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Multiplexed proteomics has emerged as a powerful tool to measure protein expression levels 

across multiple conditions. The relative protein abundances are inferred by comparing the 

signal generated by isobaric tags, which encode the samples’ origins. Intuitively, the trust 

associated with a protein measurement depends on the similarity of ratios from different 

peptides and the signal level of these measurements. Up to this point in the field, peptide-level 

information has not typically been integrated into confidence, and only the most likely results 

for relative protein abundances are reported. If confidence is reported, it is based on protein-

level measurement agreement between replicates.  Here we present a mathematically rigorous 

approach that integrates peptide intensities and peptide-measurement agreement into 

confidence intervals for protein ratios (BACIQ). The main advantages of BACIQ are: 1) it 

removes the need to threshold reported peptide signal based on an arbitrary cut-off, thereby 

reporting more measurements from a given experiment; 2) confidence can be assigned 

without replicates; 3) for repeated experiments BACIQ provides confidence intervals for the 

union, not the intersection, of quantified proteins; 4) for repeated experiments, BACIQ 

confidence intervals are more predictive than confidence intervals based on protein 

measurement agreement. Therefore, our method drastically increases the value obtained from 

quantitative proteomics experiments and will help researchers to interpret their data and 

prioritize resources. To make our approach easily accessible we distribute it via an R/Stan 

package. 

 

Introduction 

Mass spectrometry based proteomics has undergone a remarkable revolution and is now able to 

identify ~10,000 proteins in a single experiment (Beck et al., 2015; Deshmukh et al., 2015; Wühr et 

al., 2014). However, due to the difficulty in predicting ionization efficiency of peptides during 

electrospray, the signal measured in the mass spectrometer is not a direct readout for a peptide 

concentration in a sample. Proteomics is well suited to comparing the abundance change of the same 

peptides/proteins among multiple conditions. In so-called label-free proteomics, the peptide signal is 

compared between multiple different runs and changes of ~2-fold can be detected as significant (Cox 

et al., 2014). Even smaller relative protein abundance changes can be detected by encoding multiple 

conditions with heavy isotopes and analyzing the samples simultaneously. In MS1 based approaches 

like SILAC the different conditions contain different numbers of heavy isotopes and conditions are 

encoded by differing peptide masses. However, due to the increase in complexity of the MS1 

spectrum with more conditions this approach is only feasible for up to three conditions (Hilger and 

Mann, 2012). A major breakthrough for proteomics was the introduction of isobaric tags (Thompson 
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et al., 2003). These tags, which are chemically attached to the peptides, act as barcodes for the 

different conditions (e.g. replicates, perturbations, or time-points). Each tag has exactly the same 

mass and only upon fragmentation are the distinct reporter ions released. Due to the identical mass, 

the MS1 spectrum complexity does not increase in its complexity with more conditions and currently 

up to 11 conditions can be compared in a single experiment (Jiang et al.). Initially, the co-isolation 

and co-fragmentation of other peptides led to major artifacts. However, more recently these artifacts 

have been overcome with the introduction of MultiNotch MS3 (TMT-MS3), QuantMode, and the 

complement reporter ion approach (TMTc+)(McAlister et al., 2014; Sonnett et al., 2017; Ting et al., 

2011; Wenger et al., 2011; Wühr et al., 2012). With these methods, data of superb quality can be 

generated and changes of less than 10% can be quantified as significant (Wühr et al., 2015).  

Despite these impressive capabilities of quantitative multiplexed proteomics, a remarkable 

shortcoming is the lack of confidence assigned to these measurements. Typically, only the most likely 

protein ratios are reported. Various factors can distort the measurements: peptide-to-spectra 

matching uncertainty, enzymatic digestion efficiency, post-translational modifications, and 

interference (Ting et al., 2011). Generally, there is no sense of how much we can trust the data (Ning 

et al., 2016). Noise models have been presented to handle peptide-to-protein aggregation in label-

free setting. However, the very different nature of multiplexed proteomics data compared to label-free 

data makes these approaches not easily transferable (Choi et al., 2014; Clough et al., 2012; Zhang et 

al., 2017).  Most proteins are measured via multiple peptide quantification events. Intuitively, one 

should be able to use both the agreement between quantifications of peptides assigned to a protein 

and the measured intensities, which are proportional to the number of ions, to assign confidence. 

