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Abstract1

A major goal of evolutionary biology is to identify key evolutionary transitions that correspond with shifts in2

speciation and extinction rates. Stochastic character mapping has become the primary method used to infer3

the timing, nature, and number of character state transitions along the branches of a phylogeny. The method4

is widely employed for standard substitution models of character evolution. However, current approaches5

cannot be used for models that specifically test the association of character state transitions with shifts in6

diversification rates such as state-dependent speciation and extinction (SSE) models. Here we introduce a7

new stochastic character mapping algorithm that overcomes these limitations, and apply it to study mating8

system evolution over a time-calibrated phylogeny of the plant family Onagraceae. Utilizing a hidden state9

SSE model we tested the association of the loss of self-incompatibility with shifts in diversification rates. We10

found that self-compatible lineages have higher extinction rates and lower net-diversification rates compared11

to self-incompatible lineages. Furthermore, these results provide empirical evidence for the “senescing”12

diversification rates predicted in highly selfing lineages: our mapped character histories show that the loss13

of self-incompatibility is followed by a short-term spike in speciation rates, which declines after a time lag of14

several million years resulting in negative net-diversification. Lineages that have long been self-compatible,15

such as Fuchsia and Clarkia, are in a previously unrecognized and ongoing evolutionary decline. Our results16

demonstrate that stochastic character mapping of SSE models is a powerful tool for examining the timing17

and nature of both character state transitions and shifts in diversification rates over the phylogeny.18

1 Introduction19

Evolutionary biologists have long sought to identify key evolutionary transitions that drive the diversification20

of life (Szathmary and Smith 1995; Sanderson and Donoghue 1996). One method frequently used to test21
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hypotheses about evolutionary transitions is stochastic character mapping on a phylogeny (Nielsen 2002;22

Huelsenbeck et al. 2003). While most ancestral state reconstruction methods estimate states only at the23

nodes of a phylogeny, stochastic character mapping explicitly infers the timing and nature of each evolu-24

tionary transition along the branches of a phylogeny. However, current approaches to stochastic character25

mapping have two major limitations: the commonly used rejection sampling approach proposed by Nielsen26

(2002) is inefficient for characters with large state spaces (Huelsenbeck et al. 2003; Hobolth and Stone 2009),27

and more importantly current methods only apply to models of character evolution that are finite state sub-28

stitution processes. While the first limitation has been partially overcome through uniformization techniques29

(Rodrigue et al. 2008; Irvahn and Minin 2014; Landis et al. 2018), a novel approach is needed for models30

with infinite state spaces, such as models that specifically test the association of character state transitions31

with shifts in diversification rates. These models describe the joint evolution of both a character and the32

phylogeny itself, and define a class of widely used models called state-dependent speciation and extinction33

models (SSE models; Maddison et al. 2007; FitzJohn et al. 2009; FitzJohn 2010, 2012; Goldberg and Igić34

2012; Magnuson-Ford and Otto 2012; Freyman and Höhna 2018).35

In this work we introduce a method to sample character histories directly from their joint probability36

distribution, conditional on the observed tip data and the parameters of the model of character evolution.37

The method is applicable to standard finite state Markov processes of character evolution and also more38

complex models, such as SSE model, that are infinite state Markov processes. The method does not rely on39

rejection sampling and does not require complex data augmentation (Van Dyk and Meng 2001) schemes to40

handle unobserved speciation/extinction events. Our implementation directly simulates the number, type,41

and timing of diversification rate shifts and character state transitions on each branch of the phylogeny.42

Thus, when applying our method together with a Markov chain Monte Carlo (MCMC; Metropolis et al.43

1953; Hastings 1970) algorithm we can sample efficiently from the posterior distribution of both character44

state transitions and shifts in diversification rates over the phylogeny.45

To illustrate the usefulness of our method to sample stochastic character maps from SSE models, we46

applied the method to examine the association of diversification rate shifts with mating system transitions47

in the plant family Onagraceae. The majority of flowering plants are hermaphrodites, and the loss of48

self-incompatibility (SI), the genetic system that encourages outcrossing and prevents self-fertilization, is a49

common evolutionary transition (Stebbins 1974; Grant 1981; Barrett 2002). Independent transitions to self-50

compatibility (SC) have occurred repeatedly across the angiosperm phylogeny (Igic et al. 2008) and within51

Onagraceae (Raven 1979). Despite the repeated loss of SI, outcrossing is widespread and prevalent in plants,52

an observation that led Stebbins to hypothesize that selfing was an evolutionary dead-end (Stebbins 1957).53

Stebbins proposed that over evolutionary time selfing lineages will have higher extinction rates due to reduced54
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genetic variation and an inability to adapt to changing conditions. However, Stebbins also speculated that55

selfing is maintained by providing a short-term advantage in the form of reproductive assurance. The ability56

of selfing lineages to self reproduce has long been understood to be potentially beneficial in droughts and57

other conditions where pollinators are rare (Darwin 1876), or after long distance dispersal when a single58

individual can establish a new population (Baker 1955).59

Recent studies have reported higher net-diversification rates for SI lineages, supporting Stebbins’ dead-60

end hypothesis (Ferrer and Good 2012; Goldberg et al. 2010; de Vos et al. 2014; Gamisch et al. 2015).61

Explicit phylogenetic tests for increased extinction rates in SC lineages have been performed in Solanceae62

(Goldberg et al. 2010), Primulaceae (de Vos et al. 2014), and Orchidaceae (Gamisch et al. 2015), and all63

of these studies reported lower overall rates of net-diversification in SC lineages compared to SI lineages.64

In these studies the association of mating system transitions with shifts in extinction and speciation rates65

was tested using the Binary State Speciation and Extinction model (BiSSE; Maddison et al. 2007). More66

recently, BiSSE has been shown to be prone to falsely identifying a positive association when diversification67

rate shifts are associated with another character not included in the model (Maddison and FitzJohn 2015;68

Rabosky and Goldberg 2015). One approach to reduce the possibility of falsely associating a character with69

diversification rate heterogeneity is to incorporate a second, unobserved character into the model (i.e., a70

Hidden State Speciation and Extinction (HiSSE) model; Beaulieu and OMeara 2016; Caetano et al. 2018).71

The changes in the unobserved character’s state represent background diversification rate changes that are72

not correlated with the observed character. Our work here is the first to apply a HiSSE-type model to73

test Stebbins’ dead-end hypothesis. We additionally use simulations and Bayes factors (Kass and Raftery74

1995) to evaluate the false positive error rate of our model. Most notably, we employ our novel stochastic75

character mapping method to reconstruct the timing of both diversification rate shifts and transitions in76

mating system over a fossil-calibrated phylogeny of Onagraceae. We test the hypothesis that SC lineages77

have higher extinction and speciation rates yet lower net-diversification rates compared to SI lineages, and78

investigate the short-term versus long-term macroevolutionary consequences of the loss of SI.79

2 Methods80

2.1 Stochastic Character Mapping Method81

Figure 1 gives a side by side comparison of the standard stochastic character mapping algorithm as originally82

described by Nielsen (2002) and the approach introduced in this work. In standard stochastic character83

mapping the first step is to traverse the tree post-order (tip to root) calculating the conditional likelihood of84
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the character being in each state at each node using Felsenstein’s pruning algorithm (Figure 1a; Felsenstein85

1981). Transition probabilities are computed along each branch using matrix exponentiation. Ancestral86

states are then sampled at each node during a pre-order (root to tip) traversal (Figure 1b). Finally, character87

histories are repeatedly simulated using rejection sampling for each branch of the tree (Figure 1c).88

A detailed pseudocode formulation of our new stochastic character mapping algorithm is provided in89

