








RACIPE: A computational tool for Modeling GRNs using Randomization 

results for the distribution of states, the minimum required nRM again 
increases with the size of the circuit (Fig. 3c). However, the minimum 
required nRM to get the converged distribution of expressions is likely 
independent to the size of the circuit as long as it is more than 7,000 (Fig. 
3d). Interestingly, when the dissimilarities of states for different circuits 
are scaled by the maximum number of stable states of the circuits, the 
curves of the dissimilarities for each circuit overlap with each other (Fig. 
S7b). The results suggest that the higher dissimilarity of a larger circuit 
is due to the higher complexity of the system.  
 
3.3  Analysis of the RACIPE-generated Data 
Once RACIPE generates, for each model, the kinetic parameters and the 
stable-state gene expressions, a variety of statistical methods can be 
applied to analyze the data from the ensemble of models. In the 
following, we will illustrate these analyses in the context of a coupled 
toggle-switch circuit (CTS-I5, with five toggle switches) (Fig. 4a). We 
generate 10,000 RACIPE models, each of which is simulated starting 
from 1,000 initial conditions. For each model, the maximum number of 
stable steady states is seven (Fig. S1); from 10000 RACIPE models, 
there are a total of 24,425 steady states. These states could be regarded 
as the gene expressions of cells in a system obeying these dynamics.  

To analyze the simulated gene expression, RACIPE utilizes average 
linkage hierarchical clustering analysis (HCA) using Euclidean distance 
after normalization of the expressions (see SI 1.5-1.8 for details). From 
the heatmap (Fig. 4b), we observe six major clusters that have at least 
5% fraction for each (Fig. 4c). The six major clusters, denoted by “gene 
state” below, are further confirmed by projecting all steady state 
solutions onto the first two principal components (PC1 and PC2) (Fig. 
4d). From HCA, genes with similar functions are also grouped together. 
Strikingly, the gene expression patterns of the couple toggle-switch 
circuits, from the top to the bottom, correspond to a cascade of flips of 
the state of each toggle-switch motif (Fig. 4b). For instance, compared 
with gene state 2, gene state 5 has a flipped state in the fifth toggle-
switch motif (A5 and B5). 

Fig.4.  RACIPE identifies robust gene states of a coupled toggle-switch (CTS-I5) circuit. 
(a) Diagram of the CTS-I5 circuit. (b) Average linkage hierarchical clustering analysis of 
simulated gene expressions reveals six major clusters of distinct expression patterns. Each 
column corresponds to a gene, and each row corresponds to a stable steady state from a 
RACIPE model. (c). Histogram of the fraction of gene expressions in each cluster. The 

cutoff is selected at 5% (Red dash line). (d) 2D probability density map of the gene 
expressions projected on to the first two principal components. The six gene clusters are 
highlighted by the same colors as those in (b). 

Moreover, RACIPE can identify the roles of individual genes in the 
dynamic behaviors of the circuit by in silico gene knockouts, one gene at 
a time (Fig. 5 and Fig. S11). Knocking out gene A1 dramatically changes 
the probability distribution of the number of stable states and probability 
distribution of gene expressions, while knocking out gene A5 leads to a 
similar distribution of the number of stable states and only one gene state 
is missing. Therefore, we find that, for coupled toggle-switch circuits, 
the importance of Ai genes gradually decrease - A1 is the most critical 
one and A5 is the least important one. Similarity, the importance of Bi 
genes is in the reversed order.  In addition, RACIPE can identify the 
significantly differentiated parameters between two states by the 
statistical analysis of model parameters (Fig. S12, see SI 1.9), which 
further helps to elucidate the functions of gene circuits. 

Fig. 5. Perturbation analysis. (a) Probability distribution of the number of stable steady 
states of each model. Different colors represent the results of the standard RACIPE (CTS-
I5-WT) and different knockout versions of RACIPE (CTS-I5-Ai

KO). (b) Probability density 
maps of the RACIPE gene expressions projected on to the first two principal components. 
Note, for the knockout cases, the principal components are modified to reflect the zero 
expressions for the corresponding genes (see SI for details). 

