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Abstract 
Motivation: One of the major challenges in traditional mathematical modeling of gene regulatory 
circuits is the insufficient knowledge of kinetic parameters. These parameters are often inferred from 
existing experimental data and/or educated guesses, which can be time-consuming and error-prone, 
especially for large networks. 
Results: We present a computational tool based on our newly developed method named random 
circuit perturbation (RACIPE), to explore the robust dynamical features of gene regulatory circuits 
without the requirement of detailed kinetic parameters. RACIPE generates an ensemble of circuit 
models with distinct random parameters and uniquely identifies robust dynamical properties by 
statistical analysis. Here, we discuss software implementation and illustrate the usage of RACIPE on 
coupled toggle-switch circuits and a published circuit of B-lymphopoiesis. We expect RACIPE to 
contribute to a more comprehensive and unbiased understanding of gene regulatory mechanisms. 
Availability:	RACIPE is a free open source software distributed under (Apache 2.0) license and can be 
downloaded from GitHub (https://github.com/simonhb1990/RACIPE-1.0).	
Contact:	Mingyang.Lu@jax.org, Herbert.Levine@rice.edu or jonuchic@rice.edu 
 

 
 

1 Introduction  
Biological processes are orchestrated by complex gene regulatory 
networks (GRNs). To understand the operating principles of GRNs, 
mathematical modeling approaches (Smolen et al., 2000; Novère, 2015) 
have been widely used in various contexts, such as regulation of cell 
cycle (Tyson, 1991), stem cell development (Huang et al., 2007), 
circadian rhythm (Smolen et al., 2001), developmental pattern formation 
(Reeves et al., 2006) and cell phenotypic switches in cancer (Ao et al., 
2008; Lu et al., 2013; Zhang et al., 2014; Li and Wang, 2015; Yu et al., 
2017). To model the dynamics of GRNs, different computational 
algorithms have been developed (Dehmer et al., 2011), such as ordinary 
differential equations (ODEs)-based models (Strogatz, 2007), Boolean 
network models (Li et al., 2004; Steinway et al., 2014), Bayesian 
network models (Zhang et al., 2013), agent-based models (Robertson-
Tessi et al., 2015), and reaction-diffusion models (Roberts et al., 2013). 

The ODEs-based models consider more regulatory details compared to 
Boolean or Bayesian network models and less computationally intensive 
than agent-based model and reaction-diffusion models, thus being a very 
attractive approach to simulate the operation of GRNs. 
      It is believed that there is a core gene regulatory circuit underlying a 
GRN which functions as a decision-making module for one specific 
biological process (Milo et al., 2002; Hartwell et al., 1999). 
Identification of such core gene circuits can largely reduce the 
complexity of network modeling. Notably, the core gene regulatory 
circuit doesn’t function isolatedly. Instead, its operation is usually 
regulated by other genes and signaling pathways (“peripheral factors”) 
that interact with the core circuit. Although the ODE-based and other 
modeling approach have been successfully applied to analyze the 
dynamics of the core gene circuits in certain scenarios, these approaches 
typically suffer from two issues. First, it is very difficult for traditional 
modeling approach to consider the effects of these “peripheral” factors 
due to their inherent complexity. Second, the modeling approaches are 
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usually limited by insufficient knowledge of the kinetic parameters for 
many of the biological processes. In this case, the value of most 
parameters have to be inferred either by educated guess or fitting to the 
experimental results, which can be time-consuming and error-prone 
especially for large gene networks.  
      To deal with these issues, we previously established a new 
computational method, named random circuit perturbation (RACIPE), to 
study the robust dynamical features of gene regulatory circuits without 
the requirement of detailed kinetic parameters (Huang et al., 2017). 
RACIPE takes the topology of the core regulatory circuit as the only 
input and unbiasedly generates an ensemble of mathematical models, 
each of which is characterized by a unique set of kinetic parameters. For 
each mathematical model, it contains a set of chemical rate equations, 
which are subjected to non-linear dynamics analysis. From the ensemble 
of models, we can analyze the robust dynamical properties of the core 
circuit by statistical analysis. In RACIPE, the effects of the “peripheral 
factors” are modeling as random perturbations to the kinetic parameters. 
Unlike the traditional ODEs-based modeling, RACIPE uses a self-
consistent scheme to randomize all kinetic parameters for each 
mathematical model instead of relying on a particular set of parameters. 
Unlike other methods using randomization (Meir et al., 2002; Feng et al., 
2004; Gutenkunst et al., 2007; Llamosi et al., 2016), RACIPE adopts a 
more carefully designed sampling strategy to randomize parameters 
across a wide range while satisfying the half-function rule, where each 
regulatory link has about 50% chance to be activated in the ensemble of 
RACIPE models. RACIPE-generated gene expression data and 
corresponding parameters can be analyzed by statistical learning 
methods, such as hierarchical clustering analysis (HCA) and principle 
component analysis (PCA) which provides a holistic view of the 
dynamical behaviors of the gene circuits. Notably, RACIPE integrates 
statistical learning methods with parameter perturbations, which makes it 
distinct from the traditional parameter sensitivity analysis (Meir et al., 
2002; Feng et al., 2004), parameter space estimation (Leon et al., 2016) 
and other randomization strategies (Gutenkunst et al., 2007; Llamosi et 
al., 2016). In addition, our previous work shows that robust gene 
expression patterns are conserved against large parameter perturbations 
due to the restraints from the circuit topology. Thus we can interrogate 
the dynamical property of a gene circuit by randomization. 
      Without the need to know detailed kinetic parameters, RACIPE can 
1) identify conserved dynamical features of a relatively large gene 
regulatory circuits across an ensemble of mathematical models; and 2) 
generate predictions on gain-of-function and loss-of-function mutations 
of each gene/regulatory link; and 3) discover novel strategies to perturb 
particular cell phenotypes. The application of RACIPE to a proposed 
core 22-gene regulatory circuit governing epithelial-to-mesenchymal 
transition (EMT) showed that RACIPE captures experimentally observed 
stable cell phenotypes, and predict the efficiency of various biomarkers 
in distinguishing different EMT phenotypes (Huang et al., 2017).  