Algorithm 1. In this algorithm we begin similarly by traversing the tree post-order and calculating conditional90

likelihoods. However, instead of using matrix exponentiation we calculate the likelihood using a set of91

differential equations similar to Maddison et al. (2007). We numerically integrate these equations for every92

arbitrarily small time interval along each branch, however, unlike Maddison et al. (2007), we store a vector of93

conditional likelihoods for the character being in each state for every small time interval (Figure 1e). Letting94

X represent the observed tip data, Ψ an observed phylogeny, and θq a particular set of character evolution95

model parameters, the likelihood at the root of the tree is then given by:96

P (X ,Ψ|θq) =
∑
i

πiDR,i(t),

where πi is the root frequency of state i and DR,i(t) is the likelihood of the root node being in state i97

conditional on having given rise to the observed tree Ψ and the observed tip data X (Freyman and Höhna98

2018).99

We then sample a complete character history during a pre-order tree traversal. First, the root state is100

drawn from probabilities proportional to the marginal likelihood of each state at the root (pi =
πiDR,i(t)∑
i

πiDR,i(t)
).101

Then, states are drawn for each small time interval moving towards the tip of the tree conditioned on the102

state of the previous small time interval (Figure 1f). To compute the probability of a state at the end of103

each small time interval, we integrate numerically over a set of differential equations during this root-to-tip104

tree traversal, see Figure 1f. This integration, however, is performed in forward-time, thus a different and105

new set of differential equations must be used (defined below). With this approach we can directly sample106

character histories from a SSE process in forward-time, resulting in a complete stochastic character map107

sample without the need for rejection sampling or uniformization, see Figure 1.108

2.2 Derivation of our differential equations109

The two functions we integrate numerically are DN,i(t), which is defined as the probability that a lineage in110

state i at time t evolves into the observed clade N , and Ei(t) which is the probability that a lineage in state111

i at time t goes extinct before the present, or is not sampled at the present.112

In the following section we will derive the differential equations for our algorithm to compute the prob-113
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Figure 1: Schematic and comparison of stochastic character mapping methods. On the left (a, b, c, d) is an
illustration of the standard stochastic character mapping algorithm as originally described by Nielsen (2002). On the right
(e, f, g) is the approach introduced in this work. The first step in standard stochastic character mapping is (a) traversing
the tree post-order (tip to root) calculating conditional likelihoods for each node. Next, ancestral states are sampled at each
node during a pre-order (root to tip) traversal (b). Branch by branch, character histories are then repeatedly simulated using
rejection sampling (c), resulting in a full character history (d). The first step in the stochastic character mapping method
introduced in this work is (e) traversing the tree post-order calculating conditional likelihoods for every arbitrarily small time
interval along each branch and at nodes. Here the vector [ln0, ln1, ln2] represents the conditional likelihoods of the process at
node n in states 0, 1, and 2, and the vector [lni0, lni1, lni2] represents the conditional likelihoods of the process in the small
time interval i along the branch leading to node n. Next, during a pre-order traversal ancestral states are sampled for each time
interval (f). The grey dashed loop represents the forward-time equations (Equations 4 and 6) conditioning on a state sampled
during each small time interval. The result is a full character history (g) without the need for a rejection sampling step. See
the main text for more details.
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Algorithm 1 Stochastic character mapping algorithm. DNi(t) is the probability that a lineage in state i
at time t evolves into the observed clade N . Ei(t) is the probability that a lineage in state i at time t goes
extinct or is not sampled before the present.

1: Inputs:
X : the vector of observed tip states.
tr: the starting time of the process.
π: the vector of root state frequencies.
λ: the vector of speciation rates.
µ: the vector of extinction rates.
ρ: the probability of sampling a lineage in the present.
Q: The matrix of transition rates between states.

2: Initialize:
t← 0 // start at the present
Ei(t = 0)← 1− ρ // extinction probability at present time
if i = Xobserved then

DN,i(t = 0)← ρ // probability of observed character
else

DN,i(t = 0)← 0

3: while t ≤ tr do // post-order tree traversal
4: if node L is reached then
5: DL,i(t)←

∑
j

∑
k λijkDM,j(t)DN,k(t) // combine descendant probabilities

6: else
7: LN,i(t)← DN,i(t) // store the conditional likelihoods for this time interval
8: Ei(t+ ∆t)← Ei(t)+ // compute conditional likelihoods for next time interval[

µi −
(∑

j

∑
k λijk +

∑
j 6=iQij + µi

)
Ei(t)

+
∑

j 6=iQijEj(t) +
∑

j

∑
k λijkEj(t)Ek(t)

]
∆t // backward-time Equation (1)

9: DN,i(t+ ∆t)← DN,i(t)+[
−
(∑

j

∑
k λijk +

∑
j 6=iQij + µi

)
DN,i(t) +

∑
j 6=iQijDN,j(t)

+
∑

j

∑
k λijk

(
DN,k(t)Ej(t) +DN,j(t)Ek(t)

)]
∆t // backward-time Equation (2)

10: t← t+ ∆t // increment the current t
11: end if
12: end while
13: while t ≥ 0 do // pre-order tree traversal
14: if t = tr then
15: st ∼ Multinomial

(
n = 1, DN (tr)× π

)
// draw character state at the root

16: else
17: st ∼ Multinomial

(
n = 1, DN (t)× LN (t)

)
// draw character state for time t

18: end if
19: DN,st ← 1 // condition on the sampled character state
20: DN,i 6=st ← 0
21: Ei(t−∆t)← Ei(t)−[

µi −
(∑

j

∑
k λijk +

∑
j 6=iQij + µi

)
Ei(t)

+
∑

j 6=iQijEj(t) +
∑

j

∑
k λijkEj(t)Ek(t)

]
∆t // forward-time Equation (4)

22: DN,i(t−∆t)← DN,i(t)+[
−
(∑

j

∑
k λijk +

∑
j 6=iQij + µi

)
DN,i

+
∑

j 6=iQjiDN,j(t) +DN,j(t)Ek(t)

(∑
j

∑
k λjik +

∑
j

∑
k λjki

)
// forward-time Equation (6)

23: t← t−∆t // decrement the current t
24: end while
25: return vector of all sampled character states s
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Figure 2: Alternative scenarios of events in a small time interval ∆t looking backwards in time. The top row
shows the different scenarios for a lineage that goes extinct before the present. Case 1: The lineage goes extinct in the time
interval ∆t. Case 2: There is no event in the time interval ∆t and the lineage goes extinct before the present. Case 3: The
lineage undergoes a state-shift event to state j in the time interval ∆t and the lineage goes extinct before the present. Case 4:
The lineage speciates and leaves a left daughter lineage in state j and a right daughter lineage in state k and both daughter
lineages go extinct before the present. Case 5: The lineage speciates and leaves a left daughter lineage in state k and a right
daughter lineage in state j and both daughter lineages go extinct before the present. The bottom row shows the different
scenarios for an observed lineage. Case 1: There is no event in the time interval ∆t. Case 2: The lineage undergoes a state-shift
event to state j in the time interval ∆t. Case 3: The lineage speciates and leaves a left daughter lineage in state j and a right
daughter lineage in state k and only the left daughter lineage survives. Case 4: The lineage speciates and leaves a left daughter
lineage in state j and a right daughter lineage in state k and only the right daughter lineage survives.

ability of the observed lineages and the extinction probabilities both backwards and forwards in time. We114

additionally show how the forward-time equations must be modified to handle non-reversible models of115

character evolution when sampling ancestral states or stochastic character maps.116