3.4  Application to a B-lymphopoiesis Gene Circuit  

The above example, while instructive, is only based on simple circuit 
motifs. To further evaluate the use of RACIPE, we analyze the properties 
of a gene regulatory circuit governing B-lymphopoiesis. This circuit was 
previously proposed by Salerno et al. (Salerno et al., 2015) and analyzed 
mainly by traditional nonlinear dynamics methods, such as bifurcation 
analysis. Here we compare the RACIPE-generated gene expression data 
with microarray gene expression profiles for B cells from the previously 
published work by van Zelm et al. (van Zelm et al., 2005). 
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      B cells that develop in the bone marrow progress through the 
multipotent progenitor (characterized by CD34+/lin-), pro-B, pre-B-I and 
pre-B-II large, pre-B-II small and immature-B stages sequentially (van 
Zelm et al., 2005). The regulatory circuitry for lineage specification of 
hematopoietic multipotent progenitors is still not well understood. To 
address this issue, Salerno et al. constructed a gene regulatory circuit 
(Fig. 6a) governing B-lymphopoiesis based on literature search and 
confirmed the important role of ZNF521 (zinc finger protein 521) and 
EBF1 (Early B-Cell Factor 1) during the specification of B cells from the 
multipotent progenitor stage (CD34+/lin-) to the pro-B stage (Salerno et 
al., 2015). Here we apply RACIPE to the same gene network and study 
the predicted gene expression patterns and how they are associated with 
various stages during B cell development.  

Fig. 6. RAICPE identifies multiple gene expression states during B cell development. (a) 
A proposed gene regulatory circuit governing B-lymphopoiesis, adopted from (Salerno et 
al., 2015). The network consists of 10 transcription factors (TFs). Red arrows represent 
transcriptional activation and blue bar-headed arrows represent transcriptional inhibition. 
(b) Average linkage hierarchical clustering analysis of the gene expression data from all 
the RACIPE models using the Euclidean distance. Each column corresponds to a gene, 
and each row corresponds to a stable steady state. Four major gene states (clusters) are 
identified from the RACIPE analysis. (c) 2D probability density map of the RACIPE-
predicted gene expression data projected on to the first two principal component axes. (d) 
The microarray expression profiling of different stages during B cell development (van 
Zelm et al., 2005) projected on to the same axes as shown in (c) (See SI 1.10). (e) 
Comparison between experimental gene expression of various stages with in silico 
clusters. Blue dots and red dots represent the Z-scores of genes from the RACIPE models 
and experiments, respectively. Error bar for each blue dot represents standard deviation of 
the RACIPE expression values. (f) Comparison between experimental gene expression 
fold-change from stage Pro-B to stage Pre-B-I with the computed fold-change by 
RACIPE. 

     Fig. S13 shows 10000 models are good enough to capture the robust 
behaviors of the gene network for B-lymphopoiesis. The stable steady 
states from all models form four major clusters, that correspond to the 
stages CD34+/lin-, pro-B, (pre-B-I, Immature-B) and (Pre-B-II large, 
small), respectively (Fig. 6b-d). We further compare the microarray gene 
expression profiles with data generated by RACIPE. Even through there 
is only one sample in each stage from (van Zelm et al., 2005), the trend 
of the gene expression predicted by RACIPE agrees well with that from 

