	with	the	reference	reaction	fingerprints	based	on	the	Tanimoto	score	

(Figure	 8,	 panel	 3).	 BridgIT	 suggested	 reaction	 R07294	 as	 the	 best	 candidate,	 which	 had	 a	 high	

similarity	with	rat	127359	regarding	the	structure	of	the	substrate	and	the	reaction	mechanism,	and	it	

also	had	an	identical	third-level	EC	number	(Figure	8,	panel	4).		

Finding	 well-characterized	 reactions,	 that	 are	 similar	 to	 the	 novel	 ones	 is	 crucial	 for	 evolutionary	

protein	engineering	as	well	as	computational	protein	design	and	consequently	for	the	experimental	

implementation	of	the	de	novo	reactions.	

Results	 of	 BridgIT	 analysis	 on	 the	 ATLAS	 reactions	 are	 available	 on	 the	 website	 http://lcsb-

databases.epfl.ch/atlas/.		

	

METHODS	

The	BridgIT	method	allows	us	to	link	orphan	reactions	and	de	novo	reactions,	predicted	by	pathway	

design	 tools	 such	 as	 BNICE.ch	 (12),	 retropath2	 (11),	DESHARKY	 (6),	 and	 SimPheny	 (8),	 with	 well-
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characterized	enzymatic	reactions	and	their	associated	genes.	BridgIT	is	inspired	by	the	“lock	and	key”	

principle,	which	is	used	in	protein	docking	methods	(44).	The	enzyme	binding	pocket	is	considered	to	

be	the	“lock”	and	the	ligand	is	a	“key”.	If	a	molecule	has	the	same	reactive	sites	and	similar	surrounding	

structure	as	the	native	substrate	of	a	given	enzyme,	it	is	then	rational	to	expect	that	the	enzyme	will	

catalyze	 the	 same	 biotransformation	 on	 this	 molecule.	 Following	 this	 reasoning,	 BridgIT	 uses	 the	

structural	similarity	of	 the	reactive	sites	of	participating	substrates	together	with	their	surrounding	

structure	as	a	metric	for	the	similarity	of	enzymatic	reactions.	

We	used	the	curated	generalized	reaction	rules	of	BNICE.ch	to	extract	information	about	the	reactive	

sites	 of	 participating	 substrates	 and	 integrated	 it	 into	 BridgIT	 reaction	 fingerprints.	 BNICE.ch,	 its	

applications,	and	the	concept	of	generalized	reaction	rules	are	discussed	elsewhere	(40,45,46).	

BridgIT	workflow	 consists	 of	 four	main	 steps:	 1)	 reactive	 site	 identification,	 2)	 reaction	 fingerprint	

construction,	3)	reaction	similarity	evaluation	and	4)	scoring,	ranking	and	gene	assignment	(Figure	9).	

	

Reactive	site	identification.	An	enzymatic	reaction	triggers	when	its	substrate(s)	fits	perfectly	in	the	

binding	 site	of	 the	enzyme.	 Since	 the	 structure	 and	 geometry	of	 the	binding	 sites	 of	 enzymes	 are	

complex	and	most	of	the	time	not	fully	characterized,	we	propose	focusing	on	the	similarity	of	the	

reactive	sites	of	their	substrates.	Following	this,	we	used	the	generalized	reaction	rules	of	BNICE.ch	to	

identify	 the	 reactive	 sites	 of	 substrates.	 The	 expert-curated	 reaction	 rules	 have	 third-level	 EC	

identifiers,	 e.g.,	 EC	 1.1.1,	 and	 they	 encompass	 the	 following	 biochemical	 knowledge	 of	 enzymatic	

reactions:	(i)	the	information	about	atoms	of	the	substrate’s	reactive	site;	(ii)	their	connectivity	(atom-

bond-atom);	 and	 (iii)	 the	 exact	 information	 of	 bond	 breakage	 and	 formation	 in	 the	 course	 of	 the	

reaction.	As	of	July	2017,	BNICE.ch	contains	361*2	bidirectional	generalized	reaction	rules	that	can	

reconstruct	6528	KEGG	reactions	(40).	

