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Abstract. Estimating the long memory parameter of the fMRI time
series enables us to understand the fractal behavior of neural activity of
the brain through fMRI time series. However, the existence of white noise
and physiological noise compounds which also have fractal properties
prevent us from making the estimation precise. As basic strategies to
overcome noises, we address how to estimate the long memory parameter
in the presence of additive noises, and how to estimate the long memory
parameters of linearly combined long memory processes.
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1 Introduction

Fractal can be regarded as self-similarity of an object which means that the sta-
tistical properties remain invariant throughout different scales. It is well known
that many natural phenomena have such a fractal structure; for example, it can
be found at river networks, clouds, trees, neuronal networks, Koch curve, and
so forth [11]. The fMRI time series have also fractal properties or 1/f spec-
tral densities [3][12]. Thus, some neuroscientists have attempted to study fractal
properties of fMRI time series by estimating the fractal dimension or long mem-
ory parameter. In results, they have observed not only that the fMRI time series
tend to be corrupted by a fractional Gaussian noise (fGn) which has fractal
properties, but also that the Hurst exponent of the fGn noise provides valu-
able information on Alzheimer’s disease [12], Moreover, the fractal properties
are stronger in grey matter which has higher population of neurons, than in
white matter of the brain even during resting state [4]. These reports indicate
that the fractal properties of fMRI time series may represent neural activity of
the brain. Thus, it is manifest that the fractal properties are one of important
features to analyze fMRI time series.

Our interest is to estimate the long memory parameter of the endogenous
signal which can be modeled as a long memory process in order to track the
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spontaneous neural activity of the brain during resting state of a subject through
analyzing fMRI time series. Unfortunately, the data normally tend to suffer from
tremendous noise compounds such as cardiac pulse, respiration, subject motion,
and scanner noise. While it is not serious in task-based experiments, it could be a
critical problem in resting state fMRI analysis since it may significantly prevent
us from extracting the endogenous signal which arises from neural activity of the
brain. It means that the long memory behavior of a raw fMRI time series may
be attributed not only to endogenous neural activity but also to physiological
noise, subject movement, and other sources [13][14]. To precisely estimate the
long memory parameter of a pure endogenous signal, we should model the raw
fMRI time series as the linear sum of several long memory processes (for example,
the summation of endogenous signal and physiological pulsations) and additive
noises. Under this model, our works consist of two steps: (1) estimating the
parameters of each component in the model, and (2) classifying each component
into endogenous signal, physiological noises, or other additive noises.

Here, we focus on the first step: estimating the parameters of linearly com-
bined long memory processes in the presence of additive noises. To be specific,
we address two topics; one is the parameter estimation of a long memory pro-
cess in the presence of additive noises, and the other is the parameter estimation
of linearly combined long memory processes. Regarding the former topic, we
thought that Achard’s method for a fractional Brownian motion corrupted by
additive noises [7] can be also applicable to estimate the parameter of a long
memory process corrupted by additive noise. In the latter topic, we will intro-
duce a method to estimate the parameters of linearly combined long memory
processes. The fact that the linear combination of long memory processes results
in the linear combination of wavelet variances allows us to use multiexponential
analysis in order to estimate the parameters of linearly combined long memory
processes.

2 The Signal Model

Let Y := {Yl}l=1,··· ,L be a set of L stochastic processes where Yl := {Yl(t)}t=1,··· ,N
for l = 1, · · · , L. In other words, we have L fMRI time series with N time points.
We assume that each process can be modeled as the linear combination of en-
dogenous signal, cardiac noise, respiratory noise, and white noise as follows

Yl = Xl + Cl + Rl + Nl (1)

where Xl := {Xl(t)}t=1,··· ,N is an endogenous signal at l-th voxel, Cl := {Cl(t)}t=1,··· ,N
is a cardiac noise at l-th voxel, Rl := {Rl(t)}t=1,··· ,N is a respiratory noise at
l-th voxel, and Nl := {Nl(t)}t=1,··· ,N is an additive white Gaussian noise at l-th
voxel. That is, Nl(t) for t = 1, · · · , N are i.i.d. Gaussian random variable with
variance σ2

l . Since the first step is to eliminate the additive white noise Nl, we
can simplify the above equation into

Yl = Ẋl + Nl (2)

where Ẋl = Xl + Cl + Rl.
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3 Parameter Estimation of a Long Memory Process
Corrupted by Additive Noises

3.1 Some Definitions

As we discussed in the previous section, the endogenous signal Xl can be modeled
as a type of long memory process. Likewise, we can also regard cardiac noise Cl

and respiratory noise Rl as long memory processes. Indeed, there have been a lot
of evidences which imply that heartbeat [16][17][18][19][20][21] and respiration
[22][23][24] also have fractal properties.