experiments, especially the comparison between cluster 1 and the 
CD34+/lin- stage and that between cluster 3 and the Pre-B-I stage (Fig. 
6e). From the hierarchical clustering analysis (Fig. 6b), we observe that 
there is a ‘switch-like’ change in the gene expression pattern from the 
stage pro-B to pre-B-I, as also shown in Fig. 6c. To test the prediction, 
we extract the microarray data of pro-B and pre-B-I and analyze the fold-
change of the regulators in the circuit. Strikingly, the microarray data 
shows the down-regulation of TF ZNF521, FLT3, IL7Ra and PU.1 and 
up-regulation of CD19, E2A, PAX5 and EBF1, which validates the 
prediction from the RACIPE analysis (Fig. 6f). In summary, RACIPE is 
able to provide a rich source of information from the regulatory circuit of 
B-lymphopoiesis and potentially capture the gene expression features of 
various stages during B cell development.  
      Although we observe agreement between in silico clusters by 
RACIPE and microarray data of various stages in B cell development, 
we might not yet be able to generate all information regarding the paths 
of B cell development. The reasons are at least two-fold. First, the result 
by RACIPE is highly dependent on the topology of the gene circuit and 
there might be important genes/regulations missing in the current circuit 
due to insufficient knowledge from available data. Second, due to the 
very limited number of experimental samples, i.e., one in each stage, the 
comparison with clusters by RACIPE might be inaccurate. However, 
with even the limited information, RACIPE has been shown to capture 
the change of multiple master regulators across various stages during B 
cell development. Further study including construction of a more 
complete regulatory circuit for B cell development and measures of gene 
expression of more samples at various stages is needed to fully 
understand the state transitions of B cell progression. 

4 Discussion 
In this study, we introduced a new tool based on our recently 

developed computational algorithm, named random circuit perturbation 
(RACIPE). Unlike traditional circuit modeling approaches that rely on a 
particular set of parameters, which might introduce incomplete or biased 
results, RACIPE generates an ensemble of models with random kinetic 
parameters, simulates the dynamics of these models by solving ODEs, 
and statistically analyzes the results. With this randomization approach, 
RACIPE can identify the most robust features of a gene circuit without 
the need to know detailed kinetic parameter values. In a sense, we 
convert a traditional non-linear dynamics problem into a statistical data 
analysis problem. The method has been implemented in C and will be 
freely available for academic use.   
      To better understand the performance of RACIPE, we particularly 
explored the effects of two important simulation parameters, the number 
of initial conditions (nIC) and the number of RACIPE models (nRM), on 
the convergence of the statistical analysis. Insufficient nIC and nRM 
may lead to inconsistent results in the repeats of the same simulation. 
Figs. 2 and 3 are good references for an initial guess of these parameters 
and users can always identify the optimal nIC and nRM with a similar 
analysis. From our tests, the time cost of RACIPE scales linearly with 
the total number of parameters used in the mathematical model, 
suggesting its potential use in analyzing large gene networks.   

To illustrate the use of RACIPE, we applied it to a coupled toggle-
switch (CTS-I5) circuit consisting of five toggle switches, a circuit that 
has an implication in coupled decision-making of multiple cell fates. 
From the RACIPE-generated expression data, we identified six major 
clusters by both HCA and PCA. In addition, we analyzed the role of each 
gene on circuit dynamics by in silico gene knockout (Fig. 5). To further 
show the predictive power of RACIPE, we applied the method on a 
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published B-lymphopoiesis gene regulatory circuit. The gene expression 
patterns of various stages during B cell development can be efficiently 
captured by RACIPE. Notably, the fold-change of master regulators 
among the stage ‘Pro-B’ and ‘Pre-B-I’ predicted by RACIPE agrees well 
with that from the microarray data. These results show that RACIPE can 
not only reveal robust gene expression patterns, but also help uncover the 
design principle of the circuit. 

The capability of RACPE in identifying circuit functions using a 
randomization approach reinforces the hypothesis that circuit dynamics 
are mainly determined by circuit topology (Klemm and Bornholdt, 2005) 
not by detailed kinetic parameters. Indeed, it is commonly believed that, 
through evolution, gene circuits of important pathways should be 
robustly designed to be functional (Li et al., 2004) even in a dynamic 
and heterogeneous environment (Kaluza and Mikhailov, 2007). In 
RACIPE, we take the advantage of this feature to interrogate the 
robustness of a gene circuit by randomly perturbing all the kinetic 
parameters, from which we evaluate the most conserved properties.  