Here, we report a computational tool that we developed based on the 
random circuit perturbation method. In the following, we first discuss the 
implementation of RACIPE, including how the tool processes the input 
topology file of a gene network, estimates the range of parameters for 
randomization and solves stable steady states, etc. By applying RACIPE 
on a coupled toggle-switch circuit, we evaluate the computational cost of 
using RACIPE, detail the procedure on how to choose an appropriate 
number of RACIPE models and number of initial conditions for each 
RACIPE model to get converged simulation results for a gene circuit, 
and further illustrate how to do perturbation analysis using RACIPE. 
Lastly, we apply RACIPE on a published gene circuit governing B-
lymphopoiesis (Salerno et al., 2015) and show that RACIPE can capture 

multiple gene expression states during B cell development and the fold-
change in expression of several key regulators between stages (van Zelm 
et al., 2005). In summary, we expect RACIPE to be a valuable tool to 
decipher the robust dynamical features of gene circuits in many 
applications. 
 

Fig.1. The method of random circuit perturbation (a) Workflow of RACIPE. It first 
generates an ensemble of models by randomizing the kinetic parameters of the chemical 
rate equations of the core circuit, and then analyzes the ensemble of models by statistical 
analysis. (b) RACIPE is tested on two types of coupled toggle-switch (CTS) circuits 
(diagram illustrated in the top panel). The arrows represent transcriptional activation; the 
bar-headed arrows represent transcriptional inhibition. For both cases, the average time 
cost to simulate a RACIPE model (y-axis) is linearly proportional to the number of model 
parameters (x-axis). 

2 Methods 
2.1 Overview of Random Circuit Perturbation 
Random Circuit Perturbation (RACIPE) method is developed to identify 
the robust dynamical features of a biological gene circuit without the 
need of detailed circuit parameters (Huang et al., 2017). The method is 
composed of two parts (Fig. 1a) –  a procedure to generate and simulate 
an ensemble of models and statistical analysis across all generated 
models to identify robust dynamical features of the circuit.  
 
2.2  Software Implementation 
We report a tool based on the RACIPE method specifically for multi-
stable gene regulatory circuits. With the input of the topology of a gene 
circuit, the tool automatically builds the mathematical model of the 
circuit, randomizes the model parameters, and solves the model to output 
the solutions of the stable steady states. These results can be used to 
uncover the robust features of the circuit, such as the stable steady-state 
gene expressions. The main steps of the tool are elaborated below. 
 