Figure S1 summarizes the challenge to express confidence for multiplexed proteomics 

measurements. However, to our knowledge there is currently no way to integrate all this information 

in order to express the confidence of protein level quantification. Assigning confidence is important 

because it allows one to assess significance of changes and enables researchers to prioritize 

valuable time and resources in follow-up experiments. In a previous study the measurement 

agreement between peptides assigned to a protein were considered, but the underlying ion-statistics 

were ignored (Koh et al., 2015). With replicate experiments confidence can be calculated with 

standard approaches like the t-test or ANOVA (McAlister et al., 2014; Oberg and Mahoney, 2012; 

Student, 1908). For these approaches protein level measurements typically weigh peptides by ion-

statistics but ignore the underlying agreement between peptide measurements. For confidence 

expressed based on replicate protein-level measurements, the confidence of the measurement can 

obviously only be expressed for the intersection of protein sets measured in all repeated experiments. 

Moreover this approach may lead to unwarranted high confidence when multiple experiments have 

wrong but concordant measurements when each experiment ignores the disagreement at the peptide 

level. Also, peptides which are measured below an arbitrary level are ignored (Lapek et al., 2017; 

McAlister et al., 2014).  

In this paper we propose a novel mathematically rigorous method for computing and representing the 

uncertainty of quantitative multiplexed proteomics measurements. Our method is based on a 

hierarchical Bayesian model of a multiple condition Dirichlet-Multinomial distribution (Beta-Binomial 

for the two-condition scenario). We call our method BACIQ (Bayesian Approach to Confidence 

Intervals for protein Quantitation). Our approach allows us to represent uncertainty for both individual 

peptides as well as multi-peptide proteins and takes into account every quantified peptide, regardless 

of the signal level, thereby increasing the sensitivity of proteomics measurements. Our methods do 

not require multiple repeated experiments, but if such repeats are available, it integrates the results 
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providing the output and confidence for the union (not intersection) of all separately measured 

proteins. The source code was deposited via GitHub https://github.com/Peshkin/BACI-Q 

  

Results 

Peptide measurements map to coin-flips 

To reason about measurement confidence in multiplexed proteomics, let us begin by discussing the 

measurement process of a peptide that is labeled with isobaric tags encoding two different conditions 

(case and control) (Fig. 1A). With multiplexed proteomics we can measure the relative abundance of 

a peptide between multiple conditions. For the sake of simplicity, we will discuss the two condition 

case for most of the paper, but all our approaches and the provided software can be generalized to 

the multi-condition case. Once peptides are labeled with isobaric tags they are combined into one test 

tube, in which we have a “true ratio” of peptide abundances across samples. The aim of the 

proteomic experiment then is to recover this “true peptide ratio”. During MS analysis, the peptides get 

ionized and fragmented. Upon fragmentation, respective fragments of the isobaric tag are released, 

encoding the different conditions. The relative abundance of the ions encoding the different conditions 

is used to quantify the relative abundance of the peptides (Fig. 1B). However, the limited number of 

ions by which measurements are performed will introduce measurement errors due to ion-statistics 

(Fig. 1C). The error naturally tends to be higher for measurements with lower mass spectrometer 

signal, which is proportional to the ion-count. More precisely, throughout this paper we will refer to 

“signal over Fourier transform-noise” acquired in the Orbitrap as "MS-signal". This MS-signal can be 

extracted from raw files acquired on Orbitrap instruments by dividing the raw signal through the 

Fourier transform noise. Unlike the raw signal, which is an approximation for the ion-flux, the “signal 

over Fourier transform-noise” is proportional to the number of ions measured in the Orbitrap (Makarov 

and Denisov, 2009). The key to reflecting confidence in an estimate of a fraction is in capturing 

precisely the functional form of the convergence of the measurement to the true ratio as the MS-

signal gets higher.  

 

Conversion of Mass Spectrometer signal to charges 

To express confidence intervals for peptide ratio measurements we have to be able to convert the 

MS-signal into the number of ions. To this end, we generated a sample in which all peptides are 

labeled with the identical 1:1 ratio. We observe that the ratio of the signals in two channels of the 

mass spec instrument converges to an asymptotic value, just like the fractional outcome of a 

sequence of coin-tosses converges to a true ratio with the number of tosses. Figure 2A presents a 

scatter plot where each point represents a single peptide from a dataset of a total of 10534 peptides. 

