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FIG. S13 Examples of within-host changes in individuals sampled three times. SNV frequency trajectories (a-c) and gene copy number
trajectories (d-f) as a function of visit number for three example host/species combinations (left, center, and right). Each line represents a
different SNV or gene variant, and the lines are colored for visualization. In (a-c), allele frequencies are polarized according to the first visit
number, and SNVs are only included if they have frequency ≤ 20% at the first timepoint, and ≥ 80% at one of the later timepoints (dashed
lines). SNVs are excluded if they fail to meet the coverage requirements at any of the three timepoints. In (d-f), genes are only included if the
initial copy number lies in either the present or absent regions (illustrated by dashed lines), and if at least one later timepoint is in the opposite
state. Genes are excluded if they exceed the maximum copynumber (c ≤ 2) at any of the three timepoints.

FIG. S14 Examples of putatively clonal and local sweeps in B. vulgatus. (a-c) Final vs initial allele frequencies for all SNVs in the B.
vulgatus genome in three pairs of longitudinal samples whose initial timepoint was classified as non-CP. Allele frequencies are polarized such
that the change in allele frequency is positive. In each panel, SNVs are colored if they are in a gene with at least two detected SNV changes
that are more than 100bp apart, with each gene assigned its own color. All other SNVs are colored grey. SNVs are only plotted if they had
sufficient coverage at both timepoints, and if at least one timepoint had allele frequency ≥ 0.05. Panel (a) illustrates a putatively clonal sweep,
while panels (b) and (c) suggest local sweeps. (d) The distribution of relative coverage at all core-genome sites at the initial timepoint in panel
(b). The median coverage for the colored sites in (b) is indicated with the corresponding line and symbol. (e) An analgous version of (d) for
the individual in panel (c). Note that in both (d) and (e), the sweeping genes are outliers in the coverage distribution.
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SUPPLEMENTAL TABLES
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TABLE S1 Metagenomic samples used in study. We analyzed 1576 samples from the Human Microbiome Project (HMP), and 185 samples
from Qin et al. (45). Listed are the subject ids, sample ids, run accessions, country of the study, continent of the study, visit number, and study
(HMP or Qin et al, 2012).

TABLE S2 Top-level clade definitions. This table contains the manually-defined top-level clades described in SI Section 4.1. Rows list the
various combinations of species and hosts plotted in Fig. 3, along with its corresponding numeric clade label.

TABLE S3 Gene change annotations. All genes that changed across the species analyzed in Fig. 6B were annotated with the PATRIC (76)
database. Several genes were grouped into a single category based on keyword matches as described in SI Section 8. Listed are the total
number of gene changes, the expected number of changes assuming a null comprised of all changes between hosts, a null comprised of all
genes present in hosts at all time points, and a null comprised of genes present in the pangenome. Expectations are also listed for gene gains
and loss using the same three nulls. Lastly, the names of genes that are grouped together in a single keyword category are listed.

TABLE S4 SNV change annotations. An analogous version of Table S3 for genes that harbored a within-host SNV change. Listed are
the total number of genes with at least one SNV change between consecutive timepoint pairs, and the expected number of hits under a null
comprised of all changes between hosts and a null comprised of all genes present in hosts at all time points. Lastly, the names of genes that are
grouped together in a single keyword category are listed.
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SUPPLEMENTAL INFORMATION

1. VARIANT CALLING

We analyzed whole-genome sequence data from a panel of 499 stool samples from 365 healthy human subjects (Table S1). Of
these, 185 samples from China (all unique subjects) were previously sequenced by Qin et al. (45), and 314 samples from North
America were from 180 subjects from the Human Microbiome Project (44) (87 individuals sampled once; 52 sampled 2 times
roughly 6 months apart; 41 individuals sampled 3 times over the span of ∼ 1 year). Previous work has shown that there is little
genomic variability between technical and sample replicates in HMP data (46, 47), so we merged fastq files for technical and
sample replicates from the same time point to increase coverage to resolve within-host allele frequencies.

