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Abstract
Statistical theory indicates that a flexible model can attain a lower generalization
error than an inflexible model, provided that the setting is appropriate. This is
highly relevant in the context of mortality risk prediction for trauma patients, as
researchers have focused almost exclusively on the use of linear models for risk pre-
diction, and linear models may be too inflexible to capture the potentially complex
relationships in trauma data. Due to this, we propose an ensemble machine learning
model, the Trauma Severity Model (TSM), for risk prediction. In order to empirically
validate TSM's predictive performance, this study compares TSM to three estab-
lished risk prediction models: the Bayesian Logistic Injury Severity Score (BLISS),
the Harborview Assessment for Risk of Mortality (HARM), and the Trauma Mor-
tality Prediction Model (TMPM-ICD9). Our results indicate that TSM has superior
predictive performance, and thereby provides improved risk prediction.

1. Introduction

Trauma is a global healthcare epidemic, accounting for 9.2% of all deaths and 10.9%
of disability-adjusted life-years [1]. The potential impact of trauma injuries on one's
quality of life has inspired several studies on how we can improve the quality of trauma
care, and consequently improve trauma patient outcomes. However, several of these
studies require that we take a trauma patient's injury severity (risk of mortality)
into account, and there is no consensus as to which risk prediction model is most
appropriate for use [2-14].

Interestingly, careful consideration of the methodologies used to develop these risk
prediction models indicates that regardless of which model is most appropriate, there
may be room for substantial improvement in the quality of risk prediction. One reason
for this is that several risk prediction models have been developed from small data sets
[2-4, 6, 8, 10-14], which implies that these models may not represent the population
appropriately [15]. Another reason is that even if a model was developed from a large
data set, nearly every model proposed thus far has been a linear model [2-9], and
linear models may be insufficient for capturing the potentially complex relationships
that exist within trauma data [16-18].

By taking advantage of recent advances in computational science and statistical
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theory, which are leading to substantial changes in both the availability of large data
sets and the ability to perform intensive analyses on such data sets, our objective is
to develop a risk prediction model from machine learning algorithms and compare its
predictive performance to the performance of other established risk prediction models.
We achieve this by comparing three leading risk prediction models — the Bayesian
Logistic Injury Severity Score (BLISS) [7], the Harborview Assessment for Risk of
Mortality (HARM) [8], and the Trauma Mortality Prediction Model (TMPM-ICD9)
[9] — to a new machine learning model for risk prediction. This machine learning
model is the Trauma Severity Model (TSM).

2. Materials and Methods

2.1. Data Summary and Processing

This study was performed using data from the National Trauma Data Bank on
patients hospitalized in 2008, 2009, 2010, and 2012. Our initial data set consisted of
2,865,867 unique patient records, 884 hospitals, and 2,105 ICD-9-CM trauma diagnoses
(ICD-9 trauma codes). To facilitate the data cleaning process for this initial data set,
we first selected patients from the initial data set (the patient selection process) and
then the ICD-9 trauma codes from those remaining (the trauma diagnosis cleaning
process).

For our patient selection process, patients were excluded if they had burns or a
primary diagnosis unrelated to trauma (e.g., poisoning, drowning, or suffocation)
(193,606), were admitted to a hospital that did not maintain complete documenta-
tion of relevant trauma diagnoses (655,440), were missing data (for age, comorbidi-
ties, gender, Glasgow Coma Scale sub-scores, injury mechanism, injury type, intent of
trauma, and outcome) (335,980), had pre-hospital mortality (60,234), were transferred
to another hospital (848,885), were discharged to hospice care or another acute care
hospital (16,429), withdrew care (18,395), or were less than one year of age (47,693).
Some patients were excluded due to more than one exclusion criteria.

