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Abstract  

Genetic ancestry and admixture are critical co-factors to study phenotype-genotype 

associations using cohorts of human subjects. Most publically available molecular datasets – 

genomes, exomes or transcriptomes - are however missing this information or only share self-

reported ancestry. This represents a limitation to identify and re-purpose datasets to investigate 

the contribution of race and ethnicity to diseases and traits. we propose an analytical framework 

to enrich the meta-data from publically available cohorts with admixture information and a 

resulting diversity score at continental resolution, calculated directly from the data. We illustrate 

the utility and versatility of the framework using The Cancer Genome Atlas datasets indexed 

and searched through the DataMed Data Discovery Index. Data repositories or data contributors 

can use this framework to provide, as metadata, admixture for controlled access datasets, 

minimizing the work involved in requesting a dataset that may ultimately prove inadequate for a 

researcher’s purpose. With the increasingly global scale of human genetics research, research 

on disease risk and susceptibility would benefit greatly from the adequate estimation and 

sharing of admixture data following a framework such as the one presented. 
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Introduction  

In order to facilitate the identification and reuse of publicly available biomedical datasets, we 

have developed the DataMed, a search engine for data1. A large number of the datasets 

indexed and retrievable in DataMed are derived from human specimens (blood, cell lines, 

tissues) and contain broad genetic information (genotypes, exome, genome or transcript 

sequences). Using established analysis frameworks, one can extract from the raw data useful 

meta-data that is not necessarily collected or known from the investigators. These can include 

race, ancestry admixture, HLA haplotypes, telomere length, tumor viral load or purity, or cell-line 

identity. We present here the framework we established to efficiently call admixture on 

DataMed-indexed cohorts and propose to summarize and index the results through a diversity 

score. 

Race and ethnicity have a significant influence on health and disease etiology. Whether the 

associated risks are due to socioeconomic, environmental or genetic factors varies among 

diseases and, in most of them, the associations remain to be determined. When accounting for 

race and ethnicity, studies generally rely on self-reporting. Self-reporting lacks accuracy to 

distinguish East Asian from South Asian2, or when subjects have strong admixture (i.e., they 

have 2 or more ancestries).3,4 The 1000 genome project has identified variants in 26 reference 

populations that can be grouped into 5 continental super populations5. From this reference 

dataset, one can estimate admixture in any given individual using genotypes genome-wide, or 

at selected Ancestry Informative Markers (AIM)6,7. Admixture can then be used as a covariate in 

genetic studies, in order to account for population structure8, or to identify ancestry specific 

signals9.  

The availability of a uniform, genetically-based ancestry estimation for all eligible human 

datasets indexed in DataMed would increase their usability, allowing the selection of diverse 

cohorts, preparing ancestry specific meta-analysis, or simply monitoring diversity. The diversity 

score can facilitate the identification and assembly of ancestry specific cohorts, and enable the 

monitoring of racial and ethnical diversity in biomedical research datasets. 

Methods 

Data: We selected The Cancer Genome Atlas (TCGA)10 cohort to implement the diversity score 

into DataMed. Indeed this cohort is large (N=10,878), one of the most accessed cohorts in 

dbGAP and contains self-reported race and ethnicity. In addition, the cohort can be split into 33 

sub-cohorts corresponding to each cancer type, providing an opportunity to contrast the various 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2017. ; https://doi.org/10.1101/210716doi: bioRxiv preprint 

https://doi.org/10.1101/210716
http://creativecommons.org/licenses/by-nc-nd/4.0/


collections. Finally, the vast majority of samples have multiple data types (genotypes, exomes, 

transcriptomes), on which we can compare admixture estimation.  

A total of 10,878 TCGA subjects (individuals) have been genotyped at ~106 SNPs. We called 

admixture from the 5 continental reference populations: European (EUR), African (AFR), East 

Asian (EAS), South Asian (SAS) and Native American (AMR).  

Data Access and Pre-processing. The data specified below were retrieved through the National 

Cancer Institute (NCI) Genomic Data Commons (GDC) using the gdc-client API. We obtained 

the genotyping array data in the birdseed format (the result of genotype calling by birdSuite11), 

which were then converted to the plink12 format (MAP and PED flat files). To ensure the proper 

alleles were reported during the conversion, we established a relational database to decode the 

numeric genotype into alleles using information from the Affymetrix SNP Array 6.0 probe design 

and the corresponding dbSNP (v150) rsid. The RNA-Seq reads (BAM files) from the patient 

tumors were used to call variants using the following steps: (1) duplicate reads removal 

(PICARD Markduplicates), (2) split intron spanning reads (GATK v3.8), and (3) variant calling 

(GATK  v3.8 HaplotypeCaller). We called variants from the whole exome sequence (BAM files) 

from the blood using freebayes13 (v1.1.0). For both RNA-Seq and Exome Sequencing analysis, 

we restricted the variant calling to known SNP (dbSNP v150) located in the exons and CDS 

regions of Gencode-v2514 respectively. The variants were filtered (DP>10 and GQ>15), and 

then converted to plink format using vcftools.  