2.2.1  Input data 
The main input of RACIPE is the topology of a gene circuit, i.e. the gene 
names and the regulatory links connecting them. The current version can 
be applied to gene regulatory circuits with only transcription factors. We 
will expand its capacity to other regulation types in the future. In the 
input topology file (e.g., “circuit.topo”), each line specifies a regulatory 
link, which contains the name of source gene, the name of target gene, 
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and the type of interactions (activation or inhibition).  The list of gene 
nodes is not required, as it is automatically generated in RACIPE. Table 
1 shows an example of the input topology file for a toggle-switch circuit, 
which has two mutually inhibiting genes A and B.  
 

Table.1. Format of the input topology file (“circuit.topo”) 
Source Target Type# 

A B 2 
B A 2 

# “1” stands for activation, and “2” stands for inhibition. 
 
2.2.2  Process Circuit Topology Information 
Based on the input circuit topology, RACIPE automatically builds 
mathematical models of ordinary differential equations (ODEs). For 
instance, the temporal dynamics of a toggle switch circuit can be 
modeled by the following ODEs: 
 

𝐴 = 𝐺$𝐻& 𝐵, 𝐵$), 𝑛+$, 𝜆+$- − 𝑘$	𝐴								 
𝐵 = 𝐺+	𝐻& 𝐴, 𝐴+) , 𝑛$+, 𝜆$+- − 𝑘+	𝐵			 1 , 

 
where 𝐴 and 𝐵 are the expression levels of genes A and B, respectively. 
𝐺$	and 𝐺+	 are the maximum production rates (the production rate for the 
gene with all activators, but not any inhibitor, binding to the promoter). 
𝑘$	 and 𝑘+	 are the innate degradation rates of A and B, respectively. The 
effects of the inhibitory regulation of gene A by B is formulated as a 
non-linear shifted Hill function (Lu et al., 2013) 𝐻& 𝐵, 𝐵$), 𝑛+$, 𝜆+$-  
defined as 
 

𝐻& 𝐵, 𝐵$), 𝑛+$, 𝜆+$- , = 𝜆+$- + 1 − 𝜆+$- 𝐻- 𝐵, 𝐵$), 𝑛+$ 				 2 ,  
 

where 𝐻- = 1/(1 + (𝐵/𝐵$))789) is the inhibitory Hill function, 𝐵$) is the 
threshold level, 𝑛+$ is the Hill coefficient and 𝜆+$-  is the maximum fold 
change of the B level caused by the inhibitor A  ( 𝜆+$- < 1 ). The 
inhibition of gene A by gene B can be modeled in a similar way.  

When multiple regulators target a gene, the functional form of the 
rate equations depends on the nature of the multivalent regulation. 
Currently, we adopt a common scheme where we assume that these 
regulatory interactions are independent. Thus, the overall production rate 
is written as the product of the innate production rate of the target gene 
and the shifted Hill functions for all the regulatory links. We will 
consider other cases, such as competitive regulation, in a later version. 
2.2.3  Estimate the Ranges of Parameters for Randomization 
Next, RACIPE estimates, for each parameter, the range of values for 
randomization. Most of the parameter ranges, such as the ones for 
production and degradation rates, are preset (see SI 1.1), while the ranges 
for the threshold values from the shift Hill functions are estimated 
numerically to satisfy the “half-functional” rule. The “half-functional” 
rule ensures that each link in the circuit has roughly 50% chance to be 
functional across all the models (Huang et al., 2017). All the parameter 
ranges are generated and stored in a parameter file (“circuit.prs”). 
 