2.2.1 Differential equations backwards in time117

The original derivation of the differential equations for the state-dependent speciation and extinction (SSE)118

process are defined backward in time (Maddison et al. 2007). Here we use a generalization of the SSE process119

to allow for cladogenetic events where daughter lineages may inherit different states, as derived by Goldberg120

and Igić (2012), see also Magnuson-Ford and Otto (2012) and Ng and Smith (2014). We repeat this known121

derivation of the backwards process to show the similarities to our forward in time derivation. We present122

an overview of the possible scenarios of what can happen in a small time interval δt in Figure 2. We need to123

consider all these scenarios in our differential equations.124
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First, let us start with the computation of the extinction probability. That is, we want to compute the

probability of a lineage going extinct at time t+∆t, denoted by E(t+∆t), before the present time t = 0. We

assume that we know the extinction probability of a lineage at time t, denoted by E(t), which is provided

by our initial condition that E(t = 0) = 0 because the probability of a lineage alive at the present cannot

go extinct before the present, or E(t = 0) = 1 − ρ in the case of incomplete taxon sampling. We have five

different cases (top row in Figure 2): (1) the lineage goes extinct within the interval ∆t; (2) nothing happens

in the interval ∆t but the lineage eventually goes extinct before the present; (3) a state-change to state j

occurs and the lineage now in state j goes extinct before the present; (4) the lineage speciates, giving birth

to a left daughter lineage in state j and a right daughter lineage in state k and both lineages eventually go

extinct before the present, or; (5) the lineage speciates, giving birth to a left daughter lineage in state k and

a right daughter lineage in state j and both lineages eventually go extinct before the present. With this

description of all possible scenarios we can derive the differential equation.

Ei(t+ ∆t) = Ei(t) + (1)[
µi Case (1)

−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
Ei(t) Case (2)

+
∑
j 6=i

QijEj(t) Case (3)

+
∑
j

∑
k

λijkEj(t)Ek(t)

]
∆t Case (4) and (5)

Similarly, we can consider all possible scenarios for an observed lineage. We have four different cases (bottom

row in Figure 2): (1) nothing happens in the interval ∆t; (2) a state-change to state j occurs; (3) the lineage

speciates, giving birth to a left daughter lineage in state j and a right daughter lineage in state k and only the

left daughter lineage survives until the present, or; (4) the lineage speciates, giving birth to a left daughter

lineage in state j and a right daughter lineage in state k and only the right daughter lineage survives until

the present. Again, these scenarios are sufficient to derive the differential equation for the probability of an
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observed lineage, denoted D(t).

DN,i(t+ ∆t) = DN,i(t) + (2)[
−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
DN,i(t) Case (1)

+
∑
j 6=i

QijDN,j(t) Case (2)

+
∑
j

∑
k

λijk

(
DN,k(t)Ej(t) +DN,j(t)Ek(t)

)]
∆t Case (3) and (4)

2.2.2 Differential equations forward in time125

Next, we want to compute the probability of extinction and the probability of an observed lineage forward

in time. For the probability of extinction this is, in principle, almost identical to the backward in time

equations. However, now we assume that we know E(t) and want to compute E(t − ∆t). We already

computed E(troot) and D(troot) in our post-order tree traversal (from the tips to root). We use E(troot) as

the initial conditions to approximate E(t − ∆t). Again, we have the same five different cases (top row in

Figure 2): (1) the lineage goes extinct within the interval ∆t; (2) nothing happens in the interval ∆t but the

lineage eventually goes extinct before the present; (3) a state-change to state j occurs and the lineage now

in state j goes extinct before the present; (4) the lineage speciates, giving birth to a left daughter lineage in

state j and a right daughter lineage in state k and both lineages eventually go extinct before the present,

or; (5) the lineage speciates, giving birth to a left daughter lineage in state k and a right daughter lineage in

state j and both lineages eventually go extinct before the present. However, these are the events that can

happen in the future and we included the probabilities of these events already in E(t). Thus, we need to

subtract instead of adding all possible scenarios that lead to the extinction of the lineage in the time interval
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∆t from E(t) to obtain E(t−∆t). This gives us the differential equation for the extinction probability as

Ei(t−∆t) = Ei(t)− (3)[
µi Case (1)

−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
Ei(t) Case (2)

+
∑
j 6=i

QijEj(t−∆t) Case (3)

+
∑
j

∑
k

λijkEj(t−∆t)Ek(t−∆t)

]
∆t Case (4) and (5)

Unfortunately, we cannot solve Equation (3) directly because we do not know Ej(t −∆t) and Ek(t −∆t).

Instead, we will approximate Equation (3) by using Ej(t) instead of Ej(t − ∆t), and Ek(t) instead of

Ek(t−∆t), respectively. Our approximation yields the new differential equation of the extinction probability

by

Ei(t−∆t) ≈ Ei(t)− (4)[
µi Case (1)

−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
Ei(t) Case (2)

+
∑
j 6=i

QijEj(t) Case (3)

+
∑
j

∑
k

λijkEj(t)Ek(t)

]
∆t Case (4) and (5)

The derivation of the probability of an observed lineage in forward time is slightly different. When

sampling a character history from the process we must compute D(t−∆t) conditioned upon the character

state sampled at time t. This does not effect the probability of a lineage going extinct before the present,

so we can use E(troot) as the initial conditions to approximate E(t − ∆t). The initial conditions for the

probability of an observed lineage, on the other hand, must account for the sampled character state. For

example, if we sample the state a at time t our initial conditions to compute D(t−∆t) must be Da(t) = 1.0

and Db(t) = 0.0 for all other character states b. Additionally, we must consider the process in forward time

with all possible scenarios instead of backwards in time and subtracting the possible scenarios. We have four

different cases that are similar to the cases for the backward in time computation (bottom row in Figure 2),
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however here the character state transitions are reversed since we are looking forward in time: (1) nothing

happens in the interval ∆t; (2) with probability DN,j(t) the lineage was in state j and then a state-change

to state i occurs; (3) with probability DN,j(t) the lineage was in state j and then speciates, giving birth to

a left daughter lineage in state i and a right daughter lineage in state k and only the left daughter lineage

survives until the present (the probability of extinction of the right daughter lineage is given by Ek(t−∆t)),

or; (4) with probability DN,j(t) the lineage was in state j and then speciates, giving birth to a left daughter

lineage in state k and a right daughter lineage in state i and only the right daughter lineage survives until

the present (the probability of extinction of the left daughter lineage is given by Ek(t − ∆t)). From these

four scenarios we derive the differential equation.

DN,i(t−∆t) = DN,i(t) + (5)[
−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
DN,i(t) Case (1)

+
∑
j 6=i

QjiDN,j(t) Case (2)

+DN,j(t)Ek(t−∆t)

(∑
j

∑
k

λjik +
∑
j

∑
k

λjki

)]
∆t Case (3) and (4)

As before, we cannot solve Equation (5) directly because we do not know Ek(t − ∆t). Thus, we use the

same approximation as before and substitute Ek(t) for Ek(t−∆t). This substitution gives our approximated

differential equation.

DN,i(t−∆t) ≈ DN,i(t) + (6)[
−

(∑
j

∑
k

λijk +
∑
j 6=i

Qij + µi

)
DN,i(t) Case (1)

+
∑
j 6=i

QjiDN,j(t) Case (2)

+DN,j(t)Ek(t)

(∑
j

∑
k

λjik +
∑
j

∑
k

λjki

)]
∆t Case (3) and (4)

To sample character histories from an SSE process in forward-time during Algorithm (1) we calculate126

E(t−∆t) using the approximation given by Equation (4) and D(t−∆t) using Equation (6).127

2.3 Correctness of the forward time equations128
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2.3.1 Validation of the forward time extinction probabilities129

For the purpose of demonstrating our forward time equations, we will use a non-symmetrical BiSSE model130

with states 0 and 1 which have the speciation rates λ0 = 1 and λ1 = 2, the extinction rates µ0 = 0.5 and131

µ1 = 1.5, and the transition rates Q01 = 0.2 and Q10 = 2.0. For simplicity we assume that there are no state132

changes at speciation events. We will first show that the approximations given by Equation (4) actually133

converge to the true probability of extinction if the time interval ∆t is very small (goes to zero). Note134

that we cannot show the same behavior for the forward in time probabilities of the observed lineage, D(t),135

because when conditioning on a sampled character state the forward in time probabilities will be different136

than the backward in time probabilities. For these probabilities we provide a different type of validation in137

Section 2.3.2.138
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Figure 3: The probability of extinction computed backward and forward in time. Here we compute the extinction
probabilities E0(t) and E1(t) for a BiSSE model backward and forward in time. Details about the parameters of the BiSSE
model are given in the text. We varied the step-size ∆t for the numerical integration between 0.1, 0.01, and 0.001 to show that
both computations give the same probabilities once ∆t is small enough.