Although we believe RACIPE have wide applications in systems 
biology, there are a few limitations of the current version. First, while all 
parameters are completely randomized to generate models, some of these 
models might not be realistic because some parameters are unlikely to be 
perturbed in cells, such as the number of binding sites. In these cases, 
incorporating relevant experimental evidences will improve the 
modeling. Second, RACIPE is unique in generating data of both gene 
expressions and model parameters. Although we have shown that the 
parameters in models from different gene state clusters are distinct (Fig. 
S11), further data analysis methods are needed to fully understand the 
roles of each parameter in circuit behavior. Third, current RACIPE only 
models regulatory circuits of transcription factors. However, the same 
approach can be extended to model biological pathways, which typically 
involves regulations of multiple types, such as protein-protein 
interactions and microRNA-mediated regulations. Fourth, we currently 
use deterministic ODE-based method to model the dynamics. Since gene 
expression noise has been shown to play crucial roles in circuit dynamics 
(Raser and O’Shea, 2005; Munsky et al., 2012), it is important to extend 
RACIPE to stochastic analysis. Lastly, the quality of the circuit topology 
may dramatically impact the quality of RACIPE modeling. An accurate 
inference method for constructing gene circuits is especially important. 
Further improvements in these aspects will greatly improve the usability 
of this randomization-based approach and contribute to a better 
understanding of the operative mechanisms of gene regulatory circuits. 

Funding:   This	 work	 was	 supported	 by	 the	 Physics	 Frontiers	 Center	 National	
Science	 Foundation	 (NSF)	 grant	 PHY-1427654	 and	 the	NSF	 grants	 DMS-1361411	
and	PHY-1605817,	the	Cancer	Prevention	and	Research	Institute	of	Texas	(CPRIT)	
grants	R1110	and	R1111	(to	Jose	Onuchic	and	Herbert	Levine),	and	John	S.	Dunn	
Foundation	 Collaborative	 Research	 Award	 (to	 Jose	 Onuchic).	 Mingyang	 Lu	 is	
partially	 supported	by	 the	National	Cancer	 Institute	of	 the	National	 Institutes	of	
Health	under	Award	Number	P30CA034196.	

Conflict	of	Interest:	none	declared.	

References 
Ao,P. et al. (2008) Cancer as robust intrinsic state of endogenous molecular-

cellular network shaped by evolution. Med. Hypotheses, 70, 678–684. 
Dehmer,M. et al. (2011) Applied Statistics for Network Biology: Methods in 

Systems Biology John Wiley & Sons. 
Feng,X.-J. et al. (2004) Optimizing genetic circuits by global sensitivity analysis. 

Biophys. J., 87, 2195–2202. 
Gutenkunst,R.N. et al. (2007) Universally Sloppy Parameter Sensitivities in 

Systems Biology Models. PLOS Comput. Biol., 3, e189. 
Hartwell,L.H. et al. (1999) From molecular to modular cell biology. Nature, 402, 

C47-52. 

Huang,B. et al. (2017) Interrogating the topological robustness of gene regulatory 
circuits by randomization. PLOS Comput. Biol., 13, e1005456. 

Huang,B. et al. (2015) Modeling the Transitions between Collective and Solitary 
Migration Phenotypes in Cancer Metastasis. Sci. Rep., 5, srep17379. 

Huang,S. et al. (2007) Bifurcation dynamics in lineage-commitment in bipotent 
progenitor cells. Dev. Biol., 305, 695–713. 

Jolly,M.K. et al. (2015) Coupling the modules of EMT and stemness: A tunable 
‘stemness window’ model. Oncotarget, 6, 25161–25174. 

Kaluza,P. and Mikhailov,A.S. (2007) Evolutionary design of functional networks 
robust against noise. EPL Europhys. Lett., 79, 48001. 

Klemm,K. and Bornholdt,S. (2005) Topology of biological networks and reliability 
of information processing. Proc. Natl. Acad. Sci. U. S. A., 102, 18414–18419. 

Leon,M. et al. (2016) A computational method for the investigation of multistable 
systems and its application to genetic switches. BMC Syst. Biol., 10, 130. 