These selection criteria are nearly identical to that used in TMPM-ICD9's study,
and are in accordance with the selection criteria for BLISS and HARM (Appendix
A). Specifically, there are two differences between the patient selection process in this
study and that in TMPM-ICD9's study. One difference between our cleaning procedure
and TMPM-ICD9's procedure is in how we selected hospitals from which we selected
patients. In TMPM-ICD9's study, the data set consisted of patients from hospitals
that admitted at least 500 patients during at least one year of the study (hospitals
with ”substantial trauma experience”) [9]. We instead used all patients that were ad-
mitted to any hospital that kept complete records of the ICD-9 trauma codes that we
considered relevant. Our reasoning for this is that some trauma centers that would
qualify as having substantial trauma experience omitted relevant ICD-9 trauma codes
from their registry, and this could harm each model's ability to provide accurate risk
predictions [19]. Another difference is that TMPM-ICD9's study only ensured com-
plete documentation for age, gender, and outcome when determining which patients
to include. We extended this to also ensure complete documentation for comorbidities,
Glasgow Coma Scale sub-scores, injury mechanism, injury type, and intent of trauma.
Our reasoning for this is that (1) no additional patients were excluded because of
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these criteria, (2) this information is typically known at the time of admission and is
relevant in determining patient outcome, and (3) no risk prediction model has ever
given consideration to such a combination of variables.

For our trauma diagnosis cleaning process, all trauma diagnoses that were treated
as non-injuries in TMPM-ICD9's original study were also treated as non-injuries —
these were also in correspondence with the injuries excluded in BLISS and HARM's
studies. Following this, the data set was copied such that each model had its own data
set, and each model's data set was cleaned to match the trauma code specifications
required by that model's study (Appendix B).

For TSM, ICD-9 trauma codes that involved neurologic injuries followed the same
re-classification approach as TMPM-ICD9, as these diagnoses codes are differentiated
by information that can only be determined at discharge (for instance, several ICD-9
trauma codes for skull fractures are differentiated by the duration of loss of conscious-
ness). ICD-9 trauma codes that appeared fewer than five times in TSM's data set
were combined with what was empirically determined to be the closest corresponding
trauma code. This consisted of combining a specific injury with a more general injury;
an open injury with a closed injury; or a group of highly similar injuries that were
poorly represented to one single injury.

Each post-processed data set consisted of the same 1,385,795 unique patient records
from 713 hospitals and accounted for 1,920 ICD-9 trauma codes.

2.2. Model Development

Injury severity was formalized as a binary classification task in which the indepen-
dent variables are a patient's trauma diagnoses. Each ICD-9 trauma code is a binary
indicator specifying whether or not a patient had that particular trauma diagnosis.
The dependent variable is a binary indicator specifying whether or not the patient died
prior to discharge. For TSM, we utilized an ensemble machine learning approach for
model development — ensemble machine learning is a methodology where several dif-
ferent machine learning models are developed and then combined together to provide
a single prediction output [20]. Specifically, we followed an ensemble machine learning
framework known as stacked generalization, or ”stacking” [21].

Our approach to stacking followed this sequence. First, the data set is divided into
four parts: the ”base model training set,” the ”meta-learner data construction set,”
the ”validation set,” and the ”test set.” The base model training set is used to develop
a variety of different machine learning models, which are referred to as ”base models.”
In this study, the base models were developed from four machine learning algorithms:
penalized linear models, random forests, gradient boosted machines, and neural net-
works (Appendix C). Each of these base models then predicts each patient from the
meta-learner data construction set's risk. These risk predictions are used to create
a ”meta-learner training set,” in which each row is a patient from the meta-learner
data construction set, and each column is a base model's risk prediction for that pa-
tient. The meta-learner training set is then used to developed a higher-level model (a
meta-learner) in which the meta-learner's input variables are each base model's risk
prediction and the dependent variable is a binary indicator specifying whether or not
the patient died prior to discharge. Qualitatively, the meta-learner is determining how
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to combine its base models together in order to output an improved risk prediction.

To avoid over-fitting, we randomly selected 80% of the entire data set to develop
each linear model and TSM (the training set), 10% of the entire data set to determine
the regression coefficients that optimized each linear model's predictive performance
as well as which meta-learner configuration optimized TSM's predictive performance
in terms of Akaike's information criterion (the validation set), and 10% of the data
set to gather the performance metrics for the resulting models (the test set). Further,
for TSM we randomly selected 75% of the training set as the base model training set,
and 25% as the meta-learner data construction set (in other words, 60% and 20% of
the entire data set was used as the base model training set and the meta-learner data
construction set, respectively).