We start by computing the probability of extinction and the probability of an observed lineage backward139

in time for a total time interval of 1.0. We initialize the computation with Ei(t = 0) = 0 and then compute140

E0(t) and E1(t) backward in time. Then, we use the computed values of Ei(t = 1) as the initial values for141

our forward in time computation. If our approximation is correct, then we should get identical values for142

the extinction probabilities Ei(t) for any value of t.143

Figure 3 shows our computation using three different values for ∆t: 0.1, 0.01 and 0.001. We observe144

that our approximation of the forward in time computation of the probabilities converges to the backward145

in time computation when ∆t ≤ 0.001, which confirms our expectation. An explanation for the convergence146

is that E0(t) will be approximately equal to E0(t−∆t), (and E1(t) to E1(t−∆t)) the smaller ∆t becomes.147

In our actual implementation in RevBayes we use an initial step-size of ∆t = 10−7 but apply an adaptive148

numerical integration routine to minimize the error in the integrated function.149
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2.3.2 Validation of the forward time equations against diversitree150
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Figure 4: Comparing marginal posterior ancestral state estimates from diversitree to those calculated in
RevBayes. Each point represents the posterior probability of a given node having the ancestral state 0. On the y-axis are the
posterior probabilities as analytically calculated by diversitree. On the x-axis are the posterior probabilities as calculated
by RevBayes using Algorithm (1). Our approximation given in Equation (6) yields highly similar posterior probabilities of the
ancestral states as diversitree. Scripts to repeat this test with various parameter settings are provided in https://github.

com/wf8/anc_state_validation.

Second, we validate our method of sampling character histories from an SSE process in forward-time151

by testing it against the analytical marginal ancestral state estimation implemented in the R package152

diversitree (FitzJohn 2012). Our method as implemented in RevBayes works for sampling both ances-153

tral states and stochastic character maps, however diversitree can not sample stochastic character maps.154

Thus we limit our comparison to ancestral states estimated at the nodes of a phylogeny. Though our method155

works for all SSE models nested within ClaSSE, ancestral state estimation for ClaSSE is not implemented in156

diversitree, so we further limit our comparison to ancestral state estimates for a BiSSE model. Note that157

as implemented in RevBayes the BiSSE, ClaSSE, MuSSE (FitzJohn 2012), HiSSE (Beaulieu and OMeara158

2016), ChromoSSE (Freyman and Höhna 2018), and GeoSSE (Goldberg et al. 2011) models use the same159

C++ classes and algorithms for parameter and ancestral state estimation, so validating under BiSSE should160

provide confidence in estimates made by RevBayes for all these SSE models.161

Our method samples character histories from SSE models from their joint distribution conditioned on the162

tip states and the model parameters during MCMC. In contrast, diversitree computes marginal ancestral163

states analytically. Thus to directly compare results from these two approaches we calculated the marginal164

posterior probability of each node being in each state from a set of 10000 samples drawn by our Monte Carlo165

method. Figure 4 compares these estimates under a non-reversible BiSSE model where the tree and tip data166
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were simulated in diversitree with the following parameters: λ0 = 0.2, λ1 = 0.4, µ0 = 0.01, µ1 = 0.1, and167

q01 = 0.1, q10 = 0.4. Figure 4 shows that using the approximation of E(t −∆t) given by Equation (4) and168

the approximation to compute D(t−∆t) in Equation (6) during Algorithm (1) results in marginal posterior169

estimates for the ancestral states that are nearly identical (up to some expected numerical and sampling170

errors) to those calculated analytically by diversitree. Scripts to perform this test with various parameter171

settings are provided in https://github.com/wf8/anc_state_validation.172

2.4 Implementation, MCMC Sampling and Computation Efficiency173

The stochastic character mapping method described here is implemented in C++ in the software RevBayes174

(Höhna et al. 2014, 2016). The RevGadgets R package (available at https://github.com/revbayes/175

RevGadgets) can be used to generate plots from RevBayes output. Scripts to run all RevBayes analyses176

presented here can be found in the repository at https://github.com/wf8/onagraceae.177

Our method approximates the posterior distribution of the timing and nature of all character transitions178

and diversification rate shifts by sampling a large number of stochastically mapped character histories using179

MCMC. Uncertainty in the phylogeny and other parameters is incorporated by integrating over all possible180

phylogenetic trees and other parameters jointly. From these sampled character histories the maximum a181

posteriori character history can be summarized in a number of ways. The approach presented here is to182

calculate the marginal probabilities of character states for every small time interval along each branch,183

however one could also calculate the joint posterior probability of an entire character history.184

During Algorithm (1) the rate-limiting step is writing conditional likelihood vectors for every small time185

interval along every branch on the tree, particularly when the state space of the model is large. The time186

required is of order O(n×m× r), where n is the number of taxa in the tree, m is the number of character187

states, and r is the number of time intervals. This is reduced by only storing conditional likelihood vectors for188

all time intervals during the MCMC iterations that are sampled. During unsampled (i.e., thinned) MCMC189

iterations the likelihood is calculated in the standard way storing conditional likelihood vectors only at the190

nodes, thus the use of the stochastic mapping algorithm has little impact on the overall computation time.191

2.5 Onagraceae Phylogenetic Analyses192

DNA sequences for Onagraceae and Lythraceae were mined from GenBank using SUMAC (Freyman 2015).193

Lythraceae was selected as an outgroup since previous molecular phylogenetic analyses place it sister to194

Onagraceae (Sytsma et al. 2004). In total 8 gene regions were used (7 chloroplast loci plus the nuclear195

ribosomal internal transcribed spacer region) representing a total of 340 taxa (292 Onagraceae taxa and196
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48 Lythraceae taxa). Information about the alignments and GenBank accessions used can be found in197

the Supporting Information Section S1.1. Phylogeny and divergence times were inferred using RevBayes198

(Höhna et al. 2016). Node ages were calibrated using five fossil calibrations and one secondary calibration.199

Details regarding the calibrations, the models of molecular evolution, and MCMC analyses are given in the200

Supporting Information Section S1.1.201

2.6 Analyses of Mating System Evolution202

The mating systems of Onagraceae species were scored as either SC or SI following Wagner et al. (2007).203

Most of the SC/SI assignments in Wagner et al. (2007) come from detailed family-level surveys such as204

Raven (1979), in which the outcrossing/selfing modes of 283 Onagraceae species were examined, and Heslop-205