We analyzed these samples using the MIDAS software package [v1.2.2 (47)], with custom filters and postprocessing scripts.
MIDAS first quantifies the relative abundances of species in different metagenomic samples by mapping sequencing reads to a
database of universal, single-copy “marker” gene sequences using HS-BLASTN (77). Based on this step, species with average
marker gene coverage ≥ 3 are defined as “present” in a given sample. These species are then concatenated to create a sample-
specific reference genome and corresponding reference pangenome for the SNV and gene content estimation steps using the
default MIDAS database (version 1.2, downloaded on November 21, 2016). To minimize potential mapping artifacts in detecting
changes in longitudinally sampled individuals, we counted a species as present in all timepoints for a given individual if it was
deemed present in any single timepoint, and this larger set of species was used to construct a consistent set of reference genomes
and pangenomes across the different timepoints.

1.1. Quantifying gene content

To quantify gene content in each sample, sequencing reads were aligned to the sample-specific pangenome using Bowtie2 (78)
with default MIDAS settings: local alignment, MAPID ≥94.0%, READQ ≥20, and ALN_COV ≥0.75. We note that with
these settings, reads with multiple best-hit alignments will be distributed among these targets according to their proportional
representation on the pangenome reference sequence.

For each species, average coverage was reported for each gene after clustering at 95% sequence identity, as well as for a panel
of universal, single-copy marker genes (47). Gene content was only evaluated in species with marker coverage ≥ 20 in a given
sample. The ratio between gene and marker coverage was used to estimate the copy number of each gene in the sample. We used
this information to define a “core genome” for each species, defined as the set of all genes with copy number ≥ 0.3 in ≥ 90% of
hosts in our panel. All other genes were defined to be “accessory” genes.

Given the limitations of our short-read approach, we cannot definitely prove that a read came from a particular species,
particularly in the case of highly conserved or highly promiscuous genes. We therefore restricted our downstream analyses
to genes with copynumbers in the range 0 ≤ c ≤ 0.05 (“absent”) and 0.5 ≤ c ≤ 2 (“present”), in order to reduce potential
cases where fluctuations in species abundance would lead to erroneous gene content changes. In principle, sequence data with
longer-range linkage information (41) could be used to confirm that any gene content differences are linked with the appropriate
core-genome backbone.

1.2. Identifying SNVs

To identify putative SNVs, sequencing reads were aligned to sample-specific reference genomes using Bowtie2, with default
MIDAS mapping thresholds: global alignment, MAPID ≥94.0%, READQ ≥20, ALN_COV ≥0.75, and MAPQ ≥20. After
alignment, species were only retained if at least 40% of the reference genome had coverage ≥ 1. MIDAS reports reference and
SNV allele counts using samtools mpileup (79). We defined the within-sample allele frequency to be the fraction of reference
alleles at a given site. (When present, multiple alternative alleles are therefore merged into a single allele.)

For each species, we then calculated the distribution of coverage at all sites in the core genome in each sample. We used this
information to define a characteristic coverage value D for each sample, defined as the median of all core genome sites with
nonzero coverage. To ensure adequate coverage for accurately estimating allele frequencies, samples with D < 20 were excluded
from further analyses. To further reduce mapping artifacts, sites in a given sample were masked (assigned zero coverage) if their
coverage was < 0.3D or ≥ 3D. For similar reasons, we only considered SNVs in coding sequences of annotated genes, and we
masked sites with nonzero coverage in fewer than 4 samples across our panel.

When comparing groups of samples, we defined a site to be a potential SNV candidate if it had within-host frequency > 5% in
at least one sample. To avoid including sites due to rounding biases, we stipulated that the frequency must exceed 5% by at least
1/D. All other sites were assumed to be monomorphic in that comparison. When analyzing a single sample (e.g. in Figs. 1A-D
and SI Section 3.2), all sites were included regardless of allele frequency.
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2. WITHIN-HOST EVOLUTION IN A SINGLE-COLONIZATION MODEL