Li,C. and Wang,J. (2015) Quantifying the Landscape for Development and Cancer 
from a Core Cancer Stem Cell Circuit. Cancer Res., 75, 2607–2618. 

Li,F. et al. (2004) The yeast cell-cycle network is robustly designed. Proc. Natl. 
Acad. Sci. U. S. A., 101, 4781–4786. 

Llamosi,A. et al. (2016) What Population Reveals about Individual Cell Identity: 
Single-Cell Parameter Estimation of Models of Gene Expression in Yeast. 
PLOS Comput. Biol., 12, e1004706. 

Lu,M. et al. (2013) MicroRNA-based regulation of epithelial–hybrid–mesenchymal 
fate determination. Proc. Natl. Acad. Sci., 110, 18144–18149. 

Meir,E. et al. (2002) Robustness, Flexibility, and the Role of Lateral Inhibition in 
the Neurogenic Network. Curr. Biol., 12, 778–786. 

Milo,R. et al. (2002) Network motifs: simple building blocks of complex networks. 
Science, 298, 824–827. 

Munsky,B. et al. (2012) Using Gene Expression Noise to Understand Gene 
Regulation. Science, 336, 183–187. 

Novère,N.L. (2015) Quantitative and logic modelling of molecular and gene 
networks. Nat. Rev. Genet., 16, nrg3885. 

Raser,J.M. and O’Shea,E.K. (2005) Noise in Gene Expression: Origins, 
Consequences, and Control. Science, 309, 2010–2013. 

Reeves,G.T. et al. (2006) Quantitative Models of Developmental Pattern Formation. 
Dev. Cell, 11, 289–300. 

Roberts,E. et al. (2013) Lattice Microbes: high-performance stochastic simulation 
method for the reaction-diffusion master equation. J. Comput. Chem., 34, 245–
255. 

Robertson-Tessi,M. et al. (2015) Impact of Metabolic Heterogeneity on Tumor 
Growth, Invasion, and Treatment Outcomes. Cancer Res., 75, 1567–1579. 

Salerno,L. et al. (2015) Computational Modeling of a Transcriptional Switch 
Underlying B-Lymphocyte Lineage Commitment of Hematopoietic 
Multipotent Cells. PLOS ONE, 10, e0132208. 

Smolen,P. et al. (2000) Mathematical Modeling of Gene Networks. Neuron, 26, 
567–580. 

Smolen,P. et al. (2001) Modeling circadian oscillations with interlocking positive 
and negative feedback loops. J. Neurosci. Off. J. Soc. Neurosci., 21, 6644–6656. 

Steinway,S.N. et al. (2014) Network modeling of TGFβ signaling in hepatocellular 
carcinoma epithelial-to-mesenchymal transition reveals joint Sonic hedgehog 
and Wnt pathway activation. Cancer Res., 74, 5963–5977. 

Strogatz,S.H. (2007) Nonlinear Dynamics And Chaos Sarat Book House. 
Tyson,J.J. (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. 

Proc. Natl. Acad. Sci. U. S. A., 88, 7328–7332. 
Yu,L. et al. (2017) Modeling the Genetic Regulation of Cancer Metabolism: 

Interplay between Glycolysis and Oxidative Phosphorylation. Cancer Res., 77, 
1564–1574. 

van Zelm,M.C. et al. (2005) Ig gene rearrangement steps are initiated in early 
human precursor B cell subsets and correlate with specific transcription factor 
expression. J. Immunol. Baltim. Md 1950, 175, 5912–5922. 

Zhang,B. et al. (2013) Integrated Systems Approach Identifies Genetic Nodes and 
Networks in Late-Onset Alzheimer’s Disease. Cell, 153, 707–720. 

Zhang,J. et al. (2014) TGF-β–induced epithelial-to-mesenchymal transition 
proceeds through stepwise activation of multiple feedback loops. Sci Signal, 7, 
ra91-ra91. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 27, 2017. ; https://doi.org/10.1101/210419doi: bioRxiv preprint 

https://doi.org/10.1101/210419