Harrison (1990), in which compatibility tests of 48 Onagraceae species were performed. Other SC/SI assign-206

ments come from the many genus- and section-level studies cited in citetwagner2007revised such as Lewis207

and Lewis (1955), Plitmann et al. (1973), and Seavey et al. (1977).208

For the analysis of mating system evolution, all outgroup (Lythraceae) lineages were pruned off our209

phylogeny, leaving 292 Onagraceae species. The species sampling fraction of extant Onagraceae species was210

thus ρ = 292/650 = 0.45, which is the number of species sampled divided by the approximate total number211

of Onagraceae species reported in Wagner et al. (2007). We use this sampling fraction of extant Onagraceae212

as the uniform taxon sampling probability ρ, assuming that missing species are uniformly distributed over213

the phylogeny (Nee et al. 1994; Yang and Rannala 1997; Höhna et al. 2011; Höhna 2014). We assumed there214

was no state-dependent sampling bias since we lacked complete SC/SI assignments for all Onagraceae taxa215

that would indicate such a bias. Finally, we accounted for uncertainty in the phylogeny and divergence times216

by sampling 200 trees from the posterior distribution of trees.217

2.6.1 HiSSE Model218

To test whether diversification rate heterogeneity is associated with shifts in mating system or changes in219

other unmeasured traits, we used a model with 4 states that describes the joint evolution of mating system220

as well as an unobserved character with hidden states a and b (Figure 5). For each of the 4 states we221

estimated speciation (λ) and extinction (µ) rates. For details on priors used and the MCMC analyses see222

the Supporting Information Section S2.1.223

The system of SI found in Onagraceae is S-RNase-based gametophytic SI (Raven 1979; Franklin et al.224

1995; Igic et al. 2008). This system of SI evolved once in the common ancestor of the Asteridae and225

Rosidae (Steinbachs and Holsinger 2002; Igic et al. 2008; Vieira et al. 2008; Niu et al. 2017; Ramanauskas226
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and Igić 2017), the clade that contains Onagraceae. Raven (1979) writes the system of SI in Onagraceae “is227

gametophytic, and involves a series of S-a1leles, with inhibition of pollen-tube growth normally in the surface228

layers of the stigma.” Furthermore, Raven writes that SI “seems to have been characteristic of the original229

common ancestor of Onagraceae, judged by the occurrence of self-incompatibility in four of the seven tribes230

of the family. There is no evidence for the evolution of self-incompatibility within the family once it has been231

lost.” Following Raven (1979), we used an irreversible model that only allowed transitions from SI to SC.232

However, to test the assumption of irreversibility on our results, we additionally used a model that allowed233

for the possibility of secondary gains of SI by permitting both transitions from SI to SC and transitions from234

SC to SI (see Supporting Information Section S2.3).235

ca ia

cb ib

Qic

Qic

Qab QabQba Qba

λia

λib

λca

λcb

µia

µib

µca

µcb

Figure 5: SSE model depicting states and rate parameters used to infer mating system evolution. The states are
labeled ca, cb, ia, and ib, representing self-compatible hidden state a, self-compatible hidden state b, self-incompatible hidden
state a, and self-incompatible hidden state b, respectively. Independent extinction µ and speciation λ rates were estimated
for each of the 4 states, as well as the rate of transitioning from self-incompatible to self-compatible Qic and the rates of
transitioning between the hidden states Qab and Qba.

2.6.2 Model Comparisons, Incomplete Sampling, and Error Rates236

To test whether diversification-rate heterogeneity was not associated with shifts in mating system, we calcu-237

lated a Bayes factor (Kass and Raftery 1995) to compare the mating system-dependent diversification model238

described above with a mating system-independent diversification model. The independent model had 4239

states and the same parameters as the dependent model, except that the speciation and extinction rates240

were fixed so they only varied between the hidden states a and b. Hence, λca was fixed to equal λia, λcb was241

fixed to λib, µca was fixed to µia, and µcb was fixed to µib.242

To evaluate the false positive error rate and the effect of incomplete taxon sampling, we performed a243

series of simulations that tested the power of our models to reject false associations between shifts in mating244
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system and diversification rate shifts. Trees were simulated under a BiSSE model, and then diversification245

independent binary characters representing mating system were simulated over the trees. To test the effect246

of missing data on our power to detect state-dependent diversification, the simulated datasets were pruned247

to have the same proportion of taxon sampling as our empirical Onagraceae dataset (45%; see Supporting248

Information). For each simulation replicate, Bayes factors were calculated to compare the fit of the mating249

system-dependent diversification model and mating system-independent diversification model. Details on250

the simulations are provided in the Supporting Information Section S3.1.251

All Bayes factors were calculated using the stepping stone method (Xie et al. 2010; Höhna et al. 2017), as252

implemented in RevBayes. Marginal likelihood estimates were run for 50 path steps and 19000 generations253

within each step. The Bayes factor was then calculated as twice the difference in the natural log marginal254

likelihoods (Kass and Raftery 1995).255

3 Results256

3.1 Onagraceae Phylogeny257

In our estimated phylogeny, all currently recognized Onagraceae genera (Wagner et al. 2007) were strongly258

supported to be monophyletic with posterior probabilities > 0.98. The crown age of Onagraceae was esti-259

mated to be 98.8 Ma (94.0 Ma – 107.3 Ma 95% HPD; Figure 6), and a summary of the divergence times of260

major clades within Onagraceae can be found in Supporting Information Table 3.261

3.2 Stochastic Character Maps262

Since the results from the analysis allowing for secondary gains of SI were essentially identical to the results263

from the analysis that assumed irreversibility and disallowed secondary gains of SI, we report here only the264

results from the irreversible analysis. See Supporting Information Section S2.3 for results of the analysis265

allowing for secondary gains.266

Under the state-dependent diversification model, repeated independent losses of SI across the Onagraceae267

phylogeny were found to be associated with shifts in diversification rates (Figure 6). Additionally, transitions268

between the unobserved character states a and b were also associated with diversification rate heterogeneity.269

Uncertainty in the timing of diversification-rate shifts and character state transitions was generally low, but270

increased along long branches where there was relatively little information regarding the exact timing of271

transitions (Figure 7). Following the loss of SI, there was an evolutionary time lag (mean 1.97 My) until272

net-diversification (speciation minus extinction) turned negative (Figure 8). Since SC hidden state b was273
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estimated to have positive net-diversification and SC hidden state a was estimated to have negative net-274

diversification, we calculated the time lag from the loss of SI until an evolutionary decline as the time spent275

following the loss of SI in hidden state b until transitioning to hidden state a. In many cases the loss of SI276

occurred in an ancestral lineage with positive net-diversification (hidden state b) followed by multiple shifts277

to negative net-diversification (hidden state a) in descendant lineages. To account for these non-independent278

time lags and avoid double counting the time the ancestral lineage spent in SC state b, we average over all279

(partially) dependent events. For example, the ancestral lineage spent time ta in state b and the left and280

right descendant lineages spent time tl and tr in state b before switching to state a respectively. Then, we281

counted the time as t = ta + tl+tb
2 .282

3.3 Diversification Rate Estimates283

Within either hidden state (a or b) SC lineages had generally higher speciation and extinction rates compared284

to SI lineages (Table 1 and Figure 6). Despite higher speciation and extinction rates, SC lineages had lower285

net-diversification compared to SI lineages. Net-diversification was found to be negative for most but not all286

extant SC lineages.287

Table 1: Posterior parameter estimates of the HiSSE mating system evolution model depicted in Figure 5.