Admixture analysis:  For each individual, the admixture fraction for the reference population was 

estimated using iAdmix tool7. The input data were individual genotypes (MAP and PED flat files 

in PLINK format), and the allele frequencies from the 1000 Genomes reference populations5. 

The 1000 genome reference VCF file was based on the GRCh37 human genome build and 

contained allelic fractions calculated from 2,504 individuals divided into 5 super-populations: 

European (EUR), African (AFR), East Asian (EAS), South Asian (SAS) and American (AMR). To 

accommodate genotypes from different versions of the human genome reference, the SNP 

coordinates were converted to GRCh38 using liftOver (https://genome-store.ucsc.edu/). The 

output of iAdmix was a list of five admixture fractions, each with values ranging between 0 and 

1. These estimates correspond to maximum likelihood estimations (MLE) through Broyden-

Fletcher-Goldfarb and Shanno (BFGS), a widely used, quasi-Newton optimization method. The 

cumulative admixture fraction was calculated as the overall fraction of the 5 ancestries after 

summing up individual admixture faction across a given set of individuals. To calculate the 

diversity score of each cancer specific cohort, we calculated the cumulative fraction of each 
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ancestry across all individuals in the cohort. We then computed the normalized entropy from the 

resulting 5 dimensional vector using R package entropy, as the empirical entropy divided by the 

maximal entropy for 5 dimensions. The benchmarking study comparing admixture determination 

using genotyping vs. exome vs. transcriptome was conducted on 100 subjects specifically 

selected in order to have a sample that maximized diversity in self-reported race and ethnicity 

(Supplementary Table 1). 

Results  

Admixture in TCGA data. The dominant ancestry - representing more than 80% admixture - of 

each individual matches well the self-reported one: 76% White Non-Hispanic are EUR 

dominant, 82% of Black are AFR dominant and 89% of Asian are either SAS or EAS dominant. 

Similarly, 53 % of subjects reported as Hispanic or Latino have at least 20% of AMR ancestry. 

We then determined the Cumulative Admixture Fraction (CAF) for each cancer-specific cohort 

(Method). The CAF reflects, at the cohort level, the fraction of total DNA from a given ancestry, 

rather than the fraction of individuals of a given race or ethnicity. While all cancer cohorts are 

predominantly EUR (Figure 1A - 46% to 93%), the fraction of non-EUR ancestry varies: Renal 

Cell Carcinoma (KIRP) is the cohort with highest AFR ancestry (21%), while Hepatocellular 

Carcinoma (LIHC) has the highest EAS ancestry (41%). While these differences may reflect the 

epidemiology of the disease, it is important to note that the TCGA cohort had significant 

ascertainment bias, including enrollment sites, tumors sizes, purity and availability 

requirements. Finally, in order to summarize the overall diversity of each cohort, we used the 

CAF to compute a normalized diversity score (DS): 0 for one ancestry only, 1 for an even 

fraction of all five ancestry populations. The TCGA cohorts can be ranked by decreasing 

diversity, revealing that Hepatocellular Carcinoma dataset as the most diverse (DS=0.7) and 

Uveal Melanoma as the least diverse (DS=0.22, Figure 1A). Both the diversity score and the 

minimal admixture level of a given ancestry can be used to filter cohorts in the DataMed index.  

Assessing admixture using transcriptomes or exomes. A large number of studies indexed by 

DataMed may not contain readily available genotype information. This is particularly the case for 

studies generating whole exome or whole transcriptome. In order to expand the utility of our 

approach to these cohorts, we evaluated the admixture and diversity score estimation using 

also exome and transcriptome data and compared them to results from the genotyping array. 

For this comparison we selected 100 TCGA subjects representing all possible self-reported race 

and ethnicities to ensure the results would be consistent across various genetic backgrounds 

(Supplementary Table 1). After variant calling and filtering (Methods), we identified a median of 
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21,327 and 838 usable variants in the exome and transcriptome of each subject, respectively. 

The ancestries with maximum admixture were consistent across for all three methods for 82/100 

subjects. The subjects with inconsistent results were more admixed based on the genotyping 

array results (maximum admixture 0.89±016 vs. 0.72±022). As a result, the CAF estimated from 

the exome or transcriptome variants were consistent with the ones from genotyping array 

(r=0.97 for both Figure 1B) and all three diversity scores were similar - 0.93, 0.92, 0.90 for 

genotyping, exome and transcriptome, respectively.   

