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Expression profiling holds great promise for genetics because of its ability to measure thou-
sands of genes quantitatively in parallel. Although transcriptomes have recently been used to
perform epistasis analyses for pathway reconstruction, there has not been a systematic effort
to understand how expression profiles will vary among various mutants of the same gene. Here,
we study an allelic series in C. elegans consisting of one wild type and two mutant alleles of
mdt-12 , a highly pleiotropic gene whose gene product is a subunit of Mediator complex, which
is essential for transcriptional initiation in eukaryotes. We developed a false hit analysis to
identify which populations of genes commonly differentially expressed with respect to the wild
type are likely the result of statistical artifact. We concluded that expression perturbations
caused by these alleles split into four distinct modules called phenotypic classes. To under-
stand the dominance relationship between the two mutant alleles, we developed a dominance
analysis for transcriptional data. Dominance analysis of these phenotypic classes support a
model where mdt-12 has multiple functional units that function independently to target the
Mediator complex to specific genetic loci.

Author Summary
Expression profiling is a way to quickly and quantitatively measure the expression level of every gene in an
organism. As a result, these profiles could be used as phenotypes with which to perform genetic analyses (i.e.,
to figure out what genes interact with each other) as well as to dissect the molecular properties of each gene.
Before we can perform these analyses, we have to figure out the rules that apply to these measurements.
In this paper, we develop new concepts and methods with which to study an allelic series. Briefly, allelic
series are an important aspect of genetics because different alleles encode different versions of a gene. By
studying these different versions, we can make statements about how function is encoded within the sequence
of a gene. We apply our methods to the mdt-12 gene, which encodes a subunit of the Mediator complex.
Though we know it is essential for all transcriptional activity in eukaryotes, we understand very little about
how the Mediator complex functions to generate both general and specific phenotypes. The reason for this
is the genes that encode these subunits are associated with general sickness and multiple phenotypes when
mutated, which makes them challenging to study genetically. We show that transcriptomic phenotypes
renders the study of general factors such as mdt-12 feasible.

Supplementary Data
The website for the Supplementary Data for this project is still under construction and will be available
shortly. All code, data and figures are available upon request.1
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Introduction1