The functional form of this dependency for a coin toss represented by a Binomial distribution for the 

coefficient of variation is  √(1 − 𝑝)/𝑛𝑝  , where p is the ratio and n the number of coin-tosses. In order 

to treat the MS-signal as an outcome of a binomial process, we need to find a conversion factor from 

a continuous MS-signal into equivalents of “coin flips”. We fit a single parameter m as a multiplier to 

an MS-signal s where n = ms to the binned data (Fig. 2B). When we perform this analysis on an 

Orbitrap Lumos with 50K mass resolution, we observe a convertion factor of 2.0. When we performed 

the equivalent experiments on different instruments and resolutions, we observed different values 

(Table 1). Makarov et al. previously reported that this conversion factor should scale inversely with 

the square-root of the Orbitrap resolution (Makarov and Denisov, 2009). Our measurements are in 

rough agreement with this prediction; when we increase resolution from 15K to 120K on the Lumos 

we expect the conversion factor to reduce by 2.8-fold, we observe a 3.5 decrease. Based on previous 
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reports by the same paper, we likely underestimate the number of actual ions by a small factor. 

Nevertheless, the good fit to the data (Fig. 2B) indicates that the conversion into pseudo-counts 

allows us to model the relationship between mass spectrometer signal and measurement noise due 

to ion-statistics and other noise occurring during data acquisition. For a limited number of cases, we 

have repeated these measurements for various instruments of the same model and obtained very 

similar results suggesting that for a given instrument model and resolution the conversion factors are 

invariant. 

 

Assigning confidence intervals for individual peptides 

With the conversion factor at hand the ratio estimation is reduced to a well-studied case of an 

estimation for the Binomial probability of success (Fig. 1) (Gelman et al., 2014). Specifically, the 

confidence interval for this case is obtained from a Beta distribution (Fig. S2). Figure 2C illustrates the 

likelihood function of the probability of success parameter of the Binomial distribution q for three 

peptides at the different levels of total MS-signal as color-coded in Figure 2A. A higher signal gives a 

tighter distribution.  

We next verify that the confidence intervals obtained agree with observations. Computing the 95% 

confidence intervals we expect that the true answer will lie outside of the confidence interval 

approximately 5% of the time and will be symmetrically split between over- and under-estimation. 

Indeed Figure 2D shows that we overestimate 1.98% of the time and under-estimate for 2.50% of the 

time.  

 

Only considering ion-statistics produces inadequate confidence intervals on the protein level 

So far, we have shown that we can adequately express the confidence intervals for peptide 

measurements. If ion-statistics was the only source of noise, we could sum up all counts from 

peptides mapped to a protein and express confidence intervals at the protein level. This approach 

works well for the synthetic case, where all peptides in a mixture were labeled together and show the 

exactly same ratio (Fig. S3). However, we were worried that in real experiments, other factors like 

differences in digestion efficiency, labeling problems, erroneous peptide-to-protein assignment, post-

translational modifications, chemical interference, and so forth might produce significant additional  

noise. To test whether only considering ion-statistics is valid for multiplexed proteomics 

measurements, we revisited our recent publication of nucleocytoplasmic partitioning in the frog oocyte 

(Wühr et al., 2015) (Fig. 3A). Because in that application we don’t know the true answers for proteins, 

we can’t prove that our approach works, but if peptide measurements disagree with each other we 

can learn that the method is inadequate for the protein level. Indeed, when we evaluate all the 

peptides mapped to a protein, we observe that their probability distribution often nearly completely 

exclude each other and are unlikely to come from the integrated confidence interval at the protein 

level (Fig. 3B). This suggests that besides ion-statistics other significant sources of error contribute to 

the proteomics measurements and we have to take these sources into account to adequately express 

confidence intervals at the protein level.     

 

Confidence-intervals at the protein level, that integrate ion-statistics and agreement between 

peptides mapped to the same protein 

Analogously to the single peptide case, let us review the entire proteomics experiment that starts with 

a “true protein ratio” between the two samples we analyze. We represent the multi-peptide protein 

case as a generative two-level hierarchical Bayesian model (Fig. 4). The protein is digested into 
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peptides, which are labeled with isobaric tags. During this process noise can be introduced e.g. with 

differing digestion or labeling efficiencies between case and control. We represent the first step of the 

Bayesian model by sampling peptide ratios qi  for the constituent peptides of a given protein from the 

Beta distribution parameterized according to the “true protein ratio” (Fig. 4A).  The second step is 

sampling the ion statistics for each peptide separately, which is equivalent to the single peptide case 

we discussed above and in Figure 1. Importantly, different peptides are measured with different MS-

signal and therefore with different confidence on the underlying “true peptide ratio” (Fig. 4B).  