Given	a	novel	or	orphan	reaction,	we	identify	the	reactive	sites	of	its	substrate(s)	in	three	steps.	In	the	

first	step,	we	identify	BNICE.ch	generalized	reaction	rules	that	can	be	applied	to	groups	of	atoms	from	

the	 analyzed	 substrates.	 We	 then	 store	 the	 information	 about	 the	 identified	 rules	 and	 the	

corresponding	groups	of	atoms.	Subsequently,	we	refer	 to	 these	groups	of	atoms	as	 the	candidate	

substrate	reactive	sites.	In	the	second	step,	among	the	identified	rules,	we	keep	only	the	ones	that	can	

recognize	the	connectivity	between	the	atoms	of	the	candidate	substrate	reactive	sites.	In	the	third	

step,	we	then	test	if	the	biotransformation	of	a	substrate(s)	to	a	product(s)	can	be	explained	by	the	

rules	retained	after	the	second	step.	The	candidate	reactive	sites	corresponding	to	the	rules	that	have	

passed	the	three-step	test	are	validated	and	used	further	for	the	construction	of	reaction	fingerprints.		

We	exemplify	this	procedure	on	the	de	novo	reaction	rat	132064,	which	catalyzes	the	conversion	of	

3,4-dyhydroxymandelonitrile,	substrate	A,	to	protocatechualdehyde	and	cyanide	(Figure	9).	In	the	first	
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step,	 we	 identified	 164	 rules	 out	 of	 361*2	 rules	 that	 could	 be	 applied	 to	 groups	 of	 atoms	 of	

substrate	A	(Figure	9,	panel	1a).	Out	of	the	164	rules,	103	matched	the	connectivity	(Figure	9,	panel	

1b).	Finally,	we	applied	103	reaction	rules	to	substrate	A	for	bond	breaking	and	formation	comparisons,	

and	one	rule	could	explain	the	transformation	of	substrate	A	to	the	products	(Figure	9,	panel	1c).		

	

Reaction	fingerprint	construction.	Linear	representations	of	the	structures	of	molecules,	molecular	

fingerprints,	have	been	used	in	many	methods	and	for	different	applications,	especially	for	structural	

comparison	of	 compounds	 (47,48).	 In	one	of	 the	most	 commonly	used	molecular	 fingerprints,	 the	

Daylight	 fingerprint	 (47),	 a	molecule	 is	 decomposed	 into	 eight	 layers	 starting	 from	 layer	 zero	 that	

accounts	only	for	atoms.	Layer	1	expands	one	bond	away	from	all	of	the	atoms	and	accounts	for	atom-

bond-atom	connections.	This	procedure	is	continued	until	layer	7	that	includes	seven	connected	bonds	

from	 each	 atom.	 There	 are	 two	 types	 of	 Daylight	 reaction	 fingerprints:	 (i)	 structural	 reaction	

fingerprint,	 which	 is	 a	 simple	 combination	 of	 reactant	 and	 product	 fingerprints,	 and	 (ii)	 reaction	

difference	 fingerprint,	 which	 is	 the	 algebraic	 summation	 of	 reactant	 and	 product	 fingerprints	

multiplied	by	 their	 stoichiometry	 coefficients	 in	 the	 reaction.	 In	 this	 study,	we	propose	a	modified	

version	 of	 the	 reaction	 difference	 fingerprint.	 The	 procedure	 of	 formulating	 BridgIT	 reaction	

fingerprints	is	demonstrated	through	an	example	reaction	(Figure	9,	panels	2.a	and	2.b).		

Starting	from	the	atoms	of	the	identified	substrate	reactive	site,	we	formed	eight	description	layers	of	

a	molecule,	where	each	layer	consisted	of	fragments	with	different	lengths.	Fragments	were	composed	

of	atoms	connected	through	unbranched	sequences	of	bonds.	Depending	on	the	number	of	bonds	

included	in	the	fragments,	we	formed	different	description	layers	of	a	molecule	as	follows:	

Layer	0:	Described	the	type	of	each	atom	of	the	reactive	site	together	with	its	count.	For	example,	

the	substrate	of	the	example	reaction	at	layer	0	was	described	with	1	oxygen,	1	nitrogen	and	2	

carbon	atoms	(Figure	9,	panel	2.a).	