2.2.4  Solve and Identify the Stable Steady States 
To generate a model, RACIPE randomizes each parameter independently 
within the pre-calculated range. For each model with a particular set of 
parameters, RACIPE numerically simulates the dynamics of the model 
(see SI 1.2). To identify all possible stable steady states of each model, 
we repeat the simulations for multiple times with different initial 
conditions, randomly chosen from a log-uniform distribution ranging 
from the minimum possible level to the maximum possible level. To 
rapidly obtain the stable steady states, we simulate the dynamics by the 

Euler method with a large time step. From the steady state solutions of 
all the realizations, we identify distinct stable states, defined as those 
whose Euclidean distances of the levels among them are all larger than a 
small threshold (see SI 1.3). The above procedure is repeated for all the 
models. Together, we obtain a large set of gene expression data and 
model parameters for statistical analysis. In the implementation, 
RACIPE generates nRM number of random models, each of which is 
subject to simulations from nIC number of initial conditions. We will 
discuss how to appropriately choose nRM and nIC in the Results section. 
 
2.2.5  Output Data 
Lastly, the model parameters and the steady state gene expressions of all 
RACIPE models are stored separately. The parameters for each RACIPE 
model are stored in “circuit_parameter.dat”, where each row corresponds 
to one RACIPE model, and each column shows the value of a parameter. 
The parameters follow the same order in the “circuit.prs” file. Depending 
on the number of stable states of a RACIPE model, its gene expressions 
are stored in the “circuit_solution_i.dat”, where i is the number of stable 
states. In the “circuit_solution_i.dat”, each row shows the gene 
expression vectors of all the stable steady states from a RACIPE model. 
These data are subject to further statistical analysis.  
 
2.2.6  Options 
RACIPE allows adjusting simulation parameters by directly using them 
in the command line or changing them in “circuit.cfg” file (see the 
README file for detailed instructions). Moreover, RACIPE also has 
options to perform simulations of perturbations, such as gene knockout, 
over-expression, and removal of a regulatory link. Unlike conventional 
approach, RACIPE applies perturbations (see SI 1.4) to the entire 
ensemble of models to capture the conserved behavior of the treatment.  

3 Results 
3. 1  Time Cost of Simulations 
To evaluate the performance of RACIPE with different choices of 
simulation parameters, we test the tool on two types of coupled toggle-
switch (CTS) circuits (Fig. 1b, see SI section 2 for mathematical 
models). They both contain several toggle-switch motifs, but different 
connecting patterns among these motifs, where the type I circuits (CTS-
I) have unidirectional activations among A genes (B genes), while the 
type II circuit (CTS-II) have mutual activations among A genes (B 
genes). These circuits have been actively studied to understand the 
coupled cellular decision-making processes (Jolly et al., 2015; Huang et 
al., 2015). By changing the number of toggle-switch motifs, we can 
easily test RACIPE on circuits of different sizes. For each circuit, we 
generate 10,000 random models and solve steady-state expressions 
starting from 1000 initial conditions for each model. As shown in Fig 1b, 
for both types of circuits, the average simulation time to solve a RACIPE 
model scales linearly with the total number of parameters in the model, 
suggesting its potential use on large circuits. Of note, the total time to 
simulate all RACIPE models depends on other factors (the number of 
models, the number of initial conditions, etc.), which will be discussed in 
the next section. 
 
3.2  Convergence Test 
As mentioned above, there are two important simulation parameters - the 
number of RACIPE models (nRM) and, for each model, the number of 
initial conditions (nIC) that are used to find all possible stable steady 
states. When nRM and nIC are too small, the results from the ensemble 
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of models may not converge and be statistically significant. However, 
having too large nRM and nIC sacrifices computational efficiency.  

Fig. 2. The effect of the number of initial conditions on the convergence of the RACIPE 
results. (a) For each coupled toggle-switch I (CTS-I) circuit (curves in different colors), 
the convergence is evaluated by the dissimilarity of states using different numbers of 
initial conditions (nIC in x-axis) and different numbers of RACIPE models (nRM in 
different panels). (b) The minimum nIC to get the converged distribution of the number of 
stables states when nRM equals to 10,000. Different points represent the CTS-I circuits of 
different sizes. The minimum nIC is selected if the decrease of the Bhattacharyya distance 
is smaller than the threshold (0.0005, see Fig. S2) when nIC increases.  (c) For each CTS-
I circuit, the convergence is alternatively evaluated by the dissimilarity of expressions of 
each gene. Only the Ai genes for each circuit are plotted (one line per gene) and colored 
differently for different nRMs. The dissimilarity is less sensitive to nIC, but is 
dramatically reduced with the increase of nRM. (d) The minimum nIC to get the 
converged distribution of expressions. The minimum nIC is selected if the decrease of the 
Bhattacharyya distance is smaller than the threshold (0.0005, see Fig. S5) when nIC 
increases.  nRM needs to be larger than 5000 otherwise the distribution is not converged 
even with nIC is 2,000.  