The target of our estimation is the mean of the Beta-distribution representing the protein, specifically 

the posterior distribution of that value as the representation of the uncertainty.  The entire sampling 

process maps nicely to the generative process of a well-studied Beta-Binomial distribution (Gelman et 

al., 2014). Nevertheless, the maximum-likelihood estimate of these distributions is not available in a 

closed form (Minka, 2000). One approach would be to numerically search for an MLE and estimate 

the curvature of the likelihood function from the Hessian at the MLE using the asymptotic Normality 

(Lehmann and Casella, 2006). However unfortunately this approach turned out to be numerically not 

robust (not shown). A robust alternative approach is accomplished using Monte-Carlo Markov Chain 

(MCMC) methods implemented in statistical inference language Stan (see Supporting 

Information)(Carpenter et al., 2016). Naively, it consists of exploring the space of possible protein 

ratios, computing the likelihood of observed peptide data given a guess at the protein ratio and 

assembling a large set of plausible ratio samples to use its histogram as posterior likelihood 

representation. Naturally, such processes are computationally expensive.  

 

Validation of protein level confidence interval estimation 

To validate our approach, we produced a standard containing peptides with different labeling ratios. 

We asked how reliable our approach was in distinguishing proteins which show different expression 

levels (increase by 20%) and proteins that are unchanged. We mixed equal amounts of human 

proteins across six samples with E. coli proteins with different mixing ratios in triplicates (Fig. 5A). To 

make the problem hard, we reduced the number of ions for quantification by limiting ion injection 

times for the MS3 scan to 22 msec. Thus ideally all E.coli proteins should be identified as 

"differentially expressed" on a background of human proteins none of which are. This synthetic 

experiment simulates an essential application of having the complete likelihood function, when 

confidence intervals representation is used to prioritize the follow-up targets of a proteomic 

experiment. Assigning a P-value to a claim that a given protein is differentially expressed allows to 

rank the proteins from the most to the least likely differentially expressed. Sliding threshold on this 

scale allows building what is known in Machine Learning as an ROC curve – a way to compare 

probabilistic classifiers tradeoff between false positive and false negative rates. A T-test using 2 or 3 

repeats classifies a protein as differentially expressed if a probability that two sets of measurements 

came from the same distribution is under (1-q%); a BACIQ (our new method to calculate confidence 

intervals) test classifies a protein as differentially expressed if more than q% of the probability 

distribution falls to the right of the 0.5 threshold.  

Crucially, while the T-test requires at least one repeat, our method can be applied to a single 

experiment, as well as two and three repeats by merely combining measurements. As shown in 

Figure 5B even using no replicates, our method substantially outperforms the T-test based 

classification for two samples and performs similarly to a T-test based classification for triplicates, 

even though the type of errors is different in trading off false positives for true positives. Combining 
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only two channels, we uniformly outperform the three replica T-test, and improve even more using all 

three replicas.  

 

Discussion 

We have shown how a hierarchical Beta-Binomial model can be used to adequately reflect 

uncertainty in quantitative multiplexed proteomics measurements.  We presented the method and the 

implementation of a modeling pipeline which can assign confidence for both single peptide and 

multiple peptide proteomic measurements. We demonstrated how to estimate a calibration multiplier 

for a given instrument and mass resolution and then use that multiplier to convert a continuous MS-

signal value into discrete event counts suitable for the Beta-Binomial modeling. For the sake of 

simplicity, we focused on a two-case scenario. However, the same framework can be mathematically 

expanded to multiple conditions. Confidence for single peptides (Fig. 1) are then adequately modeled 

with a Dirichelet instead of the Beta distribution. Multiple peptide measurements mapping to one 

protein (Fig. 3, Fig S5) generalize from the Beta-Binomial model to the Dirichelet-Multinomial model. 

Stan implementation of the Dirichelet-Multinomial is included with the software.    

So far, we have only tested the BACIQ approach for data acquired with TMT-MS3. However, we 

believe the approach should be easily transferrable to other accurate multiplexed proteomics 

methods like ModQuant, or TMTc+. The systematic error associated with MS2-based measurements 

will lead to inadequate confidence intervals for the underlying true protein ratios. However, we 

suspect that for the prioritization of systematic changes in an experiment, BACIQ could still be useful 

even when measurements are systematically distorted towards a 1:1 ratio due to interference.  