Discussion  

A number of studies agree that the genetic ancestry is far more accurate and therefore superior 

to self-reported race and ethnicity15–17. To date, it is not possible to get an accurate estimation of 

the racial and ethnical diversity of a cohort before looking inside the dataset (i.e., looking at the 

individual level data) and calling admixture. A low resolution, 5 super-populations admixture 

estimate like the one we present here is very valuable for investigators who want to account for 

admixture in their genetic studies or select patients to assemble a cohort for meta-analysis of a 

given ancestry. In order to calculate the diversity score, we had to request access to the cohort 

for this specific task, a step that may not be permitted for certain cohorts or that is not 

necessarily scalable. However, the diversity score does not have to be generated by the 

DataMed team, but could instead be computed by the data owners and shared as an additional 

piece of metadata that could be used downstream for cohort selection.  

The admixture and diversity score generated are well applicable on a variety of broad molecular 

datasets. We demonstrated their validity from exome and transcriptome. To date, 176x103 and 

201x103 human transcriptome (RNA-Seq) and exome datasets, respectively, are hosted by the 

NCBI Sequence Read Archive (SRA). Among those, 82% of transcriptomes and 12% of exomes 

are available without restriction, and likely none of them have associated genetic ancestry 

information. Beyond transcriptome or exomes, ancestry can also be called from ChIP-seq 

datasets from human sample - more than 31x103 currently available in the NCBI SRA. A typical 

ChIP-Seq dataset may cover 106 bp genome, harboring 1000 SNPs, the majority of which have 

been genotyped in the 1000 genome reference populations, representing a sufficient number to 

determine genetic admixture.  

The same way the Gene Expression Omnibus has the ability to search and rank datasets based 

on differential expression of a specific gene, one can hope that future, innovative data sharing 

strategies will include as many of such data-derived features, like genetic admixture, generated 

in an automated, standardized way at the time of the deposition. The relative simplicity of calling 
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admixture on molecular datasets may encourage more careful analytical design. While we know 

that germline genetics may play a role in disease etiology or phenotypic differences, it is rarely 

taken into account in pre-clinical or clinical studies. Using admixture from known continental 

ancestry as a first-order surrogate for germline genetic differences, one could account for this 

important co-variate and relate it to a population trait. In the past, pre-clinical studies based on a 

small number of cell lines or samples could not reasonably account for inherited genetic 

variation. Nowadays, pre-clinical studies are becoming larger and more systematic, such as the 

Cancer Cell Line Encyclopedia18 (N=750 cell lines), but to our knowledge they still do not 

account for genetic ancestry. More recently, genetically diverse sets of lymphoblastoid cell 

lines19 or induced pluripotent stem cells20 have been made available for research, documenting 

the increasing interest in performing pre-clinical research in large sets of genetically diverse 

samples and cell lines. The availability of genetic admixture as a piece of metadata in the public 

datasets would therefore increase their utility to design analysis accounting for inherited genetic 

background, resulting in more accurate statistical models and in a better understanding of the 

contribution of genetic variation and ancestry to disease etiology or drug response. The diversity 

score featured in the DataMed index provides an optimal way for researchers to select the 

adequate datasets for this task, without the need to disclose individual level data.  
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Figure 1: Cumulative Admixture in The Cancer Genome Atlas. (A) Cumulative 
Admixture Fraction of 33 cancer specific cohorts, inferred from the 5 reference super-
populations. The cohorts are ranked by decreasing diversity score (white label) (B) 
Cumulative Admixture Fraction of a selected set of 100 diverse TCGA subjects using 
genotypes from genotyping array, transcriptome (RNA) or exome (WXS). Cancer Type 
abbreviations: Acute Myeloid Leukemia (LAML), Adrenocortical carcinoma (ACC), 
Bladder Urothelial Carcinoma (BLCA), Brain Lower Grade Glioma (LGG), Breast 
invasive carcinoma (BRCA), Cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma 
(COAD), Esophageal carcinoma (ESCA), Glioblastoma multiforme (GBM), Head and 
Neck squamous cell carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney renal 
clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP), Liver 
hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD), Lung squamous cell 
carcinoma (LUSC), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma (DLBC), 
Mesothelioma (MESO), Ovarian serous cystadenocarcinoma (OV), Pancreatic 
adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG), Prostate 
adenocarcinoma (PRAD), Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin 
Cutaneous Melanoma (SKCM), Stomach adenocarcinoma (STAD), Testicular Germ Cell 
Tumors (TGCT), Thymoma (THYM), Thyroid carcinoma (THCA), Uterine 
Carcinosarcoma (UCS), Uterine Corpus Endometrial Carcinoma (UCEC), Uveal 
Melanoma (UVM). Super-Populations abbreviations: European (EUR), African (AFR), 
East Asian (EAS), South Asian (SAS), Native American (AMR).  
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