Parameter X Mating System Hidden State Mean 95% HPD Interval

Speciation λca SC a 0.12 0.02 – 0.23
λia SI a 0.16 0.09 – 0.24
λcb SC b 1.66 0.98 – 2.41
λib SI b 0.65 0.45 – 0.85

Extinction µca SC a 0.35 0.25 – 0.48
µia SI a 0.04 0.00 – 0.09
µcb SC b 1.36 0.65 – 2.19
µib SI b 0.10 0.00 – 0.29

Net-diversification rca SC a -0.23 -0.32 – -0.14
ria SI a 0.13 0.05 – 0.19
rcb SC b 0.30 0.15 – 0.46
rib SI b 0.55 0.39 – 0.71

Transition Qic SI → SC a/b 0.22 0.16 – 0.28
Qab SI/SC a→ b 0.01 0.00 – 0.02
Qba SI/SC b→ a 0.33 0.16 – 0.52

3.3.1 Model Comparisons, Incomplete Sampling, and Error Rates288

For the Onagraceae dataset, the state-dependent diversification model of mating system evolution (Figure289

5) was “decisively” supported over the state-independent diversification model with a Bayes factor (2lnBF)290

of 19.9 (Jeffreys 1961). Bayes factors calculated using simulated datasets showed that the false positive error291
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rate was low even despite the poor taxon sampling present in our empirical dataset (Figure 9). The false292

positive rate for “strong” support (2lnBF > 6; Kass and Raftery 1995) was 0.05, and the false positive rate293

for “very strong” support (2lnBF > 10; Kass and Raftery 1995) was 0.0.294
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Figure 6: Maximum a posteriori reconstruction of mating system evolution and shifts in diversification rates
in Onagraceae. Divergence times in millions of years are indicated by the axis at the top. Note that in this marginal
summary reconstruction some transitions are displayed such as the loss and regain of self-incompatibility that were impossible
in any single sampled character history. This indicates high uncertainty in the exact timing of transitions (see Figure 7). The
inset panels show posterior densities of net-diversification (λ− µ), speciation (λ), and extinction (µ) rates in millions of years.
Changes in mating system and an unobserved character (hidden states a and b) are both associated with diversification rate
heterogeneity. Within either hidden state (a or b) self-compatible lineages have higher extinction and speciation rates yet lower
net-diversification rates compared to self-incompatible lineages.
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Figure 7: Posterior probabilities of the maximum
a posteriori reconstruction of mating system evo-
lution and shifts in diversification rates in Ona-
graceae. Marginal posterior probabilities of the character
states shown in Figure 6. Uncertainty was highest along
long branches where there was relatively little information
regarding the timing of transitions.
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Figure 8: The time lag from the loss of self-
incompatibility until the onset of evolutionary de-
cline. The time in millions of years after the loss of self-
incompatibility until the net-diversification rate became
negative measured over 10000 stochastic character map
samples. The mean time lag until evolutionary decline was
1.97 million years (indicated by a dashed line).

0.0

2.5

5.0

7.5

10.0

−10 0 10 20

2lnBF

fr
eq

ue
nc

y

Figure 9: Bayes factors (2lnBF) comparing the fit of the state-dependent diversification model of mating
system evolution with the state-independent diversification model. The red arrow indicates the “decisive” support
found for the empirical Onagraceae data (2lnBF = 19.9; Jeffreys 1961). The dark grey bars represent Bayes factors calculated
for 100 datasets simulated under a state-independent diversification model and pruned to have the same proportion of missing
species as the empirical Onagraceae dataset. The dotted light grey line indicates “strong” support (2lnBF > 6; Kass and
Raftery 1995), and the dashed light grey line indicates “very strong” support (2lnBF > 10; Kass and Raftery 1995). Even with
the poor taxon sampling present in the Onagraceae dataset, our power to reject false positives was high.
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4 Discussion and Conclusion295

The stochastic character map results reveal that the loss of SI has different short term and long term296

macroevolutionary consequences. Lineages with relatively recent losses of SI like Epilobium are undergoing297

a burst in both speciation and extinction rates with a positive net-diversification rate. However, lineages298

that have long been SC such as Fuchsia (Tribe Circaeeae) and Clarkia are in a previously unrecognized299

evolutionary decline. These lineages went through an increase in both speciation and extinction rates a long300

time ago —after the loss of SI— but now only the extinction rates remain elevated and the speciation rates301

have declined, resulting in a negative net-diversification rate. The time lag until this evolutionary decline302

was measured as the time spent following the loss of SI in hidden state b (positive net-diversification) until303

transitioning to hidden state a (negative net-diversification). By mapping the time spent in each hidden state,304

the stochastic character maps quantified the speed of the evolutionary decline in SC lineages. These results305

are robust to phylogenetic uncertainty (by averaging over a posterior distribution of trees), to assumptions306

of mating system irreversiblity (Supporting Information for results allowing for secondary gains of SI), and307

to the effect of missing species sampling (false positive error rate calculated using simulations).308

While the mean time from the loss of SI until evolutionary decline was 1.97 My, there was a large309

amount of variation in time estimates (Figure 8). This variation could be due to differences in the realized310

selfing/outcrossing rates of different SC lineages. Lineages with higher selfing rates likely build up load due311

to weakly deleterious mutations more quickly, leading to a more rapid mutational meltdown and eventual312

evolutionary decline (Lynch et al. 1995a,b; Wright et al. 2008). Furthermore, even if mutational load is313

low, the loss of genetic variation in highly selfing lineages will reduce the probability that such lineages can314

respond adequately to natural selection, such as imposed by a changing or new environment, thus increasing315

the potential for extinction. SC lineages with high outcrossing rates and less inbreeding, on the other hand,316

likely have larger effective population sizes and lower genetic load (Wright et al. 2008), thus delaying the317

onset of higher extinction rates. A limitation of our analysis is that our species data was coded simply SI or318

SC, a more nuanced exploration of the macroevolutionary impact of selfing would require hard to measure319

selfing/outcrossing rates from a large number of species across the phylogeny.320

These results confirm theory about the macroevolutionary consequences of selfing (Stebbins 1957; Grant321

1981). These consequences include the increased probability of going extinct due to the accumulation of322

harmful mutations (Lynch et al. 1995a,b; Wright et al. 2008) and an increased rate of speciation which may323

be driven by higher among-population differentiation and reproductive assurance that facilitates colonization324

of new habitats (Baker 1955; Hartfield 2016). The advantages of reproductive assurance may explain why325
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transitions to SC occur repeatedly (Igic et al. 2008; Lande and Schemske 1985). However, our results326

reveal that this advantage in Onagraceae is short-lived; the burst of increased speciation following the loss327

of SI eventually declines, possibly due to failing to adapt to changing conditions and the accumulation328

of deleterious mutations. The overall macroevolutionary pattern is one in which SC Onagraceae lineages329

undergo rapid bursts of increased speciation that eventually decline, doomed by intensified extinction and330

thus supporting Stebbins’ hypothesis of selfing as an evolutionary dead-end (Stebbins 1957). These results331

provide empirical evidence for the “senescing” diversification rates predicted in highly selfing lineages by Ho332

and Agrawal (2017), who proposed that primarily selfing lineages may at first diversify at higher rates than333

outcrossing lineages but over time slow down due to elevated extinction rates. Similar results were previously334

found in Primulaceae by de Vos et al. (2014), where SC non-heterostylous lineages were found to “live fast335

and die young” compared to SI heterostylous lineages.336

Our findings corroborate previous analyses performed in the plant families Solanceae (Goldberg et al.337

2010), Primulaceae (de Vos et al. 2014), and Orchidaceae (Gamisch et al. 2015) where SC lineages were338

also found to have lower net-diversification rates than SI lineages. Our results, however, are the first to339

use a HiSSE model to show that this pattern is supported even when other unmeasured factors affect340

diversification rate heterogeneity. Intuitively, it is clear that no single factor drives all diversfication rate341

heterogeneity in diverse and complex clades such as Onagraceae. Indeed, in some lineages of Oenothera the342

loss of sexual recombination and segregation due to extensive chromosome translocations (a condition called343

Permanent Translocation Heterozygosity) is associated with increased diversification rates (Johnson et al.344

2011). Furthermore, other factors such as polyploidy and shifts in habitat, growth form, or life cycle may345

impact diversification rates (Mayrose et al. 2011; Donoghue 2005; Eriksson and Bremer 1992). Interpretating346

the hidden states of an SSE model can be challenging (Caetano et al. 2018). Depending on the diversification347

rates estimated there were different but equally valid ways to make sense of the hidden states in our analysis:348