We suppose that the linear summation of long memory processes is ap-
proximately a long memory process. In other words, if each process Xk for
k = 1, · · · , N has long memory, the process

Z(t) :=
N∑
k=1

αkXk(t) (3)

also has long memory for αk ∈ R. We did not prove this hypothesis but we will
indirectly see at the section 4 how reasonable it is. In addition, Christoph Thäle
[25] proved that the linear combination of N fractional Brownian motions with
Hk > 1/2 for k = 1, · · · , N is also long-range dependent. Under this hypothesis,
Ẋl in (2) can also be regarded as a long memory process.

We adopt the definition of a long memory process suggested by Moulines et
al. [5]; that is, a real-valued discrete process Ẋl is said to have memory parameter
dl (and is called a M(dl) process) if, for any integer D > dl−1/2, the D-th order
difference process ∆DẊl (where ∆DẊl(k) := ∆D−1Ẋl(k) −∆D−1Ẋl(k − 1)) is
weakly stationary with spectral density function

S∆DẊl
(f) :=

∣∣1− e−i2πf ∣∣2(D−dl) S∗
Ẋl

(f) , f ∈ (−1/2, 1/2) (4)

where S∗
Ẋl

(f) is a non-negative symmetric function which is bounded on (−1/2, 1/2).

To estimate the long memory parameter dl, let us define a filter a of length
p+ 1 satisfying the following conditions1:

1.
∑n
k=1 a

2
k = 1.

2. There exists α > 0 such that supk∈[0,n) |âk|
(
1 +

∣∣ k
n

∣∣)α < ∞ where âk :=∑n
q=1 aqe

−i2πqk/n.

3. It has M vanishing moments, i.e.
∑p
q=0 q

jaq = 0 for j = 0, · · · ,M − 1, and∑p
q=0 q

Maq 6= 0.

1 The notation of filter was adopted from Achard et al. [7], but its conditions are iden-
tical to those of the wavelet filter defined by Moulines et al. [5]. The only difference
is that the conditions are based on Discrete Fourier Transform while Moulines et
al.’s filter conditions are based on Continuous Fourier Transform. We just assume,
without proof, that Moulines et al.’s theories are valid even in our conditions of the
wavelet filter.
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On the other hand, the dilated filter2 aj is defined as the filter of length 2jp+ 1
such that for j ≥ 0 and k = 0, · · · , 2jp,

ajk =

{
ak/2j if k/2j is an integer

0 otherwise.
(5)

Let Ẋa
l be the vector Ẋl filtered with a such that for i = l + 1, · · · , n

Ẋa
l (i) :=

l∑
q=0

aqẊl(i− q). (6)

3.2 Asymptotic Approximation of Spectral Density

Moulines et al. showed that the spectral density of the wavelet coefficients of an
M(d) process can be asymptotically approximated by that of fractional Brownian
motion (FBM) if the memory process satisfies some conditions [5]. If the process
Ẋl is covariance stationary and have the spectral density

SẊl
(f) =

∣∣1− e−i2πf ∣∣−2d S∗
Ẋl

(f) (7)

for 0 < d < 1/2, X, Ẋl is said to have long memory, and SẊl
(f) is called a

generalized spectral density [26]. On the other hand, let H (β, L) be the set of
even non-negative functions g on [−1/2, 1/2] such that

|g(f)− g(0)| ≤ Lg(0) |2πf |β . (8)

Theorem 1. Given the constants L, β such that 0 < L < ∞, β ∈ (0, 2], and
[dmin, dmax] ⊂ ((1 + β) /2− α,M + 1/2), there exists a constant C > 0 such
that, for all j ≥ 0, dl ∈ [dmin, dmax] and S∗