We also expect that with some adaptations BACIQ might be adequate for MS1 based labeled 

quantitative proteomics methods like SILAC or reductive methylation (Kovanich et al., 2012; Ong et 

al., 2002). Lastly, we would like to point out that the principles of combining discordant measurements 

with underlying discrete counts to reflect the level of uncertainty using the Dirichlet-Multinomial model 

discussed in this paper should be generally applicable to similar non-proteomic measurements such 

as RNA-Seq. 

   

Materials and methods 

Sample preparation  

The single proteome standard and the two-proteome interference model was prepared mostly as 

previously described (Peshkin et al., 2015; Wühr et al., 2015; Wühr et al., 2012). HeLa S3 cells were 

grown in suspension to 1×106 cells/mL. Cells were harvested by spinning 160 rcf for 5 min at room 

temperature. After two washes with PBS, the pellet was flash frozen in liquid nitrogen. The pellet 

containing about 600 μg of total protein was resuspended in 1 ml of  lysis buffer containing 25 mM 

HEPES pH 7.2, 2% SDS and protease inhibitors (complete mini., EDTA-free; Roche). Cells were 

lysed by sonication: 6 pulses, 10sec each, at 75% amplitude.  

E. coli cell culture was harvested at 0.5 OD and spun down at 4,000 rcf for 20 min at 4 C. The pellet 

containing about of 650 ug of total protein was resuspended in 1 ml of lysis buffer containing 8M 

Urea, 2 M Thiourea, 50 mM HEPES pH 7.2, 2% SDS, 5 mM DTT. Cells were lysed by sonication: 10 

pulses, 30 sec each, at 75% amplitude.  

200 μL of HeLa lysate was reduced with 5 mM DTT for 20 min at 60 C. Further, both samples - 200μL 

of HeLa lysate and 200μL of E.coli lysate were alkylated with 15 mM N- Ethylmaleimide (NEM) for 30 

min at room temperature. The excess of NEM was quenched with 5 mM DTT for 10 min at room 

temperature in both samples. Next, 200 μL of lysate were Methanol-Chloroform precipitated as 
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previously described (Wessel and Flugge, 1984). Protein concentration was determined using the 

bicinchoninic acid (BCA) protein assay (Thermo Fisher). The samples were resuspended in 6 M 

Guanidine Chloride in 10 mM EPPS pH 8.5 with a subsequent dilution to 2 M Guanidine Chloride in 

10 mM EPPS pH 8.5 for digestion with Lys-C (Wako, Japan) at room temperature with Lys-C 20 

ng/μL overnight. Further the samples were diluted to 0.5 mM Guanidine Chloride in 10 mM EPPS pH 

8.5 and digested with Lys-C 20 ng/μL, and Trypsin 10 ng/μl at 37 C overnight. The digested samples 

were dried using a vacuum evaporator at room temperature and taken up in 200 mM EPPS pH 8.0 for 

a pH shift which is necessary for optimal labeling conditions. 10 μL of total E. coli or human peptides 

were labeled with 3μL of TMT 20μg/μL. TMT reagents were dissolved in anhydrous Acetonitrile. TMT 

Samples were labeled for 2 hours at room temperature. Further, labeled samples were quenched with 

0.5% Hydroxylamine solution (Sigma, St. Louis, MO) and acidified with 5% phosphoric acid (pH<2) 

with subsequent hard spin at 16,000 RCF for 10 min at 4 C. The samples were dried using a vacuum 

evaporator at room temperature. Dry samples were taken up in HPLC grade water and stage tipped 

for desalting (Rappsilber et al., 2007). The samples were resuspended in 1% formic acid to 1μg/μL 

and 1μg of each sample was analyzed with the MultiNotch MS3 approach (McAlister et al., 2014).  

The samples were labeled with the desired mixing ratios: 1.0:1.0:1.0:1.2:1.2:1.2 for E.coli, and 

1.0:1.0:1.0:1.0:1.0:1.0 for HeLa (Figure 5A). Approximately equal amounts of the samples were 

mixed. To correct for pipetting errors the summed signal for each species was normalized to the 

desired mixing ratios. 