To identify an optimal choice of nRM and nIC, we test the effects of 
both on the convergence of the simulation results by calculating the 
dissimilarity of the probability distribution of the number of stable states 
(referred to as the “dissimilarity of states”) and the distribution of gene 
expressions (referred to as the “dissimilarity of expressions”) using 
different values of nRM and nIC. (Fig. 2 and Fig. 3). If the simulation 
result converges well, the dissimilarity values are expected to be small.   

For every choice of nIC and nRM, we repeat the RACIPE 
calculations for ten times for each circuit and measure the dissimilarity 
of the above-mentioned probability distributions by the Bhattacharyya 
distance 𝐷+ = −ln	( 𝑝 𝑥 𝑞 𝑥A∈C	 , where 𝑝  and 𝑞  are two 
distributions. If the two distributions are exactly same, 𝐷+  equals to 0; if 
they are more different, 𝐷+  becomes larger. 

To explore the effects of nRM on the distribution of the number of 
stable states, we repeat RACIPE on the circuit for ten times for a certain 
nRM, and calculate the distribution of the number of stable states for 

each replica. Then we compare the dissimilarity of the distributions (i.e. 
the dissimilarity of states) for different nRMs by calculating the average 
Bhattacharyya distances: 

 

	𝐷+(𝑝7DE, 𝑝7FG) =
1
100

− ln 𝑝7DE 𝑥 𝑝7FG 𝑥
A∈C

			 3 ,
J)

GKJ

J)

EKJ

 

 
where 𝑝7DE(𝑥)	stands for the probability of the circuit with 𝑥 number of  
stable states for a random model for a replica 𝑗 when nRM equals to 𝑛M . 
𝑛N  is the maximum nRM used in the test. Here we fix 𝑛N  to 10,000. 
Similarly, we can explore the effects of nRM on the distribution of gene 
expressions.  Similar approach is used to measure of the effects of nIC. 

Fig. 3. The effect of the number of RACIPE models on the convergence of the results. (a) 
The dissimilarity of states as a function of nRM when nIC is 1000. (b) The dissimilarity 
of expressions as a function of nRM when nIC is 1000. (c) The minimum nRM as the 
function of the number of genes in each circuit. (d) The minimum nRM to get the 
converged distribution of gene expressions. 

As shown in Fig. 2a and Fig. S1-3, the dissimilarity of states 
decreases when more initial conditions are used. When nIC is larger than 
500, RACIPE can effectively identify most stable steady states, except 
for some rare states (the probability to be observed is less than 1%). To 
get converged distribution of the number of stable states, the minimum 
required nIC increases with the size of the circuit (Fig. 2b and Fig. S3). 
Surprisingly, the convergence of the distribution of expressions seems to 
be less sensitive to nIC (Fig. 2c and Fig. S4-5), as similar results are 
obtained no matter how small or larger nICs are selected. As suggested 
from Fig. 2d, with more than 10,000 RACIPE models, 100 initial 
conditions are sufficient to get converged results. 

However, nRM has a significant influence on the convergence of the 
simulation results. From Fig. 2a and Fig. S3, increasing nRM 
dramatically lowers the dissimilarity of states. Also, without enough 
RACIPE models, the distribution of expressions does not converge even 
when a large nIC is used (Fig. 2d).  Furthermore, when nIC equals to 
1000, both the dissimilarity of states and gene expressions decrease 
when nRM increases (Fig. 3a, 3b and Fig. S6-10). To get converged 
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results for the distribution of states, the minimum required nRM again 
increases with the size of the circuit (Fig. 3c). However, the minimum 
required nRM to get the converged distribution of expressions is likely 
independent to the size of the circuit as long as it is more than 7,000 (Fig. 
3d). Interestingly, when the dissimilarities of states for different circuits 
are scaled by the maximum number of stable states of the circuits, the 
curves of the dissimilarities for each circuit overlap with each other (Fig. 
S7b). The results suggest that the higher dissimilarity of a larger circuit 
is due to the higher complexity of the system.  
 