The term ‘allelic series’ refers to the study of alleles2

with different phenotypes to understand the molec-3

ular properties that this locus controls. Allelic se-4

ries are historically important for genetics1. In early5

pioneering work, McClintock studied a deficiency of6

the tail end of chromosome 9 of maize by generat-7

ing trans-heterozygotes with mutants of various genes8

that she knew existed near the end of chromosome 9.9

Her work allowed her to infer that the deficiency was10

modular, effectively generating a double mutant that11

behaved as a single allele but which could participate12

phenotypically in two distinct allelic series. From this13

study, McClintock inferred that deletions could span14

multiple genes, which behaved as independent mod-15

ules, and which were identified via complementation16

assays. This work set the foundations for later ob-17

servations in yeast that showed two mutant alleles18

of the same genetic unit, when placed in trans to19

each other, could complement and generate a wild-20

type phenotype2. Allelic series have also been used21

to study the dose response curve of a phenotype for a22

particular gene and to infer null phenotypes from hy-23

pomorphs. In C. elegans, the let-23 , lin-3 and lin-1224

allelic series stand out as examples3,4,5.25

Over the last decade, biology has moved from26

expression measurements of single genes towards27

genome-wide measurements. Expression profiling via28

RNA-sequencing6 (RNA-seq) is a popular method29

because it enables the simultaneous measurement of30

transcript levels for all genes in a genome. These31

measurements can now be made on a whole-organism32

scale and on single cells7. Although initially expres-33

sion profiles had a qualitative purpose as descriptive34

methods to identify genes that are downstream of a35

perturbation, these profiles are now being used as36

phenotypes for genetic analysis. As a result, tran-37

scriptomes have been successfully used to identify38

new cell or organismal states8,9. Genetic pathways39

have been reconstructed via sequencing cDNA from40

single cells10 or by sequencing transcripts from whole-41

organisms11. However, to fully characterize a genetic42

pathway, it is often necessary to build allelic series to43

explore whether independent functional units within44

a gene mediate different aspects of the phenotypes45

associated with a pathway or gene, or whether the46

phenotypes are simply the result of gene dosage.47

As a proof of principle, we selected a subunit of48

the Mediator complex in C. elegans, mdt-12 (previ-49

ously known as dpy-22 12), for genetic analysis. We50

explored three alleles, including the wild-type allele,51

of this highly pleiotropic gene because its biologi-52

cal roles are poorly understood. The mutant alle-53

les were generated in previous screens13,14, where 54

they were associated with specific phenotypes in the 55

male tail and in the vulva. Mediator is a macro- 56

molecular complex that contains approximately 25 57

subunits15 and which globally regulates RNA poly- 58

merase II (Pol II)16,17. Mediator is a versatile regu- 59

lator, a quality often associated with its variable sub- 60

unit composition16, and it can promote transcription 61

as well as inhibit it. The Mediator complex consists 62

of four modules: the Head, Middle and Tail modules 63

and a CDK-8-associated Kinase Module (CKM). The 64

CKM can associate reversibly with Mediator. Cer- 65

tain models propose that the CKM functions as a 66

molecular switch, which inhibits Pol II activity by 67

sterically preventing its interaction with the other 68

Mediator modules18,19. Other models propose that 69

the CKM negatively modulates interactions between 70

Mediator and enhancers20. In C. elegans, the CKM 71

consists of CDK-8, MDT-13, CIC-1 and DPY-2221. 72

Since dpy-22 is orthologous to the human Mediator 73

subunits MED-12 and MED-12L 13, we will hence- 74

forth refer to this gene as mdt-12 . mdt-12 has been 75

studied in the context of the male tail13, where it 76

was found to interact with the Wnt pathway. It 77

has also been studied in the context of vulval for- 78

mation22, where it was found to be an inhibitor of 79

the Ras pathway. Loss of mdt-12 is lethal in XO an- 80

imals23,24, and developmental studies have relied on 81

reduction-of-function alleles to understand the role 82

of this gene in development. Studies of the male 83

tail were carried out using an allele, dpy-22(bx93), 84

that generates a truncated DPY-22 protein miss- 85

ing its C-terminal 949 amino acids as a result of a 86

premature stop codon, Q2549STOP13. In spite of 87

the premature truncation, animals carrying this al- 88

lele grossly appear phenotypically wild-type. In con- 89

trast, the allele used to study the role of mdt-12 in 90

the vulva, dpy-22(sy622), is a premature stop codon, 91

Q1698STOP, that predicted to remove 1,800 amino 92

acids from the C-terminus14 (see Fig. 1). Animals 93

carrying this mutation are severely dumpy (Dpy), 94

have egg-laying defects (Egl) and have a low pene- 95

trance multivulva (Muv) phenotype. These alleles 96

could form a single quantitative series, affecting the 97

same sets of target genes but to different degrees, 98

in which case the trans-heterozygote would exhibit 99

a single dosage-dependent phenotype intermediate to 100

the two homozygotes. Alternatively, they could form 101

a single qualitative series, in which case the trans- 102

heterozygote should have the same phenotype as the 103

homozygote of the bx93 allele, since this allele en- 104

codes the longer protein. These alleles could also 105

form a mixed series, in which case multiple separa- 106

ble phenotypes would appear that have qualitative or 107
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bx93 Q2549STOP

sy622 Q1698STOP

MED12 Homology

Glutamine Rich

Wild Type 3499

Figure 1. The mdt-12 allelic series, consisting of
two amino acid truncations. Diagram of the MDT-12
wild-type protein and the protein product of bx93
and sy622 alleles.

quantitative behaviors in the trans-heterozygote.108

Expression profiles have the potential to facilitate109

dissection of molecular structures within genes. For110

the mdt-12 allelic series, we found that the pertur-111

bations caused by the weak loss-of-function allele,112

bx93, are entirely contained within the perturbations113

caused by the strong loss-of-function allele, sy622.114

Further, we found three phenotypic classes affected115

by mdt-12 . For one class, termed the sy622 -specific116

class, the bx93 homozygote, but not the sy622 ho-117

mozygote, shows wild-type functionality. In a trans-118

heterozygote of sy622/bx93 these perturbations are119

suppressed to wild-type levels from the sy622 lev-120

els, which shows that bx93 is wild-type dominant for121

this phenotype. A second class, called the sy622 -122

associated class, similarly shows wild-type function-123

ality in the bx93 homozygote but not in the sy622124

homozygote, yet in the trans-heterozygote these per-125

turbations are modulated in a gene-dosage dependent126

manner. Finally, we identified a third class, called the127

bx93 -specific class, which contained genes that were128

altered in both homozygotes, but which showed an129

expression level most similar to the bx93 homozygote,130

showing that bx93 has a dominant mutant phenotype131

for this subset. For each class, we were able to quan-132

titatively measure the dominance level of each allele.133

Results134

Strong and weak loss-of-function alle-135

les of mdt-12 show different transcrip-136

tomic profiles137

We sequenced in triplicate cDNA synthesized from138

mRNA extracted from sy622 homozygotes, bx93 ho-139

mozygotes, trans-heterozygotes of both alleles and140

wild-type controls at a depth of 20 million reads per141

replicate. This allowed us to quantify expression lev-142

els of 21,954 protein-coding isoforms. We calculated143

differential expression with respect to a wild-type144

control using a general linear model (see Methods). 145

Differential expression with respect to the wild-type 146

control for each transcript i in a genotype g is mea- 147

sured via a coefficient βg,i, which can be loosely in- 148

terpreted as the natural logarithm of the fold-change. 149

Positive β coefficients indicate up-regulation with re- 150

spect to the wild-type, whereas negative coefficients 151

indicate down-regulation. Transcripts were tested for 152

differential expression using a Wald test, and the re- 153

sulting p-values were transformed into q-values that 154

are correcteed for multiple hypothesis testing. Tran- 155

scripts were considered to have differential expression 156

between wild-type and a mutant if the associated q- 157

value of the β coefficient was less than 0.1. At this 158

threshold, 10% of all differentially expressed genes are 159

expected to be false positive hits. 160

Using these definitions, we found 481 differentially 161

expressed genes in the bx93 homozygote transcrip- 162

tome, and 2,863 differentially expressed genes in the 163

sy622 homozygote transcriptome (see Fig. 2). 164

Transcriptome profiling of mdt-12 165

trans-heterozygotes 166

We also sequenced trans-heterozygotic animals with 167

genotype dpy-6(e14) bx93/+ sy622 . This trans- 168

heterozygote appears phenotypically wild-type, re- 169

sembling the bx93 mutant morphologically14. The 170

trans-heterozygote transcriptome had 2,214 differen- 171

tially expressed genes. 172

False hit analysis identifies four pheno- 173

typic classes 174

Overlapping three sets of differentially expressed 175

genes from different genotypes can generate at most 176

seven categories. Each of these seven categories could 177

be interpreted biologically if the population is be- 178

lieved to arise from real effects. If these populations 179

are small, however, there is a real chance that they 180

represent statistical noise, and are not biologically 181

meaningful. If that is the case, these populations 182

may consist largely of genes that are mis-classified 183

and belong to a different cluster, in which case they 184

should be re-classified into the most likely cluster, if 185

it can be determined. 186

We identified three categories of genes that were 187

most likely to be influenced by statistical noise due 188

to their small size. These populations were those that 189

encompassed genes differentially expressed in bx93 190

homozygotes and one other genotype, as well as genes 191

that were differentially expressed specifically in bx93 192

homozygotes. 193
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These three categories stand out as candidates for194