Ẋl
∈ H (β, L),∣∣∣ν2l (j)− S∗

Ẋl
(0)K(dl, a)22dlj

∣∣∣ ≤ CS∗Ẋl
(0)L2(2dl−β)j (9)

where
ν2l (j) := Var

(
Ẋaj

l

)
and (10)

K (dl, a) :=

n−1∑
k=0

∣∣∣∣kn
∣∣∣∣−2dl |âk|2 . (11)

The theorem was proved by Moulines et al. in [5]. They showed that S∗
Ẋl

(0)K(dl, a)22dlj

is the spectral density of the filtered series of a generalized FBM B(d) which is
defined as a mean-zero Gaussian process with covariance

Cov
(
Ba

j1

(d) , B
aj2
(d)

)
=
n−1∑
k=0

|2πk|−2d âj1k â
j2
k (12)

2 Notice that the notation aj is identical to a2
j

in Achard et al.’s definition [7].
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for d ∈ (1/2− α,M + 1/2). Therefore, from (9), ν2l (j) can be well approximated
by S∗

Ẋl
(0)K (dl, a) 22dj ; i.e.

ν2l (j) ≈ S∗
Ẋl

(0)K (dl, a) 22dj (13)

if dl < β/2. By denoting γl := S∗
Ẋl

(0)K (dl, a), we have the following regression

model
log
(
ν2l (j)

)
= 2dlj + log (γl). (14)

Since ν2l (j) can be estimated by the empirical variance ν̂2l (j), we can also obtain
estimator of the memory parameter d through the ordinary regression estimator

d̂l :=
wT

2 ‖w‖2
(
log
(
ν̂2l (j)

))
j=J1,··· ,J2

(15)

where the vector w := [w0, · · · , wl]T satisfies wi = j − 1
J2−J1+1

∑J2
j=J1

j. From

(14) and (15), we have d̂l and S∗
Ẋl

(0).

This least squares estimator of long memory parameter is similar with that
of fractional Brownian motion discussed by Coeurjolly and Achard [27][7]. For
example, they described that a fractional Brownian motion BH with Hurst pa-
rameter H ∈ (0, 1) and scaling coefficient C > 0 has the following property

E

((
Baj
H

)2)
= 22HjC2πaH(0) (16)

where
(
Baj
H

)2
denotes the empirical mean of the squared filtered coefficients, and

πaH(i) = −1

2

l∑
q,r=0

aqar |q − r + i|2H . (17)

The equation (16) of a FBM is similar with the equation (13) of a long memory
process, which indicates that Achard et al.’s method [7] for estimating the Hurst
parameter of a fractional Brownian motion in the presence of additive noise is
applicable to the general class of long memory processes without any modifica-
tion. In the next sections 3.3 and 3.4, we will summarize how to apply Achard
et al.’s method to general long memory processes.

3.3 Model B0: Long Memory Process with an Additive Brownian
Motion

Let us consider the following model

Yl(t) = Ẋl(t) + σlB
(0)(t) (18)

where σ > 0, Ẋl(t) is a long memory process with parameter dl as defined in
the section 3 and B(0)(t) for t = 1, · · · , N is a standard Brownian motion. Then,
from (13), the variance of the filtered series of Yl will be

E

((
Yaj

)2)
= 22dljγl + 2jσ2

l π
a
1/2(0) (19)
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where γl = S∗
Ẋl

(0)K (dl, a). Thus, we can apply the same method as Achard

et al. did as follows; if we define Za
j

(i) = Yaj
(i)

2j/2
, the least squares estimate is

computed by

d̂B0−ST =
1

2
+

wT

2 ‖w‖2

(
log

((
Zaj+1

)2 − (Zaj)2))
j=J1,··· ,J2

(20)

3.4 Model B1: Long Memory Process with an Additive White
Noise

Let us consider the following model

Yl(t) = Ẋl(t) + σlB
(1)(t) (21)

where σl > 0 and B(1)(t) for t = 1, · · · , N are i.i.d. standard Gaussian variables.
According to Achard et al. [7],

E

((
Yaj

)2)
= 22dljγl + σ2

l |a|
2
, (22)

and the least squares estimate is

d̂B0−ST =
wT

2 ‖w‖2

(
log

((
Yaj+1

)2 − (Yaj
)2))

j=J1,··· ,J2
(23)