3.3  Analysis of the RACIPE-generated Data 
Once RACIPE generates, for each model, the kinetic parameters and the 
stable-state gene expressions, a variety of statistical methods can be 
applied to analyze the data from the ensemble of models. In the 
following, we will illustrate these analyses in the context of a coupled 
toggle-switch circuit (CTS-I5, with five toggle switches) (Fig. 4a). We 
generate 10,000 RACIPE models, each of which is simulated starting 
from 1,000 initial conditions. For each model, the maximum number of 
stable steady states is seven (Fig. S1); from 10000 RACIPE models, 
there are a total of 24,425 steady states. These states could be regarded 
as the gene expressions of cells in a system obeying these dynamics.  

To analyze the simulated gene expression, RACIPE utilizes average 
linkage hierarchical clustering analysis (HCA) using Euclidean distance 
after normalization of the expressions (see SI 1.5-1.8 for details). From 
the heatmap (Fig. 4b), we observe six major clusters that have at least 
5% fraction for each (Fig. 4c). The six major clusters, denoted by “gene 
state” below, are further confirmed by projecting all steady state 
solutions onto the first two principal components (PC1 and PC2) (Fig. 
4d). From HCA, genes with similar functions are also grouped together. 
Strikingly, the gene expression patterns of the couple toggle-switch 
circuits, from the top to the bottom, correspond to a cascade of flips of 
the state of each toggle-switch motif (Fig. 4b). For instance, compared 
with gene state 2, gene state 5 has a flipped state in the fifth toggle-
switch motif (A5 and B5). 

Fig.4.  RACIPE identifies robust gene states of a coupled toggle-switch (CTS-I5) circuit. 
(a) Diagram of the CTS-I5 circuit. (b) Average linkage hierarchical clustering analysis of 
simulated gene expressions reveals six major clusters of distinct expression patterns. Each 
column corresponds to a gene, and each row corresponds to a stable steady state from a 
RACIPE model. (c). Histogram of the fraction of gene expressions in each cluster. The 

cutoff is selected at 5% (Red dash line). (d) 2D probability density map of the gene 
expressions projected on to the first two principal components. The six gene clusters are 
highlighted by the same colors as those in (b). 

Moreover, RACIPE can identify the roles of individual genes in the 
dynamic behaviors of the circuit by in silico gene knockouts, one gene at 
a time (Fig. 5 and Fig. S11). Knocking out gene A1 dramatically changes 
the probability distribution of the number of stable states and probability 
distribution of gene expressions, while knocking out gene A5 leads to a 
similar distribution of the number of stable states and only one gene state 
is missing. Therefore, we find that, for coupled toggle-switch circuits, 
the importance of Ai genes gradually decrease - A1 is the most critical 
one and A5 is the least important one. Similarity, the importance of Bi 
genes is in the reversed order.  In addition, RACIPE can identify the 
significantly differentiated parameters between two states by the 
statistical analysis of model parameters (Fig. S12, see SI 1.9), which 
further helps to elucidate the functions of gene circuits. 

Fig. 5. Perturbation analysis. (a) Probability distribution of the number of stable steady 
states of each model. Different colors represent the results of the standard RACIPE (CTS-
I5-WT) and different knockout versions of RACIPE (CTS-I5-Ai

KO). (b) Probability density 
maps of the RACIPE gene expressions projected on to the first two principal components. 
Note, for the knockout cases, the principal components are modified to reflect the zero 
expressions for the corresponding genes (see SI for details). 