In this section, we further explain the assumptions made in computing the expected within-host polymorphism rate for a given
species under a simple, single-colonization model. As described in the text, we will make conservatively high estimates for the
per site mutation rate (µ ∼ 10−9 per generation), generation times (λ ∼ 10 generations per day), and time since colonization
(∆t ∼ 100 years). We define the within-host polymorphism rate P as the fraction of fourfold-degenerate synonymous site
mutations with allele frequencies in the range 0.2 ≤ f ≤ 0.8. In the single-colonization model, the mutations that contribute to
P must have reached intermediate frequencies after starting as a de novo mutation at some time after colonization.
We assume that the synonymous mutations are effectively neutral over the timespans considered (sλ∆t � 1). Under this

assumption, one of these mutations can only contribute to P if it hitchhiked along with a lineage that rose to a frequency in the
range 0.2 ≤ f ≤ 0.8. This can happen either due to neutral drift (i.e., the lineage randomly fluctuated to intermediate frequencies)
or selection (i.e., the lineage reached intermediate frequencies because it contains a beneficial mutation). However, if synonymous
mutations are neutral, their presence or absence in a lineage is independent of the processes that drive it to intermediate frequency
(80). The probability that a particular neutral mutation arose along the line of descent is simply the product of the per-site
mutation rate µ and the total number of generations since the lineage diverged from the common ancestor between it and the rest
of the population. By assumption, the latter is bounded by the total number of generations since colonization (λ∆t). This yields
the conservative estimate for the within-host polymorphism rate,

P ≤ µλ∆t ≤ 10−3 , (S2.1)

quoted in the main text.

3. PHASING METAGENOMIC SAMPLES

In this section, we describe the methods used to estimate one of the dominant haplotypes in a subset of the metagenomic samples
(the confidently phaseable (CP) samples), and to quantify genetic differences between these lineages. The method is similar in
spirit to recent work by Truong et al. (40), but with a greater emphasis on estimating the associated false positive rates.

3.1. Theoretical motivation

To gain intuition for how within-host lineage structure is reflected in the distribution of allele frequencies, it is useful to start
by considering the simplest version of the phasing problem, in which the metagenomic reads for a given species in a particular
sample are derived one of two clonal lineages mixed in a proportion fmix ≥ 50% (representing the proportion of cells from
the more abundant lineage). Within-sample polymorphisms will arise from fixed differences between the two lineages and will
segregate at frequency fmix or 1 − fmix, depending on which lineage the mutation arose in and the choice of reference allele.
Since this choice is arbitrary, we work with the major allele frequency in each sample. In this case, the distribution of major
allele frequencies, p( f ), will then have the simple form

p( f ) = (1 − d) · δ(1 − f ) + d · δ( f − fmix) , (S3.1)

where d is the average nucleotide divergence between the two lineages and δ(z) is the Dirac delta function. Note that this
theoretical distribution is only obtained in the limit of infinite coverage; in practice, the observed distribution of major allele
frequencies will be blurred due to sampling noise (see SI Section 3.2 below). Nevertheless, in the the limit of high coverage,
Eq. (S3.1) suggests that we can infer fmix and d by looking for a peak in the distribution of major allele frequencies (e.g., Fig. 1E).
Again, in the idealized case, the two haplotype sequences are easy to recognize: major alleles are assigned to the dominant
lineage, while the minor alleles belong to the subdominant type.

This basic idea also extends to mixtures of more than two lineages, but the potential genealogical relationships between
them make the problem much more complicated. For example, in a mixture of three strains with frequencies f1, f2, and f3,
the distribution of major allele frequencies will now have three characteristic peaks (corresponding to min{ fi, 1 − fi} for each
i = 1, 2, 3). This time, however, alleles that segregate at the same frequency do not necessarily belong to the same lineage, since
they could also be ancestral to two of the three strains. There are three possible genealogies relating the three strains, which can
vary from site-to-site in the presence of recombination. Haplotype estimation then becomes a complicated inference problem,
which only grows more difficult as additional lineages are added. Consideration of the combined allele frequency distribution
may be helpful for deriving error models for algorithms that attempt to deconvolute strains from metagenomes.