All model development was performed using the h2o [22] and sandwich [23] pack-
ages in the R statistical software. Percentile bootstrapped confidence intervals, which
provide a range of values that each performance metric for each model lies within,
were computed using the R statistical software's boot package [24, 25].

2.3. Model Assessment

The predictive performance of each risk prediction model was evaluated using
Akaike's information criterion (AIC), the area under the receiver operating character-
istic curve (ROC), the Hosmer-Lemeshow statistic (HL), and the reliability statistic
(REL). The AIC statistic is a measure of how well a model approximates the true
underlying distribution [26]. For the purpose of model selection, the best model for a
particular data set is the model with the lowest AIC statistic.

The ROC statistic measures a model's ability to discriminate between outcomes
[27]. For example, if a model was given two patients, one who survived treatment and
another who succumbed to their injuries, then the ROC statistic would represent how
much higher the corresponding prediction output would be for the patient that died
compared to that for the patient that survived. A ROC statistic of 1 indicates that the
corresponding model is perfect at discriminating between patient outcomes, whereas
a ROC statistic of 0.5 indicates that the corresponding model has no discriminatory
power. In other words, if a model has a ROC statistic of 0.5, then its prediction out-
puts would be equivalent to random guesses.

Finally, the HL and REL statistics are measures of a model's probabilistic calibra-
tion. In the context of risk prediction, these statistics indicate how close a model's
risk prediction is to a patient's true probability of survival. The HL statistic is a stan-
dard approach for evaluating a risk prediction model's probabilistic calibration [28].
However, because the HL statistic may be considered inappropriate for large data sets
[29-31], we use the REL statistic as an adjunct measure of probabilistic calibration
[32]. For both statistics, a value of 0 indicates that the corresponding model is perfectly
calibrated to the data; the REL statistic has an upper bound of 1 (implying that the
model is completely unreliable), whereas the HL statistic has no upper bound (the
higher the HL statistic, the worse the probabilistic calibration).
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Table 1: Patient demographics for the processed data set.

Patient Demographics Statistic
Age∗ (23, 61)
Female 36.07%

Hospitals† 713
Dead 3.77%
Race
-White 64.52%
-Black of African American 16.17%

-Hispanic|| 12.74%
-Asian 1.93%
-Native American/Native
Hawaiian/Pacific Islander

0.79%

-Other 10.82%
-Not Recorded 5.77%

(*) Interquartile range displayed.
(†) Hospital demographics not displayed as demographic information (such as ACS
certification status and number of hospital beds) changed over the course of this study.
(||) Hispanic is denoted as an ethnicity in NTDB data, not race.

Table 2: ICD-9 trauma code model comparison in terms of AIC, ROC, HL, and REL
statistics. Each model's REL statistic was multiplied by 1,000,000.

Model AIC (95% CI) ROC (95% CI) HL (95% CI) REL (95% CI)
TSM 27661.4 [26973, 28349] 0.907 [0.902, 0.911] 110.7 [86.4, 154.4] 29.7 [18.1, 72.9]
BLISS 31414.0 [30706, 32145] 0.900 [0.895, 0.905] 247.1 [210.8, 306.5] 549.7 [459.3, 684.4]
HARM 29561.9 [28869, 30277] 0.871 [0.866, 0.877] 98.4 [72.5, 140.7] 92.9 [66.4, 150.1]
TMPM-ICD9 28868.3 [28168, 29606] 0.897 [0.893, 0.902] 81.6 [58.0, 136.5] 40.9 [24.3, 89.4]

3. Results

The patient demographics are displayed in Table 1. The interquartile range for age
was from 23 to 61 years. Females comprised 36.07% of this data set. The mortality
rate was 3.77%.

The predictive performance of each model is displayed in Tables 2, 3 as well as
Figures 1, 2. TSM demonstrates an improvement over BLISS, HARM, and TMPM-
ICD9 in terms of the AIC, ROC, and REL statistics (Table 2). Every model greatly
improved in predictive performance when augmented to account for age, comorbidities,
gender, Glasgow Coma Scale sub-scores, injury mechanism, injury type, and intent of
trauma (Table 3). However, TSM still outperforms each linear model in terms of the
AIC and ROC statistics. Although TSM does not uniformly improve over the other
models in terms of probabilistic calibration, Figures 1, 2 demonstrates that TSM is
still well calibrated to the data.
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Table 3: Augmented model comparison in terms of AIC, ROC, HL, and REL statistics.
Each model's REL statistic was multiplied by 1,000,000.