statistical noise not just because of their small size,195

but also because of the extraordinary biological inter-196

pretations required to make sense of them. For exam-197

ple, if there truly is a population of genes that is only198

perturbed in homozygotes of either allele but not in199

the trans-heterozygote, then this means that the two200

alleles are somehow intragenically complementing to201

produce wild-type function. Given the molecular na-202

ture of the mutations, this interpretation is unlikely203

to be correct.204

To perform a false hit analysis, we imagined an ide-205

alized scenario where the perturbations in bx93 ho-206

mozygotes were present in all thre genotypes. We also207

imagined that in this scenario the trans-heterozygote208

did not exhibit any perturbations not present the209

sy622 homozygote. In this simplified scenario, we210

could model where false positive and false negative211

hits were most likely to fall (see Fig. 2). Next, we212

present the results of our hit analysis for eachpertur-213

bation category.214

We identified 78 genes that are differentially ex-215

pressed exclusively in bx93 homozygotes. At a false216

positive rate of 10% (our defined cut-off) we expect217

48 genes to be falsely called as differentially expressed218

in bx93 homozygotes. The probability that such a219

false positive is also differentially expressed in an-220

other genotype is 20% (4,392 transcripts identified221

between the two other genotypes divided by 21,954222

the total number of transcripts that were successfully223

sequenced). Thus, on average we expect 39 false pos-224

itive hits to be classified into the bx93 -specific class.225

On average, half of all genes in the bx93 -specific class226

would be expected to be the result of statistical ar-227

tifacts. Statistical noise is therefore a major contrib-228

utor towards the existence of this class. Since the229

biological interpretation of this class is unclear and230

requiring extraordinary evidence, we find the most231

parsimonious explanation to be that the bx93 -specific232

class does not exist.233

We estimated that statistical noise could account234

for > 80% of the genes that were differentially ex-235

pressed in both bx93 and sy622 homozygotes and236

not differentially expressed in the trans-heterozygote.237

Further, we estimated that statistical artifacts could238

explain > 80% of the transcripts that were differen-239

tially expressed in the trans-heterozygote and bx93240

homozygotes but not in sy622 homozygotes. For241

both of these populations, we estimate that the ma-242

jority of the false hits emerge from false negative re-243

sults. In other words, most of the noise in these pop-244

ulations is the result of mis-classification. Finally,245

the biological interpretation of either population is246

implausible given the molecular nature of the alle-247

87 39
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483

720

1841
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15 39
73

72

False Positive Hits False Negative Hits

Observation
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Expectation

Expectation

Comparison

1841 106 78
242 57

720

1226

Figure 2. False hit analysis. To assess the extent
to which statistical artifacts could affect the interpre-
tation of certain intersections, we first idealized the
Venn diagram and asked whether false positive and
false negative results could distort the diagram back
to its original shape. We estimated the false neg-
ative rate at 15% and used a false positive rate of
10%. For simplicity, only false hit analysis for bx93
groups is shown. False hits can explain the existence
of a groups of genes that are differentially expressed
in bx93 homozygotes only, in bx93 homozygotes and
trans-heterozygotes, and in bx93 homozygotes and
sy622 homozygotes. Genes that are solely expressed
in bx93 homozygotes are unlikely to exist, whereas
genes that are differentially expressed in bx93 ho-
mozygotes and one other genotype are probably mis-
classified and should be differentially expressed in all
genotypes. The trans-heterozygote specific class can-
not be explained by statistical artifacts.
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sy622-specific

trans-heterozygote-specific

bx93-associated

sy622-associated

720

1841

403

1226

Figure 3. Transcripts under the control of mdt-12
belong to distinct phenotypic classes. Exploded Venn
diagram highlighting the four identified phenotypic
classes.