 

LC/MS analysis  

Approximately 1 µL per sample were analyzed by LC-MS. LC-MS experiments were performed on  

Orbitrap Fusion Lumos  (Thermo Fischer Scientific). The instrument was equipped with Easy-nLC 

1200 high pressure liquid chromatography (HPLC) pump (Thermo Fischer Scientific). For each run, 

peptides were separated on a 100 μm inner diameter microcapillary column, packed first with 

approximately 0.5 cm of 5-µm BEH C18 packing material (Waters) followed by 30 cm of 1.7-µm BEH 

C18 (Waters). Separation was achieved by applying 4.8%- 24% acetonitrile gradient in 0.125% formic 

acid and 2% DMSO over 120 min  at 350  nL/min at 60C. Electrospray ionization was enabled by 

applying a voltage of 2.6 kV through a microtee at the inlet of the microcapillary column. The Orbitrap 

Fusion Lumos was using a MultiNotch-MS3 method (McAlister et al., 2014).The survey scan was 

performed at resolution of 120k (200m/z) from 350 Thomson (Th) to 1350 Th, followed by the 

selection of the 10 most intense ions for CID MS2 fragmentation using the quadrupole and a 0.5 Th 

isolation window. Indeterminate and singly charged, and ions carrying more than six charges were 

not subjected to MS2 analysis. Ions for MS2 were excluded from further selection for fragmentation 

for 90 s. MS3 spectra were acquired in the Orbitrap with 120k resolution (200 m/z) simultaneous 

precursor selection of the five most abundant fragment ions from the MS2 spectrum. For the MS3 

spectrum we used an MS2 isolation window of 2 Th. The maximal ion-injection time for the MS3 

spectrum was set to 22ms.   

  

Implementation of BACIQ  

The model and the inference was implemented using Stan® (Carpenter et al., 2016), specifically the 

R flavor. Stan's sampling functionality was used to execute Monte-Carlo Markov Chain in order to 

obtain a sample from the posterior distribution over parameters of the model. Figure S4 illustrates the 

general principles of MCMC. Since for any values of the model's parameters we can efficiently 

evaluate the likelihood, parameter space is explored while samples are biased towards the areas of 
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high likelihood. The obtained statistical sample is essentially used for a histogram representation of 

the posterior to obtain confidence intervals.  Additionally, we implemented the inference pipeline as a 

web-server front end distributing processes among the nodes of a Linux cluster. Two modes of use 

are available: compute the confidence interval for the ratio of two channels to their sum, or for all 

ratios of one channels to the sum across channels.   
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Table 

 

Instrument Resolution Multiplier (95% 

Conf. Interval) 

Orbitrap Elite 15K 4.5  (4.2, 4.8) 

Orbitrap Elite 30K 3.3  (3.1, 3.6) 

Orbitrap Elite 60K 2.5  (2.3, 2.6) 

Fusion/Lumos 15K 3.4  (2.1, 4.6) 

Fusion/Lumos 30K 2.6  (2.0, 3.2) 

Fusion/Lumos 50K 2.0  (1.5, 2.5) 

Fusion/Lumos 60K 1.8  (1.4, 2.3) 

Fusion/Lumos 120K 1.3  (1.0, 1.6) 

 

Table 1. Multiplier for the MS-signal to be converted into discrete Binomial event counts. Shown are 

the multiplier values and respective confidence intervals for different instruments and typical mass 

resolution values.  
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Figures 

   