Rather than trying to infer the exact mixture proportions and the haplotypes of each lineage, we developed a set of heuristic
rules to identify the haplotype of just one of the dominant lineages while controlling the probability of misassigning variants to
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this haplotype. Suppose that there are within-sample polymorphisms at two sites, with major allele frequencies f1 and f2. We
denote the four (unobserved) two-locus haplotype frequencies by fMM , fMm, fmM , and fmm, where M and m denote the major
and minor allele at each site. If f1 = f2 = 0.5, then there are no constraints on the possible haplotype frequencies, other than
the marginal constraints fMM + fMm = f1 and fMM + fmM = f2. However, in the opposite extreme where f1 = f2 = 1, then
normalization constraints require that fMM = 1 (i.e., the major alleles are on the same haplotype). In between these two extremes
there is a more general rule that, whenever the allele frequencies satisfy fi ≥ f , with log( f /1 − f ) = c & 1, the minimum
possible frequency of the M M haplotype is

fMM ≥ 2 f − 1 ∼ 1 − 2e−c . (S3.2)

Equation S3.2 represents a worst case scenario in which the haplotypes are specifically assigned to prevent major alleles from
segregating together. In practice, a more realistic lower bound for the fMM is attained when the alleles are in linkage equibrium:

fMM = f 2 ∼ 1 − 2e−c , (S3.3)

which happens to have the same asymptotic behavior in this two-locus example. In either case, these bounds show that an
appreciable fraction of cells in the host must possess both major alleles.

This argument can also be extended to larger collections of sites. In the pessimistic case of linkage equilibrium between all
polymorphic sites, the number of major alleles per individual is binomially distributed with success probability f . In the limit of
a large number of sites, this means that the vast majority of the cells will have the major allele at a fraction f of the possible sites.
However, while the haplotype consisting of all major alleles is the most likely haplotype under linkage equilibrium, its expected
frequency can grow quite small, to the point where the haplotype may not even be present in a finite sample. Fortunately, our
analysis will primarily focus on one- and two-locus statistics where the stronger bounds in Eq. (S3.2) can be applied.

3.2. False positive rate for SNP phasing

The arguments above suggest that, for many downstream purposes, we can effectively estimate a portion of one of the haplotypes
in a metegenomic sample by taking the major alleles present above some threshold freuqency, f ∗ � 50%, and treating sites with
intermediate frequencies as missing data. This is a simple generalization of the consensus method (i.e. taking the haplotype
formed by all major alleles) that has been used in previous metagenomic studies (4, 40), and it is similar to methods used to
genotype clonal isolates from whole-genome resequencing data (81).

The major difficulty with this approach is that we do not observe the true frequency f directly, but rather a sample frequency
f̂ that is estimated from a finite number of sequencing reads. Polarization errors (i.e. errors in determining the major allele) can
therefore accumulate when the allele supported by the most reads differs from true major allele in the sample. When sequencing
clonal isolates, such false positives are primarily caused by sequencing errors. These occur at a low rate per read (perr ∼ 1% per
bp), and become increasingly unlikely at moderate sequencing depths. However, in a metagenomic sample, polarization errors
will also arise due to finite sampling noise, when an allele at some intermediate frequency (e.g. 25%) happens to be sampled
in a majority of the sequencing reads. As we will show below, for moderate sequencing depths, this will often be the dominant
source of error.

To model this process, let (A`,D`) denote the number of alternate alleles and total sequencing depth at a given site ` in the
genome, and let f̂` = A`/D` denote the corresponding sample frequency. We assume that the number of alternate reads follows
a binomial distribution,

Pr[A` |D`, f`] =
(
D`

A`

)
f A` (1 − f )D`−A` , (S3.4)

for some true frequency f` , so that the probability of observing f̂` ≥ f ∗ is simply

Pr[ f̂` ≥ f ∗ |D`, f`] =
∑

k≥ f ∗D`

(
D`

k

)
f k(1 − f )D`−k . (S3.5)