les. Taken together, a false hit analysis of these two248

categories strongly suggests that they contain genes249

that have been mis-classified and which most likely250

are differentially expressed in all three genotypes.251

A false hit analysis identified four non-overlapping252

phenotypic classes (see Fig. 3). We use the term253

allele- or genotype-specific to refer to groups of tran-254

scripts that are solely perturbed in a single geno-255

type. On the other hand, we use the term allele-256

associated to refer to those groups of transcripts that257

are perturbed in at least two genotypes. We identi-258

fied a sy622 -associated phenotypic class, which con-259

sisted of 720 genes differentially expressed in sy622260

homozygotes and in trans-heterozygotes, but which261

were not differentially expressed in bx93 homozy-262

gotes. We also identified a bx93 -associated pheno-263

typic class. Following the argument of the previ-264

ous paragraph, this class included all genes that were265

differentially expressed in bx93 homozygotes and at266

least one other genotype, since it is likely that of these267

genes should actually be differentially expressed in all268

genotypes. As a result, this class contains 403 genes.269

We also identified a sy622 -specific phenotypic class270

(1,841 genes) and a trans-heterozygote-specific phe-271

notypic class (1,226 genes). Having identified these272

phenotypic classes, we set out to confirm whether273

each class actually behaved as an independent phe-274

notypic module in an allelic series and whether each275

class could be interpreted biologically to shed light276

on the functions of mdt-12 .277

Different phenotypic classes behave dif- 278

ferently in an sy622 homozygote 279

We asked whether these classes had perturbation dis- 280

tributions distinct from each other within a single 281

homozygote. Specifically, we wanted to test whether 282

these sets behaved as randomly selected sets. If this 283

were the case, then within a single genotype, each 284

class would be expected to have the same distribution 285

of perturbations (see Fig. 4). We found that that the 286

β coefficients of isoforms within the bx93 -associated 287

phenotype on average had the largest absolute value 288

(mean: 1.2). The sy622 -associated phenotype had 289

a smaller range of perturbations compared to the 290

bx93 -associated phenotype (95th percentiles of the 291

two distributions: 2.9 versus 3.2, respectively), and a 292

statistically smaller median (0.91 vs 1.2, respectively, 293

p < 10−6, non-parametric boostrap). The medians 294

of the sy622 -specific and -associated classes were the 295

same (p = 0.15). There are systematic differences 296

between the behaviors of each class. This rejects the 297

null hypothesis that the transcripts in each class were 298

randomly selected. 299

Dominance can be quantified in tran- 300

scriptomic phenotypes 301

Dominance relationships between alleles are 302

phenotype-specific. In other words, an allele 303

can be dominant over another for one phenotype, 304

yet not for others. An example is the let-23 allelic 305

series—nulls of let-23 are recessive lethal (Let) and 306

presumably also recessive vulvaless (Vul) relative to 307

the wild-type allele. The sy1 allele of let-23 is dom- 308

inant viable relative to null alleles, but is recessive 309

Vul3 to the wild-type allele. Above, we postulated 310

that there are four phenotypic classes, three of 311

which are composed of genes whose expression is 312

significantly perturbed in the sy622 homozygote. If 313

these classes are indeed modular phenotypes, then 314

the dominance relationships within each class should 315

be the same from gene to gene. In other words, a 316

single dominance coefficient should be sufficient to 317

explain the gene expression in the trans-heterozygote 318

for every gene within a class. 319

To quantify this dominance, we implemented and 320

maximized a Bayesian model (see Methods). Briefly, 321

we asked what the linear combination of β coefficients 322

from each homozygote would best predict the ob- 323

served β values of the heterozygote, subject to the 324

constraint that the coefficients added up to 1 (see 325

Dominance analysis). We reasoned that if this was a 326

modular phenotype controlled by a single functional 327

unit encoded within the gene of interest, then a plot 328
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Figure 4. Within the sy622 homozygote mutant, transcripts whose differential expression pattern places
them in different phenotypic classes have statistically different distributions. The lines within the boxes
show the 25th, 50th, and 75th percentiles. Whiskers show the 0th and 100th percentiles, with the exception
of outliers (diamonds). Diagrams show what genotypes each gene class is expressed in, but the magnitude of
the perturbation plotted always corresponds to the sy622 mutant. The x-axis shows the absolute magnitude
of the perturbation for each transcript in sy622 homozygotes, |βsy622|. The medians of the sy622 -specific
and the sy622 -associated classes were statistically significantly different from the median of the bx93 -specific
class, as assessed by a non-parametric bootstrap test.

of the predicted β values from the optimized model329

against the observed β values of the heterozygote for330

each transcript should show the data falling along a331

line with slope equal to unity. Systematic deviations332

from linear behavior would indicate that the tran-333

scripts plotted are not part of a modular phenotypic334

class controlled by a functional unit.335

The sy622 -specific class expression phenotype336

of the sy622 homozygote is complemented to337

wild-type levels by the presence of a bx93 al-338

lele339

Since our previous testing showed that the tran-340

script expression of genes in this class was dysregu-341

lated in sy622 homozygotes, and wild-type in both342

bx93 homozygotes and trans-heterozygotes we can343

conclude that these transcripts are complemented to344

their wild-type levels by the presence of the bx93 al-345

lele. Applying the Bayesian model yields identical346

results (dbx93 = 1). Thus, there is a module that has347

wild-type functionality in the bx93 allele but is par-348

tially or completely deleted in the sy622 allele. This349

functionality must require protein encoded between350

the amino acid position 1,698 where the sy622 pro-351

tein product truncates prematurely, and the position352

2,549 where the bx93 protein product ends.353

The bx93 allele is dominant over the sy622 for 354

the bx93 -associated phenotype 355

We explored how expression levels of transcripts 356

within the bx93 -associated phenotypic class were con- 357

trolled by these two alleles. Transcripts in this class 358

are differentially expressed in homozygotes of either 359

allele. Moreover, transcripts in this class are more 360

perturbed in sy622 homozygotes than in bx93 ho- 361

mozygotes. This is consistent with a single functional 362

unit that is impaired in the bx93 allele, and even more 363

impaired in the sy622 allele (see Fig. 5). 364

If a single functional unit is being impaired, then 365

we would expect these alleles to form a quantitative 366

allelic series for this phenotypic class. In a quantita- 367

tive series, alleles exhibit semidominance. We quanti- 368

fied the dominance coefficient for this class and found 369

that the bx93 allele is largely but not completely 370

dominant over the sy622 allele (dbx93 = 0.81; see 371

Fig. 5). Dominance in the context of an allelic series 372

indicates a qualitative allelic series, which is evidence 373

that MDT-12 protein produced from the bx93 allele 374

has an intact functional unit that is deleted in pro- 375

tein product from the sy622 allele. Mixed evidence 376

for quantitative and qualitative allelic series at this 377

phenotypic class precludes a definitive conclusion. 378
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A

sy622

bx93

bx93/sy622

Low S.E High S.E 

Low

High

Point
Density

B

sy622

bx93

bx93/sy622

Figure 5. The bx93 -associated class has properties
of both quantitative and qualitative allelic series. A
In bx93 homozygotes, transcripts within the bx93 -
associated class are less perturbed than in sy622 ho-
mozygotes. The line of best fit (green) is βbx93/bx93 =
0.56·βsy622/sy622. B In a trans-heterozygote, the bx93
allele is largely dominant over the sy622 allele for the
expression levels of transcripts in the bx93 -associated
class. In the graphs above, densely packed points are
colored yellow as a visual aid. The size of the point
is inversely proportional to the standard error of the
β coefficients.