Layer	1:	Described	the	type	and	count	of	each	bond	between	pairs	of	atoms	in	the	reactive	site.	In	

the	example,	the	substrate	at	layer	1	was	described	with	three	fragments	of	length	1:	1	C-O,	1	C-C	

and	 1	 CºN	 bond	 (Figure	 9,	 panel	 2.a).	 Fragments	 are	 shown	 by	 their	 SMILES	 molecular	

representation	(49).	

Layer	2:	Described	the	type	and	count	of	fragments	with	3	connected	atoms.	While	layers	0	and	1	

described	the	atoms	of	reactive	sites,	starting	from	layer	2,	we	also	described	atoms	that	were	

outside	of	the	reactive	site.	In	the	illustrated	example,	we	had	3	different	fragments	of	this	type	

(Figure	9,	panel	2.a).	

We	used	the	same	procedure	to	describe	the	molecules	up	to	layer	7,	as	descriptions	up	to	this	

layer	are	known	to	capture	the	structure	of	most	of	the	metabolites	in	biochemical	reactions	(37).	
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Not	all	description	layers	are	needed	to	describe	less	complex	molecules.	For	example,	product	C	

(cyanide)	was	fully	described	with	layer	0	and	layer	1	(Figure	9,	panel	2.a).	For	very	large	molecules,	

we	can	use	the	description	layers	that	contain	fragments	with	more	than	8	connected	atoms.	

For	each	layer,	we	next	formed	the	following:	(i)	the	substrate	set	by	merging	all	of	the	fragments,	their	

type	and	their	count	in	the	substrate	molecules	of	the	reaction	and	(ii)	the	product	set	by	merging	all	

of	the	fragments	(type	and	count)	in	the	product	molecules	of	the	reaction.	In	both	sets,	we	multiplied	

the	count	of	each	fragment	by	the	stoichiometric	coefficients	of	the	corresponding	compound	in	the	

reaction.	Finally,	we	created	the	reaction	fingerprints	by	summing	the	fragments	of	the	substrate	and	

product	sets	for	each	layer	(Figure	9,	panel	2.b).		

Introducing	the	specificity	of	reactive	sites	into	the	reaction	fingerprint	allows	BridgIT	to	capitalize	on	

the	information	about	enzyme	bonding	pockets.	In	order	to	keep	this	valuable	information	throughout	

the	generation	of	 reaction	 fingerprints,	BridgIT	does	not	 consider	 the	atoms	of	 the	 reactive	 site(s)	

when	performing	the	algebraic	summation	of	the	substrate	and	product	set	fragments.	Consequently,	

the	 BridgIT	 algorithm	 enables	 retaining,	 tracking	 and	 emphasizing	 the	 information	 of	 the	 reactive	

site(s)	in	all	of	the	layers	of	the	reaction	fingerprint,	which	distinguishes	it	from	the	existing	methods.			

	

Reaction	similarity	evaluation.	We	quantified	the	similarity	of	two	reactions	with	the	similarity	score	

between	their	fingerprints,	subsequently	referred	to	as	reaction	fingerprints	1	and	2.	In	this	study,	we	

used	the	Tanimoto	score,	which	is	an	extended	version	of	the	Jaccard	coefficient	and	cosine	similarity	

(50).	 We	 calculated	 the	 Tanimoto	 score	 for	 each	 descriptive	 layer,	 TLk,	 together	 with	 the	 global	

Tanimoto	score,	TG.	The	Tanimoto	score	for	the	k-th	descriptive	layer	was	defined	as:	

	

	

	

where	ak	was	the	count	of	the	fragments	in	the	k-th	layer	of	reaction	fingerprint	1;	bk	is	the	count	of	

the	fragments	in	the	k-th	layer	of	reaction	fingerprint	2;	and	ck	was	the	number	of	common	k-th	layer	

fragments	of	reaction	fingerprints	1	and	2.	Two	fragments	are	equal	if	their	canonical	SMILES	and	their	

stoichiometric	 coefficients	 are	 identical.	 We	 defined	 the	 global	 Tanimoto	 similarity	 score,	 TG,	 as	

follows:	
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For	 each	 reaction	 fingerprint,	 we	 computed	 its	 Tanimoto	 similarity	 score	 against	 the	 reaction	

fingerprints	from	the	BridgIT	reference	database,	which	contained	reaction	fingerprints	of	all	known	

well-characterized	enzymatic	reactions	(Figure	9,	panel	3).	

