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ABSTRACT 

 

Mutations in NMNAT1 can lead to a very severe type of retinal dystrophy, Leber 

congenital amaurosis, in human patients, characterized by infantile-onset or congenital 

retinal dystrophy and childhood blindness. The loss-of-function mouse models of Nmnat1 

have not been well-established, since the complete knock-out (KO) of Nmnat1 in mice 

results in embryonic lethality. Here, we generated retina-specific KO by using the Crx-

promotor-driving Cre combined with the flox allele. By a panel of histological and 

functional analyses, we found that Nmnat1 conditional KO (cKO) mice have early severe 

retinal dystrophy. Specifically, the photoreceptors of Nmnat1 cKO mice are almost 

diminished and the retinal functions also become completely abolished. Our results 

established a loss-of-function model for Nmnat1 in mice, which will be useful for studying 

the detailed functions of NMNAT1 in the retina. 
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INTRODUCTION 

 

Leber congenital amaurosis (LCA) is a severe inherited eye disease characterized by 

infantile-onset visual impairment and vision loss (1, 2). Though LCA is a rare disease with 

an incidence about only 1 in 80000 (3), it is the most common cause of incurable children 

blindness (10%-18%) (1). LCA is a highly genetically heterogeneous disease. During the 

past 20 years, various genetic analyses have identified at least 19 genes that cause LCA(4-

27). However, the mutations in these genes account for approximately 70% of all LCA 

cases, leaving 20%-30% unsolved cases to be discovered for their genetic basis (28). 

 

Sequencing studies have recently found that mutations in NMNAT1 can cause LCA and 

these constitute approximately 10% of unsolved cases (28-47). The majority of NMNAT1 

mutations found in LCA patients are missense, with a small portion are nonsense and 

frameshift. Most of the patients share a variant (c.769G>A, E257K), while the other allele 

is heterogeneous spreading from N-terminal to C-terminal (30). In silico analysis predicts 

that these mutations will affect the enzymatic activity, hexamerization, hydrophobic 

interactions or nuclear localization of NMNAT1 protein (31). 

 

Though one mouse model with Nmnat1 homozygous missense mutation was reported 

recently (48), it remains unknown what is the impact of retina-specific deletion of 
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Nmnat1 in mice. Therefore, in this study, we generated retina-specific knock-out Nmnat1 

mice and found that this genetic defect can lead to early severe retinal dystrophy. 

 

 

METHODS 

 

Mouse study 

Nmnat1 retina-specific KO mice were generated by crossing the Nmnat1 flox/flox mice with 

Crx-Cre +/- mice to get the Nmnat1 flox/+ ; Crx-Cre +/- mice. Then these mice underwent 

further mating to get the Nmnat1 retina-specific KO mice. The mouse study protocols 

were approved by the Institutional Review Board of Sichuan Medical College.  

 

Histological study 

For histological studies of the mouse retina, the mice were sacrificed and the eyecups 

were enucleated and fixed. The eyecups were embedded in paraffin and then sectioned to 

10m slices. The sections underwent Hematoxylin and Eosin (HE) staining after re-

hydration. The number of nuclear layers were counted as the indicator of retinal 

thickness. 

 

Electroretinogram (ERG) 
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As for the ERG experiments, the mice underwent dark adaptation for overnight (at least 

10 hours) before the experiments, and the ERGs are recorded in the dark with dim red 

lights. Mice were anesthetized with Ketamine and then put in the chambers for the actual 

testing. The heads of the mice were stabilized properly. Six different light stimuli 

amplitudes were applied and the retinal responses were recorded by the electrodes 

attached to the cornea of the mice. The responses contain a-wave and b-wave responses. 

Then the data were analyzed and plotted according to their genotypes. 

  

 

RESULTS 

 

At the age of P7, since the outer nuclear layer (ONL) and inner nuclear layer (INL) have 

not been fully developed and separated, we used the thickness of the two layers as the 

indicator. By H&E staining, we found that the ONL and INL thickness in those cKO mice 

is only about 45% compared with that in WT mice. The thickness of ganglion cell layer 

(GCL) is a little bit smaller in cKO mice compared with WT (Figure 1A). 

 

When the mice grow to P14, the retinal layer thinning becomes more remarkable in cKO 

mice compared with WT mice. Both the ONL and INL show apparent dystrophy in cKO 

mice. Similar to P7, the GCL is about 20% thinner in cKO mice (Figure 1B). 
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At the age of P28, the ONL (photoreceptor layer) becomes almost diminished in cKO 

mice, and the INL is also severely dystrophic in cKO. The GCL does not show apparent 

dystrophy in cKO, similar to P7 and P14 (Figure 1C). 

 

As for the functional analysis, we used ERG to measure the retinal electric responses to 

the light stimuli. At the age of P28, ERG experiments revealed that the cKO mice do not 

have any a-wave and b-wave responses to light compared with WT mice. (Figure 1D and 

1E). These results demonstrated the complete abolishment of retinal functions in cKO 

mice upon NMNAT1 deficiency. 

 

 

DISCUSSION 

 

Previous studies on axon protection indicated that NAD+ biosynthesis activity is essential 

for NMNAT1’s role in protecting axons from degeneration (49-57). NAD+ is a fundamental 

molecule for the living organisms. It is a coenzyme involved in various cellular processes. 

NAD/NADH redox pair is essential for electric transfer chain and is utilized for the 

maintenance of cellular redox state (58). The axon protection conferred by NMNAT1 

seems to be closely related to mitochondria, which is a critical organelle for the 

maintenance of redox state (59, 60). In addition, NMNAT1 also has other functional 

implications(50, 59, 61-78). 
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Interestingly, most of the LCA patients with NMNAT1 mutations show specific 

degeneration in the macula where the redox homeostasis is particularly important due to 

high oxygen consumption conferred by high density of photoreceptors (30, 79-83). This 

evidence, with the NAD+ function described early, provides a strong linkage between the 

need for NAD+ biosynthesis and the maintenance of photoreceptor normal function. 

  

Nmnat1 complete knockout mice have been generated but they are embryonically lethal 

(66). Therefore, for studying the function of NMNAT1 in retina, conditional KO mice 

specifically targeting photoreceptors (NMNAT1 flox/flox; Crx-Cre+/-) were generated by 

us. Our results show that Nmnat1-cKO mice show extremely rapid photoreceptor loss and 

blindness. The phenotypes are somewhat consistent with some human LCA patients who 

were blind at very early stages, thus presenting a useful model for NMNAT1 functional 

study in the retina in the future. 
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FIGURE LEGENDS 

 

Figure 1. 

(A)  The relative retinal thickness of retinal cell layers at P7 in WT and KO mice (n=5) 

(B) The relative retinal thickness of retinal cell layers at P14 in WT and KO mice (n=6). 

(C) The relative retinal thickness of retinal cell layers at P28 in WT and KO mice 

(n=6). 

(D) The ERG a-wave responses at P28 in WT and KO mice. 

(E) The ERG b-wave responses at P28 in WT and KO mice. 

O+I: outer nuclear layer and inner nuclear layer; G, ganglion cell layer. The unit in 

ERG experiments is V. 
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