A polarization error will occur when we observe f̂` ≥ f ∗ even though f` < 50%. Equation (S3.5) shows the probability of
such an error will strongly depend on f` . For a sequencing depth of D = 10 and a frequency threshold of f ∗ = 80%, the error
probability ranges from essentially negligible (∼ 10−14) when f is on the order of the sequencing error rate (∼ 1%), to ∼ 1 per
bacterial genome when f ≈ 10%, to an error rate of 5% when f ≈ 50%.
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The average false positive rate across the genome will therefore depend on an average over the possible values of f and D:

Pr[error] =
∫

Pr[ f̂ ≥ f ∗ |D, f ]p0(D, f ) dD df , (S3.6)

where p0(D, f ) is the prior distribution of D and f at a randomly chosen site (Fig. S1A). In the absence of any additional
information, this joint distribution with the product of empirical distributions,

p0(D, f ) ≈ p̂(D)p̂( f ) , (S3.7)

which we estimate for a given sample by binning the observed values of D and the allele frequencies across the L sites under
consideration (blue distribution in Fig. S1A). The expected number of polarization errors in a given sample across all L sites is
given by

Nerr = Pr[error] × L . (S3.8)

This calculation holds for any large collection of sites where the empirical distribution, p̂( f ), provides a reasonable approximation
to the prior distribution, p0( f ). For example, in the following section, we consider the set of all synonymous sites in the core
genome.

3.3. Confidently phaseable samples

The basic idea behind our approach is that we wish to restrict our attention to samples where Nerr is small compared to the total
number of sites under consideration. This number will vary depending on the particular analysis that we wish to carry out. But
for population-genetic purposes, it will always be related to the number of sites that actually vary between samples. As a simple
proxy for this number, we therefore consider a measure of the average genetic distance between the dominant haplotype in a
given sample and the lineages in the remainder of our panel.

Specifically, we focus on fourfold-degenerate synonymous sites in the core genome. For each sample, let N< denote the number
of such sites with major allele frequencies less than f ∗, and conversely, let N> denote the number of sites with f̂ ≥ f ∗. For the
sites in the latter group, let f ` denote the corresponding allele frequency across the entire panel. Then the quantity

Nd =

L∑̀
=1

(1 − f `) (S3.9)

approximates the expected number of differences at these sites for an “average” individual drawn from the panel. A normalized
version (Nd/L) is illustrated for the B. vulgatus samples in Fig. S2. We declare the sample to be a confidently phaseable (CP)
sample if it passes the coverage thresholds in SI Section 1 and N</Nd < 0.1.

To see why this is a reasonable definition, we return to our error formula in Eq. (S3.8) and plug in conservative estimates for
p0(D, f ). For example, we expect that the number of truly polymorphic sites in the sample will also be of order ∼ Nd , with the
remaining sites having frequencies near the sequencing error threshold, f ∼ 1%. We then divide the remaining polymorphic
sites into the fraction N</Nd . 0.1 with major allele frequencies below f ∗, and the remaining fraction (∼ 100%) with major
allele frequencies above f ∗. If we make the conservative approximation that all of the sites in the latter group have minor allele
frequencies f ≈ 1 − f ∗, and all of the sites in the former group have f ≈ 50%, then we obtain an approximate prior distribution
for f :

p̂0( f ) ≈
N> − Nd

N> + N<
δ( f − 0.01) +

Nd

N> + N<
δ( f − 1 + f ∗) +

N<
N< + N>

δ( f − 0.5) . (S3.10)

If we make a similarly conservative approximation for the coverage distribution,

p̂(D) ≈ δ(D − 10) , (S3.11)

where δ is the Dirac function, then for a threshold of f ∗ = 80%, the realized false positive rate is

Nerr

Nd
≈

N> − Nd

Nd
Pr[ f̂ ≥ f ∗ |10, 0.01] + Pr[ f̂ >≥ f ∗ |10, 1 − f ∗] +

N<
Nd

Pr[ f̂ ≥ f ∗ |10, 0.5] . 0.01 . (S3.12)

Thus, with these thresholds, we expect that only a small fraction of informative sites (as defined by the average distance between
samples) will be susceptible to polarization errors.
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3.4. False positive rate for SNV differences

Although the CP sample classification is a good rule of thumb for determining when polarization errors are more or less likely
to happen, there are scenarios where we wish to measure genetic distances between samples (e.g. longitudinal samples from the
same individual) that are much more closely related than an average pair of individuals in our panel. In these cases, the realized
false positive rate can be much higher than the estimate in Eq. (S3.12). To obtain more accurate estimates of the error in these
cases, we extend our calculation above to the specific problem of detecting the number of nucleotide differences between two
samples.