3.4  Application to a B-lymphopoiesis Gene Circuit  

The above example, while instructive, is only based on simple circuit 
motifs. To further evaluate the use of RACIPE, we analyze the properties 
of a gene regulatory circuit governing B-lymphopoiesis. This circuit was 
previously proposed by Salerno et al. (Salerno et al., 2015) and analyzed 
mainly by traditional nonlinear dynamics methods, such as bifurcation 
analysis. Here we compare the RACIPE-generated gene expression data 
with microarray gene expression profiles for B cells from the previously 
published work by van Zelm et al. (van Zelm et al., 2005). 
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      B cells that develop in the bone marrow progress through the 
multipotent progenitor (characterized by CD34+/lin-), pro-B, pre-B-I and 
pre-B-II large, pre-B-II small and immature-B stages sequentially (van 
Zelm et al., 2005). The regulatory circuitry for lineage specification of 
hematopoietic multipotent progenitors is still not well understood. To 
address this issue, Salerno et al. constructed a gene regulatory circuit 
(Fig. 6a) governing B-lymphopoiesis based on literature search and 
confirmed the important role of ZNF521 (zinc finger protein 521) and 
EBF1 (Early B-Cell Factor 1) during the specification of B cells from the 
multipotent progenitor stage (CD34+/lin-) to the pro-B stage (Salerno et 
al., 2015). Here we apply RACIPE to the same gene network and study 
the predicted gene expression patterns and how they are associated with 
various stages during B cell development.  

Fig. 6. RAICPE identifies multiple gene expression states during B cell development. (a) 
A proposed gene regulatory circuit governing B-lymphopoiesis, adopted from (Salerno et 
al., 2015). The network consists of 10 transcription factors (TFs). Red arrows represent 
transcriptional activation and blue bar-headed arrows represent transcriptional inhibition. 
(b) Average linkage hierarchical clustering analysis of the gene expression data from all 
the RACIPE models using the Euclidean distance. Each column corresponds to a gene, 
and each row corresponds to a stable steady state. Four major gene states (clusters) are 
identified from the RACIPE analysis. (c) 2D probability density map of the RACIPE-
predicted gene expression data projected on to the first two principal component axes. (d) 
The microarray expression profiling of different stages during B cell development (van 
Zelm et al., 2005) projected on to the same axes as shown in (c) (See SI 1.10). (e) 
Comparison between experimental gene expression of various stages with in silico 
clusters. Blue dots and red dots represent the Z-scores of genes from the RACIPE models 
and experiments, respectively. Error bar for each blue dot represents standard deviation of 
the RACIPE expression values. (f) Comparison between experimental gene expression 
fold-change from stage Pro-B to stage Pre-B-I with the computed fold-change by 
RACIPE. 

     Fig. S13 shows 10000 models are good enough to capture the robust 
behaviors of the gene network for B-lymphopoiesis. The stable steady 
states from all models form four major clusters, that correspond to the 
stages CD34+/lin-, pro-B, (pre-B-I, Immature-B) and (Pre-B-II large, 
small), respectively (Fig. 6b-d). We further compare the microarray gene 
expression profiles with data generated by RACIPE. Even through there 
is only one sample in each stage from (van Zelm et al., 2005), the trend 
of the gene expression predicted by RACIPE agrees well with that from 

experiments, especially the comparison between cluster 1 and the 
CD34+/lin- stage and that between cluster 3 and the Pre-B-I stage (Fig. 
6e). From the hierarchical clustering analysis (Fig. 6b), we observe that 
there is a ‘switch-like’ change in the gene expression pattern from the 
stage pro-B to pre-B-I, as also shown in Fig. 6c. To test the prediction, 
we extract the microarray data of pro-B and pre-B-I and analyze the fold-
change of the regulators in the circuit. Strikingly, the microarray data 
shows the down-regulation of TF ZNF521, FLT3, IL7Ra and PU.1 and 
up-regulation of CD19, E2A, PAX5 and EBF1, which validates the 
prediction from the RACIPE analysis (Fig. 6f). In summary, RACIPE is 
able to provide a rich source of information from the regulatory circuit of 
B-lymphopoiesis and potentially capture the gene expression features of 
various stages during B cell development.  
      Although we observe agreement between in silico clusters by 
RACIPE and microarray data of various stages in B cell development, 
we might not yet be able to generate all information regarding the paths 
of B cell development. The reasons are at least two-fold. First, the result 
by RACIPE is highly dependent on the topology of the gene circuit and 
there might be important genes/regulations missing in the current circuit 
due to insufficient knowledge from available data. Second, due to the 
very limited number of experimental samples, i.e., one in each stage, the 
comparison with clusters by RACIPE might be inaccurate. However, 
with even the limited information, RACIPE has been shown to capture 
the change of multiple master regulators across various stages during B 
cell development. Further study including construction of a more 
complete regulatory circuit for B cell development and measures of gene 
expression of more samples at various stages is needed to fully 
understand the state transitions of B cell progression. 