Model AIC (95% CI) ROC (95% CI) HL (95% CI) REL (95% CI)
TSM 19755.8 [19207, 20343] 0.963 [0.961, 0.965] 169.5 [141.9, 217.5] 36.5 [21.8, 87.0]
BLISS 22964.9 [22379, 23568] 0.956 [0.953, 0.959] 48.7 [34.7, 78.1] 114.5 [85.1, 177.3]
HARM 20688.4 [20113, 21282] 0.956 [0.953, 0.959] 64.7 [49.7, 96.0] 93.0 [68.9, 152.8]
TMPM-ICD9 21002.6 [20433, 21609] 0.957 [0.954, 0.960] 109.3 [30.3, 359.7] 18.3 [12.2, 58.3]

Figure 1: Calibration curves for TSM, HARM, BLISS, and TMPM-ICD9 models that
only considered ICD-9 trauma codes as input variables.

Figure 2: Calibration curves for augmented TSM, HARM, BLISS, and TMPM-ICD9
models.
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4. Discussion

The need for quality trauma care is tremendous. In the United States alone, health-
care spending accounts for 17.8% of the Gross Domestic Product [33]. Trauma care
specifically comprises a significant amount of this expenditure, as it is the leading
cause of death for people younger than 44, and the fourth leading cause of death for
all age groups in the United States [34]. But, in order to achieve the goals of improving
the quality of trauma care while decreasing the cost of care, we must utilize the best
possible risk prediction models in trauma system evaluations. If risk prediction can be
improved upon, so too can the quality of trauma care, as better risk prediction mod-
els allow for a better evaluation of novel treatments, interventions, and policies. This
gives purpose to our study, which was to determine how a machine learning model
would perform relative to leading risk prediction models. Our results demonstrate
that TSM, a machine learning model, outperforms established risk prediction models
in terms of the AIC and ROC statistics. Although it could be argued that TSM does
not uniformly improve in terms of probabilistic calibration, there is a tradeoff between
discrimination and probabilistic calibration [35], which indicates that TSM improves
in discrimination without sacrificing probabilistic calibration.

There have been several previous studies comparing linear models to individual
machine learning models for risk prediction, often with contradictory results [10-13].
Pirracchio et al. concluded that this phenomenon ”[underscores] the fact that no sin-
gle algorithm invariably outperforms all others. In any given setting, according to the
outcome of interest, the set of explanatory variables available and the underlying pop-
ulation to which it will be applied, the best predictive model might be achieved by
a parametric or any of a variety of nonparametric methods” [14]. What separates an
ensemble machine learning approach such as stacked generalization from a methodol-
ogy in which only one model is developed is that, if performed appropriately, stacked
generalization will utilize its base models' strengths while compensating for their weak-
nesses. As a result, it is possible for an ensemble machine learning model developed
from stacked generalization to obtain better predictive performance than any base
model in its ensemble could possibly obtain alone [20-21, 36-37].

Despite TSM's strong predictive performance, we emphasize that risk prediction
can be further improved. One reason for this is that the patients selected during the
cleaning process of model development may not be fully representative of the true pop-
ulation of all trauma patients. This indicates that, depending on the degree at which
a subpopulation of patients differs from the population of patients used to develop
TSM, other mortality prediction models may be better suited than TSM for analyzing
that subpopulation. Another reason is that our base model development methodology
was rather simple. If we considered more than four machine learning algorithms and
performed a more rigorous optimization procedure, we may have been able to further
improve predictive performance (Appendix C). A third reason is that there may have
been an insufficient amount of data to appropriately capture the effect every ICD-9
trauma code has on outcome. The use of a larger repository of data with more in-
formation about each patient's trauma injuries could result in a model that performs
substantially better.