Generalizing from the phasing problem above, we would conclude that the haplotypes in two samples share the same allele at
a given site if that allele is present above frequency f ∗ in both samples. To observe a difference between the two samples, the
allele would have to be present above frequency f ∗ in one sample and below 1 − f ∗ in another. If the allele lies between 1 − f ∗

and f ∗ in one of the samples, the site is treated as censored data. Under this definition, a nucleotide difference requires a change
in allele frequency of at least

∆ f = f ∗ − (1 − f ∗) = 2 f ∗ − 1 . (S3.13)

If we rewrite everything in terms of ∆ f , a nucleotide difference requires the allele frequency to lie below (1 − ∆ f )/2 in one
sample and above (1 + ∆ f )/2 in another (pink shaded regions in Fig. S1B). We will adopt the latter notation here, as it allows us
to easily consider more stringent thresholds for which ∆ f > 2 f ∗ − 1.
Under the null hypothesis, we assume that the true allele frequency f is the same in the two samples. If we let D1 and D2

denote the coverage of the site in the two samples, then a simple generalization of Eq. (S3.6) shows that the false positive rate for
a randomly chosen site is given by

Pr[error] =

∫ {
Pr[ f1 ≥ (1 + ∆ f )/2 |D1, f ]

(
1 − Pr[ f̂2 ≥ (1 − ∆ f )/2 |D2, f ]

)
+

+
(
1 − Pr[ f̂1 ≥ (1 − ∆ f )/2 |D1, f ]

)
Pr[ f2 ≥ (1 + ∆ f )/2 |D2, f ]

}
p0(D1,D2, f ) dD1dD2df ,

(S3.14)

where Pr[ f̂ ≥ f ] is defined in Eq. (S3.5) and p0(D1,D2, f ) is the prior distribution for D1, D2, and f at a random site. As in
Eq. (S3.7) above, we estimate this prior distribution as a product of empirical distributions,

p0(D1,D2, f ) ≈ p̂(D1)p̂(D2)p̂( f ) (S3.15)

which we estimate by binning the observed values of D1, D2, and f̂i across the genomes of the two samples (the blue distribution
in S1B). The expected number of false positive substitutions is then given by

Nerr = Pr[error] × L . (S3.16)

where L is the total number of sites compared between the two samples. This will vary depending on the application (e.g.
synonymous sites, sites in core genes, all coding sites, etc. are used at various times in the main text).

The error estimate in Eq. (S3.16) is an implicit function of the threshold ∆ f . Given the typical sequencing coverages and allele
frequency distributions of the CP samples in our analyses, we usually obtain sufficiently low error estimates (i.e., Nerr � 1) if we
take ∆ f = 1−2 f ∗ = 0.6, so that an allele transitions from less than 20% to greater than 80% frequency between the two samples,
or vice versa. However, for the few outlier sample pairs where Nerr > 0.5, we attempted to increase ∆ f until Nerr(∆ f ) ≤ 0.5. If
this was not possible, we discarded that pair of samples from further analysis.