The bx93 allele is semidominant with sy622 379

for the sy622 -associated phenotypic class 380

We quantified the relative dominance of bx93 and 381

sy622 on the expression level of transcripts that be- 382

longed to the sy622 -associated class. We found that 383

both alleles are semidominant (dbx93 = 0.51). This 384

suggests that there is a structure distributed evenly 385

throughout the gene body starting the first amino 386

acid position and ending before position 2,549. Since 387

the two alleles are semidominant for transcript ex- 388

pression in this class, the functionality encoded in 389

this gene must be dosage-dependent for this model 390

to hold. 391

The sy622 -specific class is strongly en- 392

riched for a Dpy transcriptional signa- 393

ture 394

bx93 homozygotic animals are almost wild-type, but 395

careful measurements show that they have a slight 396

body length defect causing them to be slightly Dpy, 397

and sy622 homozygotic animals are known to be 398

severely Dpy14, but this phenotype is complemented 399

almost to bx93 levels when this allele is placed in 400

trans to the sy622 allele. The only class that is 401

fully complemented to wild-type levels is the sy622 - 402

specific class. Therefore, we hypothesized that the 403

sy622 -specific class should show a strong transcrip- 404

tional Dpy signature. 405

To test this hypothesis, we derived a Dpy signa- 406

ture from two Dpy mutants (dpy-7 and dpy-10 , DAA, 407

CPR and PWS unpublished) consisting of 628 genes. 408

We used this gene set to look for a transcriptional 409

Dpy signature in each phenotypic class using a hy- 410

pergeometric probabilistic model (see Methods). We 411

found that the sy622 -specific and -associated classes 412

were enriched in genes that are transcriptionally as- 413

sociated with a Dpy phenotype. The bx93 -associated 414

class also showed significant enrichment (fold-change 415

= 2.2, p = 4 · 10−10, 68 genes observed). The en- 416

richment was of considerably greater magnitude in 417

the sy622 -specific class (fold-change enrichment = 418

3, p = 2 · 10−40, 167 genes observed) than the en- 419

richment in the sy622 -associated class (fold-change 420

= 1.9, p = 9 · 10−9, 82 genes observed) or in the 421

bx93 -associated class. Correlation analysis showed 422

that a majority of the genes in the sy622 -specific class 423

were strongly correlated between the expression lev- 424

els in the Dpy signature and the expression levels 425

in sy622 homozygotes, while 25% of the genes were 426

anti-correlated (Spearman R = 0.42, p = 6 · 10−15, 427

see Fig. 6). If the anti-correlated values are excluded 428

from the Spearman regression, the statistical value of 429
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the regression improves significantly (Spearman R =430