	

Sorting,	ranking	and	gene	assignment.	For	a	given	input	reaction,	we	ranked	the	reference	reactions	

using	the	computed	TG	scores.	We	distinguished	the	reference	reactions	with	the	same	TG	score	based	

on	the	TL	score	of	layers	0	and	1.	The	algorithm	also	allows	the	assignment	of	ranking	weights	to	layers	

specified	by	the	user.	We	then	assigned	the	protein	sequences	associated	with	the	highest	ranked,	i.e.,	

the	most	similar,	reference	reactions	to	the	input	reaction	(Figure	9,	panel	4).		

	

CONCLUSIONS	

We	developed	 the	 computational	 tool	 BridgIT	 to	 evaluate	 and	 quantify	 the	 structural	 similarity	 of	

biochemical	reactions	by	exploiting	the	biochemical	knowledge	of	BNICE.ch	generalized	reaction	rules.	

Benefiting	from	the	capability	of	the	generalized	reaction	rules	to	identify	reactive	sites	of	substrates,	

BridgIT	 translates	 the	 structural	 definition	 of	 biochemical	 reactions	 into	 a	 novel	 type	 of	 reaction	

fingerprint	that	explicitly	describes	the	atoms	of	the	substrates	reactive	sites	and	their	surrounding	

structure.	These	reaction	fingerprints	can	then	be	used	to	compare	and	score	all	novel	and	orphan	

reactions	 with	well-characterized	 reference	 reactions	 and,	 consequently,	 to	 link	 them	with	 genes,	

genomes,	and	organisms.	We	demonstrated	through	several	examples	improvements	that	the	BridgIT	

fingerprint	brings	compared	to	the	fingerprints	currently	existing	in	the	literature.	

Unlike	 traditional	 sequence	 similarity	 methods,	 BridgIT	 can	 also	 identify	 the	 protein	 sequence	

candidates	for	de	novo	reactions.	We	applied	BridgIT	to	de	novo	reactions	of	the	ATLAS	of	Biochemistry	

database,	and	we	proposed	several	candidate	enzymes	for	each	of	them.	The	candidate	enzymes	for	

de	novo	reactions	are	either	capable	of	catalyzing	these	reactions	or	they	can	serve	as	initial	sequences	

for	enzyme	engineering.	The	obtained	BridgIT	similarity	scores	can	also	be	used	as	a	confidence	score	

to	assess	the	feasibility	of	the	implementation	of	novel	ATLAS	reactions	in	metabolic	engineering	and	

systems	biology	studies.		

The	applications	of	BridgIT	go	beyond	merely	bridging	gaps	in	metabolic	reconstructions,	as	it	can	be	

used	 to	 identify	 the	 potential	 utility	 of	 existing	 enzymes	 for	 bioremediation	 as	well	 as	 for	 various	

applications	in	synthetic	biology	and	metabolic	engineering.	As	the	field	of	metabolic	engineering	is	

growing	and	the	metabolic	engineering	applications	are	increasingly	turned	toward	the	production	of	

valuable	industrial	chemicals	such	as	1,4-butanediol	(51,52),	we	expect	that	methods	for	the	design	of	

de	novo	synthetic	pathways	such	as	BNICE.ch	(12)	and	methods	for	identifying	candidate	enzymes	for	

de	novo	reactions	such	as	BridgIT	will	grow	in	importance.	
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FIGURES	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	1.	A	multi-enzyme	reaction	such	as	R00217	can	be	catalyzed	by	more	 than	one	enzyme.	BridgIT	

identified	two	distinct	fingerprints	for	this	reaction	that	correspond	to	two	reactive	sites	of	oxaloacetate.	