3.5. False positive rate for gene content differences

The false positive rate for gene content differences can be estimated with a similar procedure. In this case, the canonical generative
model is one in which a gene g with average copy number per cell cg,i in sample i recruits Ng,i reads, which we assume follows
a Poisson distribution:

Ng,i ∼ Poisson
(
cg,iLgFi

)
, (S3.17)

where Lg is the length of gene g and Fi is a sample- and species-specific constant that reflects the total number of reads aligned
to that species (e.g., by the MIDAS pipeline). The coverage of gene g is then defined as

Dg,i =
Lr,i

Lg
· Ng,i ≡

Ng,i

`g,i
, (S3.18)
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where Lr,i is the average length of reads that align to that gene (typically . 100bp), which can vary in a sample-specific manner.
The quantity `g,i ≡ Lg/Lr,i then serves as a conversion factor between the raw number of reads and the coverage. Finally, we
assume (as in the MIDAS pipeline) that there is a known panel of marker genes (g = m) with fixed copy number per cell of
cm ≈ 1 and a large target size, such that Nm,i ≈ E[Nm,i] = LmFi . This allows us to eliminate Fi and rewrite Eq. (S3.17) in terms
of the marker coverage Dm,i and the coverage-to-read conversion factor `g,i:

Ng,i ∼ Poisson
(
cg,i`g,iDm,i

)
, (S3.19)

The variables Ng,i , Dg,i , and Dm,i are all reported by MIDAS, which allowed us to estimate cg,i and `g,i for each gene in each
sample:

cg,i =
Dg,i

Dm,i
, `g,i =

Lg

Lr,i
≈

Ng,i

Dg,i
. (S3.20)

Based on the above error rate calculations, the gene copy number change events we are interested in are those in which a gene
transitions from a “typical” copy number value (0.5 ≤ c ≤ 2, see Fig. S6) in one sample to a value close to zero (c < 0.05) in
another. This does not cover all possible copy number change events, but focuses on the subset that are likely to be (i) statistically
significant and (ii) less susceptible to other bioinformatic errors (e.g. read stealing or donating from other species).

Given this definition, the probability of an apparent copy number change happening by chance will again depend on the “true”
copy number of the gene, c, as well as its effective coverage, `D. Similar to Eq. (S3.14), the expected false positive rate for a
randomly chosen gene is given by

Pr[error] =

∫ {
FP(0.05`Dm,1`; c`Dm,1)

[
FP(2`Dm,2; c`Dm,2) − FP(0.5`Dm,2; c`Dm,2)

]
+

[
FP(2`Dm,1; c`Dm,1) − FP(0.5`Dm,1; c`Dm,1)

]
FP(0.05`Dm,2; c`Dm,2)

}
p0(`, c) d` dc ,

(S3.21)

where FP(k; λ) is the Poisson CDF and p0(`, c) is the null distribution of ` and c. Once again, we estimate this joint distribution
with the product of empirical distributions,

p0(`, c) ≈ p̂(`)p̂(c) , (S3.22)

which are estimated by binning the observed values of `g,i and cg,i across the two samples. To reduce mapping artifacts, we only
bin `-values from genes with copy number in the range 0.5 ≤ c ≤ 2, which accounts for the bulk of the copy number distribution
in a given sample (S6). The expected number of false positive gene changes is therefore given by

Nerr = Pr[error] × npangenome , (S3.23)

where npangenome is the total number of genes tested (typically of order ∼ 104). For the typical coverages in our dataset, this
number is usually very small (� 10−2). In the few cases where the coverage is sufficiently low that Nperr > 0.5, we discarded
the sample pair from consideration.

4. POPULATION STRUCTURE ACROSS HOSTS

In this section, we describe the methods used to analyze the population structure of a given species based on between-host
comparisons.

4.1. Top-level clades

For each species, we constructed core-genome dendrograms by hierarchically clustering the matrix of pairwise divergence rates
averaged across the core genome, using the UPGMA method from SciPy (82). Examples for B. vulgatus and B. stercoris are
illustrated in Fig. 2. Based on these dendrograms, lineages were assigned to one or more ”top-level” clades using a manual
procedure, loosely designed to maximize the difference between inter- and intra-clade divergence at the most deeply diverged
branches (Table S2). We adopted this manual procedure to capture clade structure that is inconsistent with a single ‘cut’ through
the dendrogram at a given level of divergence.