0.94, p = 2 · 10−108). Taken together, this suggests431

that the sy622 -specific phenotypic class contains a432

transcriptional signature that can be associated with433

the morphological Dpy phenotype.434

We also tested a hypoxia dataset11, since mdt-12435

is not known to be upstream of the hif-1 -dependent436

hypoxia response in C. elegans. Enrichment tests re-437

vealed that the hypoxia response was significantly438

enriched in the bx93 -associated (fold-change = 2.1,439

p = 10−8, 63 genes observed), the sy622 -associated440

(fold-change = 1.9, p = 4 · 10−8, 78 genes observed)441

and the sy622 -specific classes (fold-change = 2.4,442

p = 9 · 10−55, 186 genes observed). However, there443

was no correlation between the expression levels of444

these genes in mdt-12 genotypes and the expression445

levels expected from the hypoxia response. Although446

the hypoxia gene battery can be found in mdt-12 mu-447

tants, these genes are not used to deploy a hypoxia448

response, and the animals do not have a hypoxic-449

response phenotype.450

Discussion451

Allelic series using transcriptomic phe-452

notypes can dissect the functional units453

of a gene454

We have shown that whole-organism transcriptomic455

phenotypes can be analyzed in the context of an al-456

lelic series to partition the transcriptomic effects of a457

large, pleiotropic gene into separable classes. Anal-458

ysis of these modules can inform structure/function459

predictions at the molecular level, and enrichment460

analysis of each class can be subsequently correlated461

with other morphologic or behavioral phenotypes.462

This method shows promise for analysing pathways463

that have major effects on gene expression in an464

organism, and which do not have complex, antag-465

onistic tissue-specific effects on expression. Given466

the importance of allelic series for fully character-467

izing genetic pathways, we are optimistic that this468

method will be a useful addition towards making full469

use of the potential of these molecular phenotypes.470

Specifically, allelic series coupled with false hit anal-471

yses show great promise to identify distinct pheno-472

typic classes that would be difficult or impossible473

to measure using standard methods. The sensitiv-474

ity and quantitative nature of transcriptomic pheno-475

types makes identification of these phenotypes con-476

siderably more feasible. Once the phenotypic classes477

have been identified, dominance and enrichment anal-478

yses can be performed easily with significant statis-479

Low S.E High S.E 

A

B

Low

High

Point
Density

Figure 6. sy622 homozygotes show a transcrip-
tional response associated with the Dpy phenotype.
A We obtained a set of transcripts associated with
the Dpy phenotype from dpy-7 and dpy-10 mutants.
We identified the transcripts that were differentially
expressed in sy622 homozygotes. Next, we plotted
the β values of each transcript in sy622 homozygotes
against the β values in a dpy-7 mutant. A signifi-
cant portion of the genes are correlated between the
two genotypes, showing that the signature is largely
intact. 25% of the genes are anti-correlated. B We
performed the same analysis using a set of transcripts
associated with the hif-1 -dependent hypoxia response
as a negative control. Although sy622 is enriched for
the transcripts that make up this response, there is
no correlation between the β values in sy622 homozy-
gotes and the β values in egl-9 homozygotes. In the
plots, a colormap is used to represent the density of
points. The standard error of the mean is inversely
proportional to the standard error of βmdt−12(sy622).
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tical power. These properties highlight the power of480

coupling the genetical properties of C. elegans with481

next-generation sequencing methods.482

A structure/function diagram of483

mdt-12484

Our results strongly suggest the existence of various485

functional units in mdt-12 that control distinct phe-486

notypic classes (see Fig. 7). The sy622 -specific class487

of transcripts is regulated normally in the presence of488

the bx93 allele, indicating that the mutated protein489

product retains wild-type functionality for regulating490

these genes. This functionality is decreased or absent491

in MDT-12 produced from the sy622 allele. There-492

fore, the functional unit that controls this class, func-493

tional unit 1 (FC1), must require sequence between494

amino-acid position 1,689 and position 2,549.495

A similar argument can be made for a functional496

unit that controls sy622 -associated transcripts, func-497

tional unit 2 (FC2). These genes are strongly per-498

turbed in sy622 homozygotes and they are also per-499

turbed in bx93/sy622 trans-heterozygotes, albeit to500

a lesser degree. For this argument to hold, however,501

the functional unit must work in a dosage-dependent502

manner, since the bx93 allele is semidominant with503

the sy622 allele, and this unit is likely intact in the504

protein product made by the bx93 allele. This is in505

contrast to FC1, which is not dosage-dependent.506

Evidence in favor of a bx93 -associated functional507

unit was mixed. Although dominance analysis sug-508

gested that the bx93 allele was largely dominant over509

the sy622 allele for expression levels of genes in this510

class, the expression of these genes deviated from511

wild-type levels in both alleles. The latter suggests512

that the bx93 -associated module is perturbed quanti-513

tatively in both alleles, whereas dominance analyses514

favor an interpretation where the module is present515

in one allele but not in the other. One possibil-516

ity is that the bx93 -associated function we observed517

is the joint activity of two distinct effectors, func-518

tional units 3 and 4 (FC3, FC4, see Fig. 7). In this519

model, FC4 loses partial function in the bx93 allele,520

whereas the FC3 retains its complete activity. This521

leads to non-wild-type expression levels of the bx93 -522

associated class of transcripts. In the sy622 allele,523

FC4 is further impaired, causing an increase in the524

severity of the observable phenotype. A rigorous ex-525

amination of this model requires studying alleles that526

mutate the region between Q1689 and Q2549 using527

homozygotes and trans-heterozygotes. Future work528

should be able to establish how many modules exist529

in total, and how they may interact to drive gene ex-530

pression. The phenotypic classes identified here could531

FC1
FC2

FC3 FC4

bx93
Q2549

sy622
Q1698

sy622-specific
trans-heterozygote-specific

bx93-associated

sy622-associated

FC1FC2

FC3/4

MDT-12

Figure 7. The functional units associated with each
phenotypic class can be mapped to intragenic lo-
cations. The beginning and end positions of these
functional units are unknown, so edges are drawn as
ragged lines. Thick horizontal lines show the limit
where each function could end, if known. We pos-
tulate that the bx93 -associated class is controlled by
two functional units, FC3 and FC4, in the tail region
of this gene. Some of the modules shown may rep-
resent the same structures. Future experiments are
required to make a more complete determination of
the number and nature of these modules.

be compared against transcriptomic signatures from 532

other transcription factors to identify candidate co- 533

factors. 534

Controlling statistical artifacts 535

Transcriptomic phenotypes generate large amounts of 536

information that can be used to determine functional 537

units. However, due to the large number of tests per- 538

formed, false positive and false negative events oc- 539

cur frequently enough to create populations of tran- 540

scripts that have anomalous behaviors. It is necessary 541

to identify what modules or populations are most at 542

risk of these events and to what extent these mod- 543

ules may be polluted by false signals to prevent over- 544

interpretation. In our experiment, we can estimate 545

statistical noise in each population. There is a rich 546

literature in genomics devoted to controlling and es- 547

timating false positive rates25,26, but false negative 548

rates have largely been ignored because they do not 549

create spurious signal in simple experimental designs 550

and because there is ample signal in most RNA-seq 551

experiments. For allelic series experiments to be suc- 552

cessful, systematic algorithms to estimate and con- 553

trol false negative rates, and to identify the popula- 554

tions most at risk for enrichment of false hits, must 555
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be developed, because false negative hits can create556