We note that given the predictive performance of the other risk prediction models,
TSM may not offer a clinically significant advantage. In order to facilitate further

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2017. ; https://doi.org/10.1101/210575doi: bioRxiv preprint 

https://doi.org/10.1101/210575
http://creativecommons.org/licenses/by-nc-nd/4.0/


comparison between these models, we have developed an accessible, user-friendly soft-
ware application that provides each model's risk prediction for a set of trauma injuries
(Appendix D).

5. Conclusion

TSM improves over established risk prediction models in terms of the AIC and ROC
statistics without sacrificing probabilistic calibration, which gives it prognostic value
in trauma system evaluations. To provide researchers access to the risk prediction
models from this study, we have developed a user-friendly, freely available software
application. The performance of an ensemble machine learning approach on a well-
studied problem in epidemiology indicates that ensemble machine learning approaches
may be fruitful for other complex problems in healthcare.
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7. Appendices

7.1. Appendix A

Patients were excluded from analysis if they had an ICD-9-CM code that did not
pertain to injury (800 to 959.9). We also excluded patients experiencing effects of
foreign body entering through body orifice (930 to 939.9), burns (940 to 949.5), and
certain late effects of injuries (906.5 to 906.9, 909 to 909.2, 909.4 to 909.9). ICD-9-CM
codes that were not considered input variables (”non-injuries”) for each model were
superficial injuries (910 to 924.9), certain traumatic complications of physical trauma
(958.2 to 958.6, 958.8 to 958.99), and late effects of injuries that were not already
excluded (905-909.9). These are the same non-injuries defined in TMPM-ICD9's study.

BLISS and HARM had similar selection processes. BLISS excluded patients that
had late effects of injury (905 to 909.9), effects of foreign bodies entering through body
orifice (930 to 939.9), and burns (940 to 949.5). HARM excluded minor injuries, such
as superficial wounds and minor orthopedic injuries (910 to 924.9); burns and burn-
related injuries (940 to 949.5); late effects of injuries (905 to 909.9); effects of foreign
body entering through body orifice (930 to 939.9); and certain traumatic complications
of physical trauma (958 to 958.99) as input variables.

7.2. Appendix B

The following describes the procedures for re-estimating BLISS, HARM, and
TMPM-ICD9. We first describe the data cleaning process, and then the model de-
velopment process.
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BLISS

For the BLISS data set, ICD-9 trauma codes that involved neurologic injuries fol-
lowed the same re-classification approach as TMPM-ICD9, as these diagnoses are
differentiated by information that can only be determined at discharge. We then de-
veloped two Bayesian logistic regression models: one that had a Laplace prior dis-
tribution, and another that had a Gaussian prior distribution. These were the prior
distributions considered in BLISS's original study. We evaluated each model's predic-
tive performance (in terms of the AIC statistic) on the validation set, and selected
the better performing model as BLISS. In this study, both ICD-9 trauma code and
augmented BLISS models had a Laplace prior distribution.

The difference between our approach and that of the original study is that the
original study used cross-validation rather than a validation set to determine which
Bayesian logistic regression model had better predictive performance. The reason we
used the validation set instead was to maintain consistency in our study, as every other
model in this study used the validation set to optimize predictive performance. We em-
phasize that second and third-order interaction terms were not included in our BLISS
models, as such consideration greatly worsened each BLISS model's AIC statistic.

HARM

When cleaning the HARM data set, we followed HARM's variable combining pro-
cedure as closely as possible. However, there are a couple of differences between our
cleaning process and that specified in the original study. One difference is that we
did not include any diagnoses related to chronic obstructive pulmonary disease and
ischemic heart disease (these corresponded to three potential input variables from
HARM's original data set), as this information was unavailable in our National Trauma
Data Bank data. The other difference is that we allowed the HARM model to utilize
variables in our data set that were unavailable in its original data set as potential
input variables. We then re-estimated each HARM model using forward selection, as
had been performed in its original study — the AIC statistic on the validation set was
used for selecting each variable.

Unlike the other models in this study, our re-estimated HARM models used ICD-9
trauma codes that could only be determined at discharge (such as trauma codes for
skull fractures that are differentiated by the duration of loss of consciousness). These
trauma codes appear to have a significant influence on both the original HARM model
and our re-estimated HARM model's predictive performance.