4 Linear Combination of Lone Memory Processes

In the previous section, we dealt with two models: a fractional Brownian motion
contaminated by a standard Brownian motion, and a fractional Brownian motion
contaminated by an additive white noise. Here, we will generalize the signal
model; let us consider the following model

Yl(t) =
K∑
k=1

Ẋl,k(t) + σlB
(1)(t) (24)

where K is the unknown integer, Ẋl,k(t) for k = 1, · · · ,K is a long memory
process with parameter dl,k and B(1)(t) for t = 1, · · · , N are i.i.d. standard
Gaussian variables. The variance of the filtered series of Yl will be

E

((
Yaj
l

)2)
=

K∑
k=1

22dl,kjγl,k + σ2
l |a|

2

=
K∑
k=1

e2 log(2)dl,kjγl,k + σ2
l |a|

2
(25)
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where γl,k = S∗
Ẋl,k

(0)K (dl,k, a). Then, we would like to estimate K and dl,k for

all k = 1, · · · ,K given the measurement E

((
Yaj

)2)
for j = J1, · · · , J2.

This problem can be interpreted as the multiexponential analysis which is a
common problem in the various fields such as physics, chemistry, medical imag-
ing, and so forth. There exist numerous methods such as nonlinear least squares
analysis (grid search, gradient search, Gauss-Newton method, Levenberg-Marquard
method) [1] and Bayesian probability theory [2]. Even though in general the so-
lution of this problem is not unique [1], it can be converted to the well-posed
problem by applying some constraints on parameters.

The other issue is that the estimation is sensitive to the number of scales
J2 − J1 + 1 and the resolution of parameters. In otherwords, the decrease in
the number of scales and the increase in the number of components K or the
resolution dl,k1/dl,k2 (if dl,k1 > dl,k2 for k1, k2 = 1, · · · ,K) make the parameter
estimation less precise. In the fMRI analysis, the number of scales is normally
less than 10 which is tremendously small.

To simplify our problem, let us consider the following model

Yl(t) = Ẋl,1(t) + Ẋl,2(t) + σlB
(1)(t). (26)

This model is similar with the original fMRI signal model defined in (1). If we
successfully estimate the long memory parameters of the signals Ẋl,1 and Ẋl,2,
we will be able to classify them into endogenous signal Xl and physiological
noises (such as Cl or Rl). From (26), the variance of filtered series of Yl is

E

((
Yaj
l

)2)
= 22dl,1jγl,1 + 22dl,2jγl,2 + σ2

l |a|
2
. (27)

In the framework of the nonlinear least squares methods [1], our problem can be
formulated as finding out the set of optimal parameters

(
dl,1, dl,2, γl,1, γl,2, σ

2
l

)
which minimizes the least squares error χ2

LS such that

χ2
LS =

J2∑
j=J1

(
22dl,1jγl,1 + 22dl,2jγl,2 + σ2

l |a|
2 −E

((
Yaj
l

)2))2

. (28)

To solve the problem, we exploited the following simple algorithm. Let D :={
0, 1r ,

2
r , · · · , 1

}
be a discrete set of long memory parameters where r is the

resolution of long memory parameter. Then, we computed the following quantity
for all dl,1 ∈ D and dl,2 ∈ D

(dl,1, dl,2)opt = arg min
dl,1,dl,2∈D

χ2
LS (dl,1, dl,2) (29)

where

χ2
LS (dl,1, dl,2) =

J2∑
j=J1

[22dl,1j γ̂l,1 (dl,1, dl,2) + 22dl,2j γ̂l,2 (dl,1, dl,2)

+σ̂2
l (dl,1, dl,2) |a|2 −E

((
Yaj
l

)2)
]2, (30)
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and the vector popt =
(
γ̂l,1 (dl,1, dl,2) , γ̂l,1 (dl,1, dl,2) , σ̂2

l (dl,1, dl,2)
)T

is deter-
mined by

popt = arg min
p
‖Ap− v‖2 (31)

where

v =

[
E

((
YaJ1

l

)2)
,E

((
YaJ1+1

l

)2)
, · · · ,E

((
YaJ2

l

)2)]T
and (32)

A =


22dl,1J1 22dl,2J1 1

22dl,1(J1+1) 22dl,2(J1+1) 1
...

...
...

22dl,1J2 22dl,2J2 1

 (33)

given dl,1 and dl,2 [8].