(1) if the diversification rates varied between SC and SI, but not between hidden states a and b, we could349

conclude that shifts in mating system explained all diversification rate heterogeneity; (2) if the diversification350

rates did not vary between SC and SI, but did vary between hidden states a and b we could conclude that351

there were background rate changes unassociated with mating system and that mating system evolution was352

not associated with rate shifts; or (3) if the diversification rates varied both between SC/SI and between353

hidden states a/b, then depending on the phylogenetic pattern of the hidden states they could represent354

the different long and short term consequences of the loss of SI. Our results are congruent with this last355

interpretation, and we interpret the phylogenetic pattern of the hidden states to represent the temporal356

decay of diversification rates in SC lineages. It is important to note, however, that our HiSSE-based analysis357

allowed for any of those three outcomes unlike BiSSE-based analyses.358
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Stochastic character mapping of state-dependent diversification, can be a powerful tool for examining359

the timing and nature of both shifts in diversification rates and character state transitions on a phylogeny.360

Character mapping reveals which stages of the unobserved character a lineage goes through; e.g. after the361

loss of self-incompatibility transitions are predominantly from hidden state b to a, representing shifts from362

positive net-diversification to negative net-diversification. Furthermore, character mapping infers the state363

of the lineages in the present and so reveals which tips of the phylogeny are currently undergoing positive364

or negative net-diversification. If stochastic character mapping is used with an SSE model in which some365

or even all states are hidden (no observed states), then our method will “paint” the location of shifts in366

diversification rate regimes over the tree. Distributions of character map samples could be used for posterior367

predictive assessments of model fit (Nielsen 2002; Bollback 2006; Höhna et al. 2018) and for testing whether368

multiple characters coevolve (Huelsenbeck et al. 2003; Bollback 2006). Our hope is that these approaches369

enable researchers to examine the macroevolutionary impacts of the diverse processes shaping the tree of life370

with increasing quantitative rigor.371
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S1 Onagraceae Phylogenetic Analyses

S1.1 Methods

S1.1.1 Supermatrix Assembly

DNA sequences for Onagraceae and Lythraceae were mined from GenBank using SUMAC (Freyman 2015).
Lythraceae was selected as an outgroup since previous molecular phylogenetic analyses place it sister to
Onagraceae (Sytsma et al. 2004). SUMAC assembled an 8 gene supermatrix (7 chloroplast loci plus the
nuclear ribosomal internal transcribed spacer region) representing a total of 340 taxa. Table S1 summarizes
the genes used, their length, and the percent of missing data. We counted N’s in the downloaded sequences as
missing data, but we did not count gaps introduced by the alignment algorithm as missing data. Sequences
were aligned using MAFFT v7.123b (Katoh and Standley 2013). The default settings in MAFFT were used
except that proper sequence polarity was ensured by using the direction adjustment option. Alignments
were then concatenated resulting in chimeric operational taxonomic units (OTUs) that do not necessarily
represent a single individual.

Table S1: DNA regions mined from GenBank. A total of 340 taxa were included.

DNA Region # Taxa Aligned Length # Variable Sites Missing data (%) Taxon Coverage Density

ITS 250 904 481 26.5 0.735
matK 42 895 276 87.6 0.124
ndhF 39 1085 429 88.5 0.115
pgiC 66 7664 3828 80.6 0.194
rbcL 108 1427 388 68.2 0.318
rpl16 54 1139 343 84.1 0.159
rps16 78 1056 335 77.1 0.229
trnL-trnF 261 1434 644 23.2 0.768

Table S2: Fossil and secondary calibrations used as priors in the Bayesian divergence time analysis. Units are in millions of
years.

Group Calibration Type Placement Prior Distribution Mean SD Offset Reference

Circaea fossil stem lognormal 10 2 12 (Gŕımsson et al. 2012)
Tribe Epilobieae fossil stem lognormal 10 2 12 (Gŕımsson et al. 2012)
Fuchsia section Skinnera fossil stem lognormal 10 2 23 (Lee et al. 2013)
Lythraceae fossil crown lognormal 20 2 81.5 (Graham 2013)
Ludwigia fossil stem lognormal 10 2 57.6 (Zhi-Chen et al. 2004)
Onagraceae + Lythraceae secondary crown normal 93 5 0 (Sytsma et al. 2004)
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S1.1.2 Phylogenetic Analyses

Divergence times and phylogeny were jointly estimated using RevBayes (Höhna et al. 2014, 2016). Estimates
were time calibrated using six node calibrations: four stem fossil calibrations, one crown fossil calibration, and
a secondary calibration for the root split between Onagraceae and Lythraceae (Table S2). An uncorrelated
lognormal relaxed clock model was used, and each of the eight gene partitions were assigned independent
GTR substitution models (Tavaré 1986; Rodriguez et al. 1990). Rate variation across sites was modeled
under a gamma distribution approximated by four discrete rate categories (Yang 1994). The constant rate
birth-death-sampling tree prior (Nee et al. 1994; Yang and Rannala 1997) was used with the probability of
sampling species at the present (ρ) set to 0.27. ρ was calculated by dividing the number of extant species
sampled in the supermatrix (340) by the sum of the number of species recognized in Onagraceae (~650) and
in Lythraceae (~620).

Four independent MCMC analyses were performed. Each MCMC ran for 15000 generations, where each
generation consisted of 837 randomly scheduled Metropolis-Hastings moves. This resulted in four chains
that each performed a total of 12,555,000 MCMC steps. Samples of the posterior distribution were drawn
every 10 generations, and the first 50% of samples from each chain were discarded as burnin resulting in 750
trees sampled from each of the 4 independent chains. Convergence was assessed by ensuring the effective
sample size of each parameter was over 200 for each independent chain. The maximum a posteriori (MAP)
tree was then calculated from the combined 3000 tree samples of all 4 chains.

S1.2 Results

All Onagraceae genera described in Wagner et al. (2007) were recovered as monophyletic in the MAP
summary tree with posterior probabilities > 0.95 (Figure S4). Onagraceae was found to diverge from
Lythraceae at 111.3 My (95% HPD interval 106.0 - 116.6 My). Divergence time estimates of other major
clades and 95% HPD intervals can be seen in Table S3.

Table S3: Divergence time estimates of major clades.

Clade Age Type Mean Age (Ma) 95% HPD Min 95% HPD Max

Onagraceae + Lythraceae crown 111.3 106.0 116.6
Onagraceae crown 98.8 94.0 107.3
Ludwigia crown 32.1 31.3 50.6
Tribe Circaeeae stem 58.7 42.3 65.0
Tribe Circaeeae crown 27.0 24.6 29.8
Fuchshia crown 23.7 23.0 24.1
Lopezia crown 29.5 25.3 36.7
Tribe Epilobieae stem 40.8 39.3 47.0
Tribe Epilobieae crown 31.2 31.2 40.6
Chamerion crown 14.9 12.6 25.2
Epilobium crown 18.9 15.7 22.9
Tribe Onagreae stem 40.8 39.3 47.0
Tribe Onagreae crown 36.4 31.6 40.5
Taraxia crown 17.0 9.9 19.5
Gayophytum crown 3.1 1.8 6.1
Clarkia crown 25.4 24.6 31.2
Eremothera crown 10.4 8.1 15.1
Camissonia crown 9.7 6.4 14.6
Eulobus crown 4.7 2.6 8.1
Chylismia crown 14.4 10.8 19.0
Oenothera crown 14.2 13.0 17.6
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S2 Mating System Evolution Analyses

S2.1 Model Priors

Model parameter priors are listed in Table S4. The rate of loss of self-incompatibility (qic), and the rates
of switching between hidden states a and b (qab and qba) were each given an exponential distribution with
a mean of n/Ψl, where Ψl is the length of the tree Ψ and n is the expected number of transitions. n was
given an exponential hyperprior with a mean of 20.