4 Discussion 
In this study, we introduced a new tool based on our recently 

developed computational algorithm, named random circuit perturbation 
(RACIPE). Unlike traditional circuit modeling approaches that rely on a 
particular set of parameters, which might introduce incomplete or biased 
results, RACIPE generates an ensemble of models with random kinetic 
parameters, simulates the dynamics of these models by solving ODEs, 
and statistically analyzes the results. With this randomization approach, 
RACIPE can identify the most robust features of a gene circuit without 
the need to know detailed kinetic parameter values. In a sense, we 
convert a traditional non-linear dynamics problem into a statistical data 
analysis problem. The method has been implemented in C and will be 
freely available for academic use.   
      To better understand the performance of RACIPE, we particularly 
explored the effects of two important simulation parameters, the number 
of initial conditions (nIC) and the number of RACIPE models (nRM), on 
the convergence of the statistical analysis. Insufficient nIC and nRM 
may lead to inconsistent results in the repeats of the same simulation. 
Figs. 2 and 3 are good references for an initial guess of these parameters 
and users can always identify the optimal nIC and nRM with a similar 
analysis. From our tests, the time cost of RACIPE scales linearly with 
the total number of parameters used in the mathematical model, 
suggesting its potential use in analyzing large gene networks.   

To illustrate the use of RACIPE, we applied it to a coupled toggle-
switch (CTS-I5) circuit consisting of five toggle switches, a circuit that 
has an implication in coupled decision-making of multiple cell fates. 
From the RACIPE-generated expression data, we identified six major 
clusters by both HCA and PCA. In addition, we analyzed the role of each 
gene on circuit dynamics by in silico gene knockout (Fig. 5). To further 
show the predictive power of RACIPE, we applied the method on a 
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published B-lymphopoiesis gene regulatory circuit. The gene expression 
patterns of various stages during B cell development can be efficiently 
captured by RACIPE. Notably, the fold-change of master regulators 
among the stage ‘Pro-B’ and ‘Pre-B-I’ predicted by RACIPE agrees well 
with that from the microarray data. These results show that RACIPE can 
not only reveal robust gene expression patterns, but also help uncover the 
design principle of the circuit. 

The capability of RACPE in identifying circuit functions using a 
randomization approach reinforces the hypothesis that circuit dynamics 
are mainly determined by circuit topology (Klemm and Bornholdt, 2005) 
not by detailed kinetic parameters. Indeed, it is commonly believed that, 
through evolution, gene circuits of important pathways should be 
robustly designed to be functional (Li et al., 2004) even in a dynamic 
and heterogeneous environment (Kaluza and Mikhailov, 2007). In 
RACIPE, we take the advantage of this feature to interrogate the 
robustness of a gene circuit by randomly perturbing all the kinetic 
parameters, from which we evaluate the most conserved properties.  

Although we believe RACIPE have wide applications in systems 
biology, there are a few limitations of the current version. First, while all 
parameters are completely randomized to generate models, some of these 
models might not be realistic because some parameters are unlikely to be 
perturbed in cells, such as the number of binding sites. In these cases, 
incorporating relevant experimental evidences will improve the 
modeling. Second, RACIPE is unique in generating data of both gene 
expressions and model parameters. Although we have shown that the 
parameters in models from different gene state clusters are distinct (Fig. 
S11), further data analysis methods are needed to fully understand the 
roles of each parameter in circuit behavior. Third, current RACIPE only 
models regulatory circuits of transcription factors. However, the same 
approach can be extended to model biological pathways, which typically 
involves regulations of multiple types, such as protein-protein 
interactions and microRNA-mediated regulations. Fourth, we currently 
use deterministic ODE-based method to model the dynamics. Since gene 
expression noise has been shown to play crucial roles in circuit dynamics 
(Raser and O’Shea, 2005; Munsky et al., 2012), it is important to extend 
RACIPE to stochastic analysis. Lastly, the quality of the circuit topology 
may dramatically impact the quality of RACIPE modeling. An accurate 
inference method for constructing gene circuits is especially important. 
Further improvements in these aspects will greatly improve the usability 
of this randomization-based approach and contribute to a better 
understanding of the operative mechanisms of gene regulatory circuits. 
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