The	reactive	site	recognized	by	the	1.1.1.-	rule	is	more	specific	(blue	substructure)	than	the	one	recognized	

by	the	4.1.1.-	rule	(green	substructure).	 
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Figure	2.	Five	steps	in	the	BridgIT	cross	validation	procedure.	
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Figure	3.	Panel	A:	ROC	curve	for	the	BridgIT	classifier	among	all	EC	classes	and	inside	each	class.	Panel	B:	

Accuracy	 characteristics	 and	 the	 percentages	 of	 TP,	 TN,	 FP	 and	 FN	 as	 a	 function	 of	 the	 discrimination	

threshold	DT.	The	percentages	are	computed	as	X	%=100.X/(TP+TN+FN+FP)	where	X	can	be	TP,	TN,	FP	or	

FN.		

	

	

	

	

	

	

	

	

	

	

	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 27, 2017. ; https://doi.org/10.1101/210039doi: bioRxiv preprint 

https://doi.org/10.1101/210039


	 23	

	

	

	

	

	

	

	

	

	

	

	

Figure	4.	Comparison	of	the	results	obtained	with	the	BridgIT	and	standard	fingerprint	on	two	example	

KEGG	reactions.	Panel	A:	the	input	reaction	R00722	(left)	and	the	most	similar	reactions	identified	with	the	

BridgIT	(right,	i)	and	standard	(right,	ii)	fingerprints.	Panel	B:	the	input	reaction	R00691	(left)	and	the	most	

similar	reactions	identified	with	the	BridgIT	(right,	i)	and	standard	(right,	ii)	fingerprints.	
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Table1.	A	group	of	5	reactions	catalyzed	by	1.1.1.219.	High	Tanimoto	scores	indicate	that	BridgIT	correctly	

predicts	the	similarity	of	reactions	within	this	group.	

	

	

	

	

	 	

1.1.1.219 

Catalyzed 

reactions 
R03123 R03636 R05038 R07999 R07998 

R03123 1 0.96 0.93 0.93 0.98 

R03636 0.96 1 0.96 0.94 0.95 

R05038 0.93 0.96 1 0.97 0.91 

R07999 0.93 0.94 0.97 1 0.91 

R07998 0.98 0.95 0.91 0.91 1 
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Figure	5.	R03539	and	R03208	are	catalyzed	by	the	same	enzyme,	1.11.1.8.	However,	the	reactive	sites	of	

substrates	are	completely	different.	
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Figure	6.	BridgIT	successfully	predicts	enzymes	 for	58	out	of	64	orphan	reactions	 from	KEGG	2011	that	

became	non-orphan	in	KEGG	2016.	
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Figure	7.	Panel	A:	the	non-orphan	reactions	that	can	be	completely	described	with	the	fingerprints	up	to	

six	description	layers.	Panel	B:	percent	of	correctly	matched	reactions	as	a	function	of	the	BridgIT	fingerprint	

size.	
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Figure	8.	Details	of	the	BridgIT	procedure	applied	to	a	novel	ATLAS	reaction.	
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Figure	9.	Main	steps	of	the	BridgIT	workflow:	(1)	reactive	site	recognition	for	an	input	reaction	(de	novo	or	

orphan);	 (2)	 reaction	 fingerprint	construction;	 (3)	 reaction	similarity	evaluation;	and	 (4)	 sorting,	 ranking	

and	gene	assignment.	Panels	1.a	to	1.c	illustrate	the	procedure	of	the	identification	of	reactive	sites	for	the	

de	 novo	 reaction	 rat	 132064.	 Panel	 1.a:	 Two	 candidate	 reactive	 sites	 of	 3,4-dihydroxymandelonitrile	

(substrate	 A)	 that	were	 recognized	 by	 the	 rules	 4.1.2.	 (green)	 and	 1.14.13	 (red).	 Panel	 1.b:	 Both	 rules	

recognized	the	connectivity	of	atoms	within	two	candidate	reactive	sites.	Panel	1.c:	Only	reaction	rule	4.1.2.	

can	explain	the	transformation	of	substrate	A	to	products.	Panel	2.a	shows	the	fragmentation	of	reaction	

compounds,	whereas	panel	2.b	illustrates	the	mathematical	representations	of	the	corresponding	BridgIT	

reaction	fingerprints.	
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