The speciation and extinction rates were drawn from exponential priors with a mean equal to an estimate
of the net diversification rate d̂. Under a constant rate birth-death process not conditioning on survival of
the process, the expected number of lineages at time t is given by:

E(Nt) = N0e
td, (S1)

where N0 is the number of lineages at time 0 and d is the net diversification rate λ − µ (Nee et al. 1994;

Höhna 2015). Therefore, we estimate d̂ as:

d̂ = (lnNt − lnN0)/t, (S2)

where Nt is the number of lineages in the clade that survived to the present, t is the age of the root, and
N0 = 2. The root state probabilities π were set to start the process equally in either self-incompatible hidden
state a or self-incompatible hidden state b.

Table S4: Model parameter names and prior distributions. See the main text for complete description of model
parameters and prior distributions. Ψl represents the length of tree Ψ and d̂ is the expected diversification rate under a
constant rate birth-death process.

Parameter X f(X)

Speciation self-incompatible a λia Exponential(λ = 1/d̂)

Speciation self-incompatible b λib Exponential(λ = 1/d̂)

Speciation self-compatible a λca Exponential(λ = 1/d̂)

Speciation self-compatible b λcb Exponential(λ = 1/d̂)

Extinction self-incompatible a µia Exponential(λ = 1/d̂)

Extinction self-incompatible b µib Exponential(λ = 1/d̂)

Extinction self-compatible a µca Exponential(λ = 1/d̂)

Extinction self-compatible b µcb Exponential(λ = 1/d̂)
Rate of loss of self-incompatibility qic Exponential(λ = Ψl/n)
Rate of a→ b qab Exponential(λ = Ψl/n)
Rate of b→ a qba Exponential(λ = Ψl/n)
Expected number of transitions n Exponential(λ = 1/20)

S2.2 MCMC Analyses

To account for uncertainty in phylogeny and divergence times 200 independent MCMC analyses were per-
formed, each sampling a tree from the posterior distribution of trees generated during the phylogenetic
analyses. All outgroup (Lythraceae) lineages were pruned off, leaving 292 Onagraceae species. The proba-
bility of sampling species at the present (ρ) was set to 292/650 = 0.45, which is the number of Onagraceae
species sampled divided by the approximate number of species in Onagraceae. Each MCMC run drew 10000
samples from the posterior distribution, with 190 randomly scheduled Metropolis-Hastings moves per sam-
ple. The first 10% of samples from each run were discarded as burnin. For each run, all parameters had
effective sample sizes greater than 200, and the mean effective sample size of the posterior across all 200 tree
samples was 1161.6. Estimates of the diversification rates were made by combining samples from all 200
independent runs.
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S2.3 Mating System Analysis Allowing for Reversals

To test for secondary gains of self-incompatibility, we repeated the analysis described above but instead of
fixing qci = 0 we estimated both qci and qic. Like qic, we assigned qci an exponential prior with λ = Ψl/r,
where the expected number of reversals r was exponentially distributed with parameter λ = 1/20.

The results from the analysis allowing for secondary reversals were nearly identical to the results from
the analysis disallowing secondary reversals (Figure S2 and S3). The transition rate from SI to SC was 0.19
(0.10 – 0.26 95% HPD), slightly lower than when reversals were disallowed. The rate of secondary reversals
SC to SI was 2.52 × 10-3 (1.94 × 10-5 – 5.88 × 10-3 95% HPD), essentially zero. This resulted in sampled
character histories nearly identical to those shown in the main text estimated under the irreversible model.

The diversification rates estimated when allowing for reversals were very similar to the diversification
rates estimated when not allowing for reversals. Within either hidden state (a or b) SC lineages had generally
higher speciation and extinction rates compared to SI lineages (Figure S3). SC lineages in state a had a
speciation rate of 0.14 (0.03 – 0.25 95% HPD) compared to 0.15 (0.08 – 0.22 95% HPD) in SI lineages in
state a. For SC lineages in state b the speciation rate was 1.60 (1.00 – 2.29 95% HPD) compared to 0.61
(0.44 – 0.82 95% HPD) in SI lineages in state b. Similarly, SC lineages in state a had an extinction rate
of 0.36 (0.25 – 0.48 95% HPD) compared to 0.04 (0.00 – 0.09 95% HPD) in SI lineages in state a. For SC
lineages in state b the extinction rate was 1.27 (0.61 – 2.02 95% HPD) compared to 0.08 (0.00 – 0.25 95%
HPD) in SI lineages in state b.

Despite higher speciation and extinction rates, SC lineages had lower net diversification compared to SI
lineages. Net diversification was found to be negative for most but not all extant SC lineages. The net
diversification rate for SC lineages in state a was -0.23 (-0.31 – -0.14 95% HPD), compared to 0.11 (0.04 –
0.18 95% HPD) in SI lineages in state a. For SC lineages in state b the net diversification rate was 0.33 (0.17
– 0.50 95% HPD), compared to 0.53 (0.36 – 0.70 95% HPD) in SI lineages in state b.
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Figure S2: Posterior density of transition rate estimates when allowing for reversals. The estimated rate of
secondary gains of SI (Qci; green) was 2.52 × 10-3 (1.94 × 10-5 – 5.88 × 10-3 95% HPD). The estimated rate of the loss of SI
(Qic; purple) was 0.19 (0.10 – 0.26 95% HPD).

S3 Simulations

S3.1 Simulated Datasets

100 datasets were simulated under a model where the observed binary character was diversification rate
independent yet an unobserved binary character drove background diversification rate heterogeneity. To test
the effect of missing data on our power to detect state-dependent diversification, we simulated datasets with
the same proportion of taxon sampling as our empirical Onagraceae dataset (45%; see details above for how
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Figure S3: Posterior density of diversification rates when allowing for reversals. Diversification rate estimates were
nearly identical to those estimated when not allowing for reversals (compare with Figure 6 in the main text).

this number was calculated). First trees were simulated under BiSSE (Maddison et al. 2007) as implemented
in the R package diversitree (FitzJohn 2012). The binary character represented hidden states a and b
with diversification rates λa = 1.0, λb = 2.0, µa = 0.4, and µb = 0.1. The rate of change between hidden
states a and b was set to qab = qba = 0.1. This resulted in trees that were qualitatively similar in shape
to the empirically estimated Onagraceae tree, with a mix of early diverging depauperate clades and more
rapidly radiating recent clades (Figure S4). To simulate incomplete sampling, 55% of the extant tips were
randomly pruned off the tree. After pruning, tree samples were discarded unless they had between 100 and
200 sampled lineages that survived to the present. This restriction ensured that the simulated datasets were
not too small for reliable inference and yet not so large to be computationally infeasible. Furthermore, we
discarded datasets that had fewer than 20% of the tips in either hidden state to ensure that the trees were
generated under a sufficiently heterogenous process.

Once the trees were simulated, diversification independent binary characters were simulated over the
trees. These characters represented the observed character (mating system) and so were simulated under an
irreversible model where the allowed transition occurred with the rate 10/Ψs, where Ψs is the length of the
simulated tree. This represents an expected 10 irreversible transitions over the length of the tree, and re-
sulted in simulated datasets with a proportion of either state similar to the proportion of self-compatible/self-
incompatible in the empirical Onagraceae dataset. These diversification independent characters were then
used to calculate Bayes factors that compared the fit of the diversification dependent model to the diversifi-
cation independent model of mating system. For details on how Bayes factors were calculated see the main
text. The false positive error rate was calculated as the percent of simulation replicates in which the Bayes
factor supported the false dependent model over the true independent model.
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