5 Experimental Results

5.1 Long Memory Processes Corrupted by White Noise

To demonstrate that Achard et al.’s method [7] can be directly applied to gen-
eral long memory processes, we simulated ARFIMA processes [9] contaminated
by additive white noise since the process belongs to the class of long memory
processes [6]. The process X is called the ARFIMA(p, d, q) process if S∗(f) is
given for −1/2 < d < 1/2 by

S∗X(f) = σ2

∣∣1 +
∑q
k=1 θke

−ifk
∣∣2

|1−
∑p
k=1 φke

−ifk|2
(34)

with 1−
∑p
k=1 φkz

k 6= 0 for |z| = 1 [6].
To estimate the long memory parameter of the ARFIMA processes, we ex-

ploited the R-package dvfBm available on the R CRAN (http://cran.r-project.
org). We will use the same notation as Achard et al. defined in [7]; that is, ĤST

is a standard least squares estimator, ĤQ is a least squares estimator based
on sample quantiles, and ĤTM is a least squares estimator based on trimmed
mean. Also, ĤB1−ST , ĤB1−Q, and ĤB1−TM denote least squares estimators
when the time series are assumed to be contaminated by white noise. Notice
that the experimental results do not show the mean and standard deviation of
the estimators since we did not run replication for each time series. We set up
the specific parameters as follows: p = 1/2 and c = 1 for ĤQ, and β1 = β2 = 0.1
for ĤTM . We only used the filter i1 which corresponds to the increments of order
1, and the minimum M1 and the maximum M2 of filter dilation were set up as
1 and 5. The whole results are shown at the tables 1, 2, 3, 4, 5, 6, 7, and 8.
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d=0.2 d=0.4

n=100 n=1000 n=10000 n=100 n=1000 n=10000

ST(i1,5) 0.160 0.172 0.159 0.442 0.374 0.366

Q(i1,5) 0.266 0.155 0.159 0.512 0.349 0.365

TM(i1,5) 0.174 0.173 0.158 0.495 0.355 0.366

Table 1: Long memory estimates of an ARFIMA (0, d, 0) process for
d = 0.2, 0.4.

d=0.2 d=0.4

n=100 n=1000 n=10000 n=100 n=1000 n=10000

ST(i1,5) 0.337 0.304 0.290 0.463 0.555 0.530

Q(i1,5) 0.397 0.283 0.280 0.402 0.550 0.527

TM(i1,5) 0.364 0.310 0.283 0.456 0.558 0.529

Table 2: Long memory estimates of an ARFIMA (1, d, 0) process with
φ1 = −0.2 for d = 0.2, 0.4.

d=0.2 d=0.4

n=100 n=1000 n=10000 n=100 n=1000 n=10000

ST 0.050 0.026 0.016 0.097 0.203 0.185

Q 0.105 0.031 0.015 0.208 0.210 0.179

TM 0.090 0.036 0.019 0.114 0.195 0.182

Table 3: Long memory estimates of an ARFIMA (0, d, 1) process with
θ1 = −0.3 for d = 0.2, 0.4.

d=0.2 d=0.4

n=100 n=1000 n=10000 n=100 n=1000 n=10000

ST 1.718 1.686 1.718 1.686

Q 2.155 2.149 2.128 2.150

TM 1.971 1.942 1.971 1.942

Table 4: Long memory estimates of an ARFIMA (10, d, 0) process with
φi = −0.2 for d = 0.2, 0.4 and i = 1, · · · , 10.
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d=0.2 d=0.4

n=100 n=1000 n=10000 n=100 n=1000 n=10000

ST 0.117 0.279 0.277 0.529 0.539 0.556

Q 0.107 0.321 0.272 0.445 0.497 0.553

TM 0.163 0.292 0.280 0.511 0.532 0.562

Table 5: Long memory estimates of an ARFIMA (0, d, 10) process with
θi = −0.3 for d = 0.2, 0.4 and i = 1, · · · , 10.

d=0.2 d=0.4

n=100 n=1000 n=10000 n=100 n=1000 n=10000

ST 0.097 0.035 0.022 −0.041 0.041 0.052

B1-ST 0.049 0.297 −0.182 0.271 −0.360 0.148

B1-Q 0.303 −0.497 −0.283 0.319 0.354 0.083

B1-TM −0.032 0.238 −0.143 0.212 0.472 0.086

Table 6: Long memory estimates of an ARFIMA (0, d, 0) process con-
taminated by white noise with a SNR = −10 for d = 0.2, 0.4.