TMPM-ICD9

To clean the TMPM-ICD9 data set, we collapsed ICD-9 trauma codes for neuro-
logic injuries, vertebral column with spinal injury, and open and closed injuries of the
larynx and trachea as specified in the original study. We then mapped ICD-9 codes
to ”region-severity codes” using the voting algorithm described in the original study.
Following this, we re-estimated TMPM-ICD9 as specified in its original study, with
one difference. We selected the coefficients for TMPM-ICD9 using forward selection,
where the AIC statistic on the validation set was used for selecting each variable. The
original study only used the five largest ”severity measures” (MARC values) [9].
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7.3. Appendix C

Provided below is a brief overview of the machine learning algorithms used in this
study: penalized linear models (a linear algorithm) as well as random forests, gradient
boosted machines, and neural networks (non-linear algorithms). Each of these algo-
rithms have hyper-parameters that can be used to tune a corresponding model to the
data and improve that model's predictive performance.

In this study, our ensemble of base models consisted of 100 penalized linear mod-
els, 50 random forests, 50 gradient boosted machines, and 50 neural networks. Each
model had different, randomly selected hyper-parameters [38]. We then trained 100
penalized linear models as meta-learners, and selected the best performing penalized
linear model (the model with the lowest AIC statistic for the validation set) as TSM.

Penalized Linear Models

Penalized logistic regression is similar to logistic regression, which utilizes maximum
likelihood estimation for its regression coefficients:

β̂ = argmin
β

n∑
i=1

log(1 + exp(−yiβTxi))}

The difference between the two is that penalized logistic regression adds a regular-
ization term to its loss function. One popular form of regularization is ridge regression
[39], where the penalty applied to a logistic regression model's coefficients is pro-
portional to the sum of the squares of those coefficients. Another popular form of
regularization is the LASSO [40], where the penalty applied to a logistic regression
model's coefficients is proportional to the sum of the magnitudes of those coefficients.
As neither method uniformly outperforms the other for all data sets [41], we developed
our penalized linear models using the elastic net penalty [42], which combines both
the LASSO and ridge regression penalties:

β̂ = argmin
β

n∑
i=1

log(1 + exp(−yiβTxi)) + λ

p∑
j=1

(a|βj |+
(1− a)

2
|βj |2)}

Thus, the two hyper-parameters for penalized linear models (with the elastic net
penalty) are λ, which is the severity of the penalty applied, and α, which distributes λ
between the LASSO and ridge penalties. When α = 0, this formulation is equivalent to
ridge regression; when α = 1, this formulation is equivalent to the LASSO; and when
λ = 0, this formulation is equivalent to ordinary logistic regression. In this study, we
varied λ from 10−10 to 1 with an order of magnitude of 10 {10−10, 10−9, ..., 10−1, 1}
and α from 0 to 1 with an increment of 0.001 {0, 0.001, ..., 0.999, 1}.

Random Forests

A binary classification tree (decision tree) is a simple prediction model that maps
observations to a class output using a tree structure (Figure 3). The random forest
algorithm is an extension of decision trees, in which several decision trees (an ensemble)
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Figure 3: A decision tree that predicts for patient survival using that patient's age
(”AGE”); Injury Severity Scores (”ISSLOC”); Glasgow-Coma Scale motor, verbal,
and eye response scores (”GCSMOT,” ”GCSVERB,” and ”GCSEYE,” respectively);
and gender (”GENDER”). This tree was developed using a random sample of 100,000
patients from National Trauma Data Bank data in 2008. At each split, the user will
move down the left branch if the patient has that condition, and down the right if the
patient does not have that condition.

are developed independently of each other and then combined together to provide a
single prediction output. What separates random forests from other tree ensemble
methods, such as bagging, is that random forests only consider a random subset of all
the possible input variables when creating each decision-making ”split” in a decision
tree. The rationale for this approach is that it enhances diversity [43, 44] — for bagging,
it is possible for several highly similar decision trees to be developed and combined
together, which can harm predictive performance [45].

We varied three hyper-parameters for our random forests: the number of decision
trees, the number of input variables randomly sampled at each split in a tree, and
the maximum depth allowed to grow a tree. Specifically, we varied the number of
trees from 50 to 200 with an increment 1 {50, 51, ..., 199, 200}, the number of input
variables randomly sampled from 20 to 50 with an increment of 1 {20, 21, ..., 49, 50},
and the maximum depth allowed to grow a tree from 1 to 20 with an increment of 1
{1, 2, ..., 19, 20}.