populations of genes that have fantastical biological557

behaviors (such as contrived examples of intragenic558

complementation or dosage models).559

We performed a false hit analysis, estimating the560

false negative rate at 15%, to identify the clusters561

or classes of genes most at risk for statistical noise.562

As a general rule, small clusters or classes should be563

viewed with skepticism, particularly if the biological564

interpretation is complex. To perform a false hit anal-565

ysis, we found it crucial is to appropriately idealize566

the shape of the Venn diagram. This idealized Venn567

diagram can then be “squeezed” with false negative568

and false positive rates to observe how it deforms.569

The deformed diagram can then be compared with570

reality to estimate the contribution of false hits to571

the existence of each class.572

The trans-heterozygote specific pheno-573

typic class is not a statistical artifact574

In our study, we found a class of transcripts that575

were exclusively differentially expressed in trans-576

heterozygotes. The size of this class, 1226 genes,577

means it cannot be a statistical artifact. As a re-578

sult, this class must be interpreted either as a le-579

gitimate aspect of mdt-12 biology, possibly reflect-580

ing dosage- or tissue-specific effects, or as a strain-581

specific artifact. The genotype of the heterozygote582

includes a mutation at the dpy-6 locus which acts as583

a cis-marker for the bx93 mutation. One possibility584

is that the dpy-6 loss-of-function mutation is not re-585

cessive for transcriptomic phenotypes and is respon-586

sible for the dysregulation of the new genes observed587

in the heterozygote. Another possibility is that the588

dpy-6 strain had background mutations that affect589

gene expression levels in a complex manner. These590

issues could be addressed by re-generating the alle-591

les used in this study using genome engineering tools592

like CRISPR Cas9, which have few off-target effects593

in C. elegans 27. However, even if these issues were594

addressed, the biological interpretation of this class595

is not straightforward.596

Phenotypes that are exacerbated or are unique to597

trans-heterozygotes often indicate that the protein598

products of the two alleles are somehow interfering599

with each other. This interference can often be the600

result of physical interactions such as homodimeriza-601

tion, or through a dosage reduction of a toxic prod-602

uct28. In the case of mdt-12 orthologs, the protein603

products are not known to form oligomers. Instead,604

MDT-12 and its orthologs are expected to assemble605

in a monomeric manner into the CDK-8 Kinase Mod-606

ule.607

A dosage model could explain the trans- 608

heterozygote specific class if the dosage curve is bell- 609

shaped. In this model, a switch is only activated 610

at a very specific mdt-12 gene dosage. Beyond this 611

dosage, the switch remains off. Although such a 612

model explains the data, mechanisms that could gen- 613

erate such a dosage curve are not immediately ob- 614

vious. One possibility is that this switch is en- 615

acted at the level of cell specification or cell divi- 616

sion, and that at the appropriate dosage of mdt-12 , 617

two cells that would typically collaborate to form a 618

phenotype now act antagonistically, pushing trans- 619

heterozygotes into a different state from the homozy- 620

gotes. If this is the case, whole-organism RNA-seq 621

may have limited resolution to identify what tissues 622

or cells are being perturbed. Single-cell sequencing 623

of C. elegans has recently been reported. As this 624

technique becomes more widely adopted, and with 625

decreasing cost, single-cell profiling of these geno- 626

types may provide information that complements the 627

whole-organism expression phenotypes, perhaps ex- 628

plaining the mysterious origin of this phenotype. 629

Analysis of allelic series using 630

transcriptome-wide measurements 631

The potential of transcriptomes to perform epistasis 632

analyses has been amply demonstrated10,8, but their 633

potential to perform allelic series analyses has been 634

less studied. Though similar in some respects, epista- 635

sis analyses and allelic series studies call for different 636

methods to solve different problems. To successfully 637

perform an allelic series analysis, we must be able to 638

identify the number and identity of the phenotypic 639

classes, and a dominance analysis must be performed 640

for each class to determine whether the alleles inter- 641

act qualitatively or quantitatively with each other. 642

Additionally, if an allelic series includes more than 643

two alleles, the number of experimental outcomes 644

and the number of possible outcomes rapidly become 645

large. 646

The general problem of partitioning a set of genes 647

into phenotypic classes is a common problem in bioin- 648

formatics. This problem has been tackled through 649

clustering, matrix-based methods such as PCA or 650

non-negative matrix factorization, or through q- 651

value-based classification (as we have done here). 652

Although these methods can classify genes or tran- 653

scripts into clusters, by themselves they cannot ascer- 654

tain the probability that any one cluster is real. For 655

allelic series studies, this represents a major problem, 656

since each cluster can in theory represent a new, inde- 657

pendent functional unit within the molecular struc- 658

ture of the gene under study. Failure to identify clus- 659
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ters that are the result of statistical artifacts in gen-660