Figure 1. Assigning confidence to the measurement of a single peptide A) Peptides are labeled with isobaric 
tags encoding the different conditions case and control (red and blue). Shown are examples for two peptides 
with the identical relative abundance (true ratio) between case and control. B) After ionization and fragmentation 
the relative intensity of fragments produced by the isobaric tag can be used to quantify relative peptide 
abundance. These quantification spectra contain the information of the peptide relative abundance but also the 
total sum of intensities (Signal to FT noise). This signal is proportional to the number of ions measured. Intuitively, 
the fewer ions we measure the more the measured ion ratio tends to divert from the true ratio between case and 
control due to ion-statistics C) Once we can convert the signal into number of ions, the problem of estimating the 
likelihood of the “true ratio” becomes identical to the estimation of a coin's fairness, given a certain number of 
head and tail measurements. Using a standard Bayesian approach we can express the underlying “true ratio” 
likelihood as a beta distribution where alpha and beta represent the number of ions measured for the two 
samples. A higher ion-count (top row) results in a tighter likelihood function and respectively tighter confidence 
intervals than a low ion-count (bottom row). For more than two cases this approach can be generalized with a 
Dirichlet-distribution. 
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Figure 2: Conversion of MS-signal into counts. A) We generated a sample in which all peptides are labeled 
with two different TMT-tags and mixed with identical ~1:1 ratio. When we plot the measured ratio versus the 
summed MS-signal in the two channels, we observe that measurement with higher MS-signal asymptotes to the 
median answer, which approximates the true underlying ratio (a dashed line). B) Assuming ion-statistics is the 
dominant noise source, we can fit the binned coefficients of variation (CVs) and obtain the conversion factor of 
mass spectrometry signal to the number of ions or pseudo-counts. The data shown was obtained on an Orbitrap 
Lumos with 50K mass resolution. Our best guess for the conversion factor is 2.0 . C) Three examples color-
coded to correspond to three peptide data points in sub-figure (A), of the likelihood functions reflecting 
confidence, expressed as the beta-distribution using the calculated ion-counts. D) Histogram of the upper and 
lower bound values for the 95% confidence intervals. The observed percentage of peptides for which the true 
answer is outside of the 95% confidence interval is 1.98% and 2.5% respectively for over- and under-estimation, 
which are symmetric and in good agreement with the expected total 5% value.   

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2017. ; https://doi.org/10.1101/210476doi: bioRxiv preprint 

https://doi.org/10.1101/210476
http://creativecommons.org/licenses/by/4.0/


 

 

Figure 3. Only considering ion-statistics does not produce accurate confidence intervals at the protein 
level: A) To evaluate the confidence intervals of peptides from the same protein, we revisited our previously 
published experiment, where we measured the localization of proteins between nucleus and cytoplasm of the 
frog oocyte. B) Blue discs show 50 measured peptides (ratio and intensity) assigned to the Ribosomal Protein 
L5 (RPL5). We show the beta-function likelihoods for two extreme peptides (leftmost in blue and rightmost in 
green). Note that these peptides likelihood functions are basically mutually exclusive, i.e. most generous 
confidence intervals would excluding each other. Additionally we show the likelihood based on summing up all 
the peptides together (magenta) which corresponds to unjustifiably tight confidence. This example illustrates that 
for the expression of confidence intervals on the protein level, we cannot assume that ion-statistics is the only 
source of measurement error. Rather, we have to integrate other sources of errors e.g. due to differences in 
sample handling.  
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Figure 4. Modeling confidence for proteins with multiple peptide measurements. A) The “true protein ratio” 
can be distorted due to differences in sample handling (e.g. digestion, isobaric-labeling, post-translational 
modifications) and give rise to multiple peptides with differing “true peptide ratios”. We assume an underlying 
beta-distribution representing the likelihood function over protein ratio, from which peptide ratios q i for the 
constituent peptides of a given protein is sampled as illustrated for i=3; B) Each peptide is measured via the 
mass spectrometer. This step is equivalent to the model in figure 1. This step is equivalent to sampling from a 
respective Binomial distribution with probability of success qi . C) The entire data generation process can be 
adequately described with the beta-binomial process (or dirichlet -multinomial process for more than two cases). 
We can use this mapping and express confidence as an estimation for the the mean of the Beta distribution 
representing the protein, specifically the likelihood function of the posterior distribution of that value as the 
representation of the uncertainty.  
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Figure 5. Validating our method with a differential expression experiment. A) Six samples were prepared 
by mixing material from two species as follows. Six identical E. coli samples (i.e. proportions across 6 channels 
were 1.0 : 1.0 : 1.0 : 1.2 : 1.2 : 1.2) were mixed with a Human sample in two sets of three as shown (i.e. 
proportions across 6 channels were 1.0 : 1.0 : 1.0 : 1.0 : 1.0 : 1.0).  TMT-labeled mixture of two proteomes (E.coli 
and human) was analyzed by LC-MS2. B) Comparison of our method with T-test to detect differentially expressed 
proteins. BACIQ can detect statistically significant changes even without replicates, while the T-test requires at 
least one repeat. An ROC plot illustrates a tradeoff between precision and recall, i.e. how many proteins are 
labeled as differentially expressed. Our method is superior to the T-test when the same number of replicates are 
used. Even without replicates or method (magenta) outperforms the T-test with two replicates (dashed blue) 
nearly completely. We achieve close to perfect distinction between differentially and unchanged proteins if we 
use our method and three replicates (orange and red).  
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