Gradient Boosted Machines

Gradient boosted machines are similar to random forests, yet differ because random
forests develop each decision tree independently of the others, while gradient boosted
machines develop each decision tree sequentially to the others. This approach allows
a gradient boosted machine to ”learn” from its prediction errors, and consequently to
improve in providing predictions for conditions that other models cannot account for
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appropriately. The tradeoff of this approach is that if a user specifies too many trees,
a gradient boosted machine may over-fit to the data: a gradient boosted machine may
eventually overreact to its prediction errors and try to account for random noise in
the data. If a gradient boosted machine over-fits to the data, then it will exhibit poor
predictive performance [46, 47].

For our gradient boosted machines, we considered the following hyper-parameters:
the number of trees, the learning rate, and the maximum interaction depth. In
this study, we varied the number of trees from 40 to 80 with an increment 1
{40, 41, ..., 79, 80}, the learning rate from 0.05 to 0.30 with an increment of 0.01
{0.05, 0.06, ..., 0.29, 0.30}, and the maximum interaction depth from 1 to 10 with an
increment of 1 {1, 2, ..., 9, 10}. We emphasize that we scaled the learning rate by a fac-
tor of 0.99 after each tree was developed in a gradient boosted machine (in literature,
this scaling process is referred to as learning rate annealing).

Neural Networks

The term neural network describes a large class of algorithms that are loosely based
on the biological brain, and can qualitatively be viewed as a mathematical function
with millions of weights that modify and combine information from input data in order
to provide a highly accurate response (prediction). In this study, we used feed-forward
neural networks, which consist of several smaller functions that are combined together
to create a general mathematical function. Specifically, these smaller functions are
separated into interconnected ”layers.” The first layer of functions use the actual data
as their inputs, and the output from each function in this layer is used as inputs for
the second layer to functions (in literature, these functions are referred to as neurons
and these layers are referred to as hidden layers). Each layer of neurons following will
use a previous layer of neurons' outputs as inputs until the output layer is reached.
The output of the neuron in the output layer is the neural network's prediction for the
input data (Figure 4). For a more detailed treatment of neural networks, the authors
recommend [48, 49].

We gave consideration to the following hyper-parameters when developing our neu-
ral networks: the number of neurons in each layer {64, 128, 256, 512, 1024}, the number
of layers {1, 2, 3}, and the number of epochs {10, 11, ..., 9999, 10000}. Further, the ac-
tivation function (which specifies how each neuron ”responds” to its inputs) took the
form of a hyperbolic tangent sigmoid, a rectified linear unit [50], or a maxout [51].
The use of dropout, which is a way to prevent neural networks from over-fitting to the
data, was also varied [52].

We emphasize that we used the ADADELTA optimization scheme to develop our
neural networks, which has two hyper-parameters [53]. One hyper-parameter is ρ,
which is similar to momentum and relates to the memory of prior weight updates.
The other hyper-parameter is ε, which is similar to learning rate annealing during
initial training and momentum at later stages of training — in these later stages, ε
dictates forward progress. We varied ρ from 0.750 to 0.999 with an increment of 0.001
{0.750, 0.751, ..., 0.998, 0.999} and ε from 10−12 to 10−3 with a magnitude of 100.5

{10−12, 10−11.5, ..., 10−3.5, 10−3}. We note that we restricted the mini-batch size to 1.
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Figure 4: This feed forward neural network, which was developed from the same data
as that from Figure 3, consists of one hidden layer with ten neurons (each marked with
an ”H”). These neurons pass their prediction outputs to the output layer (denoted as
”O1”), which outputs a final risk prediction (denoted as ”MEASURE”).

7.4. Appendix D

Our software application allows the user to both manually enter a patient's ICD-9
trauma codes as well as input a data set that consists of a patient's ICD-9 trauma
codes (Figures 5, 6). The application will be made freely available by request.

Figure 5: The default state of our software.
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Figure 6: Our software processing a trauma data set.
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