eral will cause researchers to identify inflated num-661

bers of functional units within a molecular structure662

that appear to behave in a biologically spectacular663

fashion. We attempted to solve this problem for our664

series by estimating contributions of statistical noise665

to each class, although a challenge is that we do not666

know the false negative rate in our experiment. For667

our analysis, we exploited the molecular structure of668

our alleles (nested truncations) to create an idealized669

version of how gene clusters should behave. We then670

used our false positive rate and an estimated false671

negative rate to estimate the signal/noise ratio for672

each class. This method allows us to identify false673

classes, and in so doing it also reduces the apparent674

complexity of the molecular structure of the gene un-675

der study.676

A challenge for allelic series studies will be the bi-677

ological interpretation of unexpected classes, such as678

the trans-heterozygote specific class in our analysis.679

This class is too large to be explained by statistical680

anomalies. If this class is not an artifact of back-681

ground or strain construction, the biological interpre-682

tation of this class is still not clear. Moreover, even if683

the biological interpretation of this class were clear,684

it is not immediately apparent what experimental de-685

sign could establish the veracity of our interpretation.686

This problem could perhaps be ameliorated by corre-687

lating transcriptomic signatures with more morpho-688

logic, behavioral or cellular phenotypes, as has been689

done in single-cell studies29.690

Expression profiling as a method for691

phenotypic profiling692

The possibility of identifying distinct phenotypes us-693

ing expression profiling is an exciting prospect. With694

the advent of facile genome editing technologies, the695

allele generation has become routine. As a result,696

phenotypification is now the rate-limiting step for697

genetic analyses. We believe that RNA-seq can be698

used in conjunction with allelic series to exhaustively699

enumerate independent phenotypes with minor effort.700

We should push to sequence allelic diversity to more701

fully understand genotype-genotype variation.702

Methods703

Strains used704

Strains used were N2 wild-type (Bristol), PS4087705

mdt-12(sy622), PS4187 mdt-12(bx93), and PS4176706

dpy-6(e14) mdt-12(bx93)/ + mdt-12(sy622). All707

lines were grown on standard nematode growth me- 708

dia (NGM) Petri plates seeded with OP50 E. coli at 709

20◦C30. 710

Strain synchronization, harvesting and 711

RNA sequencing 712

All strains were synchronized by bleaching P0’s into 713

virgin S. basal (no cholesterol or ethanol added) for 714

8–12 hours. Arrested L1 larvae were placed in NGM 715

plates seeded with OP50 at 20◦C and allowed to grow 716

to the young adult stage (as assessed by vulval mor- 717

phology and lack of embryos). RNA extraction was 718

performed as described in11 and sequenced using a 719

previously described protocol8. 720

Read pseudo-alignment and differential 721

expression 722

Reads were pseudo-aligned to the C. elegans genome 723

(WBcel235) using Kallisto31, using 200 bootstraps 724

and with the sequence bias (--seqBias) flag. The 725

fragment size for all libraries was set to 200 and 726

the standard deviation to 40. Quality control was 727

performed on a subset of the reads using FastQC, 728

RNAseQC, BowTie and MultiQC32,33,34,35. All li- 729

braries had good quality scores. 730

Differential expression analysis was performed us- 731

ing Sleuth36. Briefly, we used a general linear model 732

to identify genes that were differentially expressed be- 733

tween wild-type and mutant libraries. To increase 734

our statistical power, we pooled wild-type replicates 735

from other published and unpublished analysis. All 736

wild-type replicates were collected at the same stage 737

(young adult). In total, we had 10 wild-type repli- 738

cates from 4 different batches, which heightened 739

our statistical power. Batch effects were smaller 740

than between-genotype effects, as assessed by princi- 741

pal component analysis (PCA), except when switch- 742

ing between samples constructed by different library 743

methods. Wild-type samples constructed using the 744

same library method clustered together and away 745

from all other mutant samples. However, clustering 746

wild-type samples by themselves revealed that the 747

samples clusters correlated with the person who col- 748

lected them. Therefore, we added batch correction 749

terms to our model to account for batch effects from 750

library construction as well as from the person who 751

collected the samples. 752

Non-parametric bootstrap 753

We performed non-parametric bootstrap testing to 754

identify whether two distributions had the same 755
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mean. Briefly, the two datasets were mixed, and756

samples were selected at random with replacement757

from the mixed population into two new datasets.758

We calculated the difference in the means of these759

new datasets. We iterated this process 106 times. To760

calculate a p-value that the null hypothesis is true,761

we identified the number of times a difference in the762

means of the simulated populations was greater than763

or equal to the observed difference in the means of the764

real population. We divided this result by 106 to com-765

plete the calculation for a p-value. If an event where766

the difference in the simulated means was greater767

than the observed difference in the means was not768

observed, we reported the p-value as p < 10−6. Oth-769

erwise, we reported the exact p-value. We chose to770

reject the null hypothesis that the means of the two771

datasets are equal to each other if p < 0.05.772

Dominance analysis773

We modeled allelic dominance as a weighted average
of allelic activity. Briefly, our model proposed that β
coefficients of the heterozygote, βa/b,i,Pred, could be
modeled as a linear combination of the coefficients of
each homozygote:

βa/b,i,Pred(da) = da · βa/a,i + (1− da) · βb/b,i, (1)

where βk/k,i refers to the β value of the ith isoform in774

a genotype k/k, and da is the dominance coefficient775

for allele a.776

To find the parameters da that maximized the
probability of observing the data, we found the pa-
rameter, da, that maximized the equation:

P (da|D,H, I) ∝
∏
i∈S

exp−
(βa/b,i,Obs − βa/b,i,Pred(da))2

2σ2
i

(2)
where βa/b,i,Obs was the coefficient associated with777

the ith isoform in the trans-het a/b and σi was778

the standard error of the ith isoform in the trans-779

heterozygote samples as output by Kallisto. S is the780

set of isoforms that participate in the regression (see781

main text). This equation describes a linear regres-782

sion which was solved numerically.783

Code784

All code was written in Jupyter notebooks37 using785

the Python programming language. The Numpy,786

pandas and scipy libraries were used for computa-787

tion38,39,40 and the matplotlib and seaborn libraries788

were used for data visualization41,42. Enrichment789

analyses were performed using the WormBase Enrich-790

ment Suite43. For all enrichment analyses, a q-value791

of less than 10−3 was considered statistically signif- 792

icant. For gene ontology enrichment analysis, terms 793

were considered statistically significant only if they 794

also showed an enrichment fold-change greater than 795

2. 796
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