d=0.2 d=0.4

n=100 n=1000 n=10000 n=100 n=1000 n=10000

ST 0.015 0.021 0.007 0.035 0.002 0.005

B1-ST 0.056 0.004 −0.255 0.014 0.415 0.539

B1-Q −0.095 0.330 −0.326 0.213 0.430 −0.225

B1-TM 0.106 0.330 −0.546 0.336 0.683 0.324

Table 7: Long memory estimates of an ARFIMA (0, d, 0) process con-
taminated by white noise with a SNR = −20 for d = 0.2, 0.4.

d=0.2 d=0.4

n=100 n=1000 n=10000 n=100 n=1000 n=10000

ST 0.026 −0.027 0.005 0.005 0.020 0.019

B1-ST −0.502 0.238 0.203 −0.363 −0.059 0.880

B1-Q −0.349 −0.384 0.599 −0.089 0.215 1.581

B1-TM −0.581 −0.093 0.324 −0.525 −0.172 0.726

Table 8: Long memory estimates of an ARFIMA (0, d, 10) process con-
taminated by white noise with a SNR = −20 and θi = −0.3 for
d = 0.2, 0.4 and i = 1, · · · , 10.
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5.2 Linearly Summed fractional Brownian Motions

We tested the NLS long memory estimator of linearly summed fractional Brow-
nian motions with the Hurst parameter H1 = 0.1, 0.2 and H2 = 0.6, 0.7, 0.8, 0.9.
Each process was simulated by the method proposed by Abry and Sellan [10].
(The MATLAB function can be found at http://www.mathworks.com/access/
helpdesk/help/toolbox/wavelet/wfbm.html) To compute wavelet variances,
we exploited the maximum overlay discrete wavelet transform (MODWT) with
the Daubechies filter of order 8. The results are shown at the table 9.

d1 = 0.1 d1 = 0.2

n=100 n=1000 n=10000 n=100 n=1000 n=10000

d2 = 0.6
d̂1 0.000 0.002 0.003 0.003 0.002

d̂2 1.000 0.538 0.355 0.212 0.532

d2 = 0.7
d̂1 0.000 0.003 0.002 0.000 0.000 0.002

d̂2 1.000 0.422 0.483 1.050 0.939 0.565

d2 = 0.8
d̂1 0.000 0.002 0.002 0.000 0.002 0.365

d̂2 1.000 0.644 0.608 1.000 0.593 1.235

d2 = 0.9
d̂1 0.000 0.001 0.001 0.000 0.000 0.002

d̂2 1.000 0.848 0.721 1.000 1.319 0.557

Table 9: Long memory estimates of two linearly summed fractional
Brownian motions for H1 = 0.1, 0.2, and H2 = 0.6, 0.7, 0.8, 0.9.

6 Discussion

Estimation of long memory parameters in the presence of white noise

We applied Achard et al.’s method [7] to the ARFIMA(p, d, q) processes cor-
rupted by white noises, but the performance was extremely poor except the case
of ARFIMA(0, d, 0). We thought that the applicability of Achard et al.’s method
to a long memory process X is based on the assumption such that S∗X(f) of the
process X belongs to the function set H (β, L) defined at (8). The fact that the
parameter estimation of the ARFIMA(0, d, 10) process was better than that of
the ARFIMA(0, d, 0) process implies that S∗X(f) better fit into H (β, L) as the
order q of MA part increases. Nevertheless, we need to understand exactly why
the performance of estimation was significantly unacceptable, and to enhance
Achard et al.’s method in order to make better performance for general long
memory processes.

Parameter estimation of linearly combined long memory processes

The parameter estimation of linearly combined long memory processes was se-
riously worse than that of a single long memory processes corrupted by white
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noise. As you see in the table 9, the estimates are not contiguous to the expected
value. We need to verify how the NLS-based estimator is effective theoretically
and empirically. As I noticed at the section 4, the small number of scales seems
to contribute to the poor performance. In the future works, we will clarify what
factors mostly influence the performance of estimation. In addition, we will at-
tempt to develop the alternative methods for parameter estimation of linearly
combined long memory processes.
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