In Fig. S8A, we plot the fixation index, Fst for these manually defined clades:

Fst = 1 −

∑
clade,c

∑
i, j∈c di j∑

clade,c

∑
i, j∈c 1

∑
i, j 1∑
i, j di j

, (S4.1)

where c indexes the clades and di j is the average nucleotide divergence across core genes in hosts i and j. Several of the prevalent
species have top-level clades with high Fst (with B. vulgatus serving as one of the more extreme cases).
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4.2. Phylogenetic inconsistency

We quantify potential discrepancies between the core genome dendrograms in Figs. 2A,C and the genealogies of local genomic
regions by defining a measure of phylogenetic consistency based on the fraction of homoplasic SNVs (i.e., SNVs that appear
to conflict with the core genome dendrogram, see below). Our measure is conceptually similar to recent work by Bobay and
Ochamn (83).

For a given core-genome divergence threshold d, we obtain a set of non-overlapping clade groupings C(d) by cutting the
UPGMA dendrogram in Fig. 2 at distance d. Then, for each clade c ∈ C(d), we calculate the total number of core-genome sites
that are polymorphic within the clade (np

c ), as well as the subset that are also polymorphic among the remaining individuals in
the population (nic). We refer to the latter as phylogenetically inconsistent SNVs, since they are homoplasic at the given level of
the genealogy. The net measure of phylogenetic inconsistency in Figs. 2B,D is then defined as the fraction of phylogenetically
inconsistent SNVs across all the clades at the given level of divergence:

p(d) =

∑
c∈C(d) nic∑
c∈C(d) n

p
c

. (S4.2)

Note that according to this definition, the same site may be included in the denominator multiple times if it is polymorphic in
multiple clades. The same site can also be included for multiple divergence thresholds d.
In general, the overall magnitude of p(d) can be influenced by factors other than the underlying rate of homoplasy. In particular,

the probability of observing a phylogenetically inconsistent SNV will strongly depend on its allele frequency, as well as the
size distribution of the various clades. To interpret the observed values of p(d), we compared them to a null model of free
recombination that controls for these statistical biases. For each polymorphic site identified above, we generated a bootstrapped
version by permuting the observed alleles across the set of hosts, while requiring that the site remains polymorphic within the
clade of interest. This produces a bootstrapped dataset with the same values of np

c , but with a number of inconsistent sites ni,0c
that reflects the free recombination model. The overall level of phylogenetic inconsistency in this model is then defined as

p0(d) =

∑
c∈C(d) n

i,0
c∑

c∈C(d) n
p
c

, (S4.3)

and is included as a grey line in Figs. 2B,D.

4.3. Geographic structure

As described in the text, the between-host dendrogram for the Bacteroides vulgatus (Fig. 2A) does not appear to correlate strongly
with the geographic location of the hosts. This lies in contrast to some other bacterial species, e.g. Heliobacter pylori (84) which
possess more striking patterns of geographic differentiation. To investigate whether this pattern holds in other prevalent gut
species, we calculated the fixation index, Fst , between U.S. and Chinese samples using an analgous version of Eq. (S4.1) (with
clades replaced by countries). Figure S8 shows the observed Fst values for the set of species in Fig. 3. Apart from E. rectale and
E. eligens, these Fst values are relatively low (Fst < 0.1), consistent with previous comparisons between the U.S. and European
samples (33). To assess the significance of these Fst values, we compared them to a null model in which the country labels were
randomly permuted between the samples. This revealed 5 additional species with lower Fst values (i.e., < 0.1) with P-values
less than 0.05 (Fig. S8B).

The Fst statistic can suffer from low power when the two groups are not perfectly partitioned into clades, even if the clades still
preferentially harbor hosts from specific countries. To test for such residual geographic structure, we focused on the top-level
clades in Table S2. We then asked whether the country of origin was preferentially associated with certain clades. To quantify
this tendency, we calculated a likelihood ratio score,

∆` =
∑

clade,c
nU .S.c log

(
pc
p

)
+ nChina

c log

(
1 − pc
1 − p

)
, (S4.4)

where nU .S.c and nChina
c are the observed number of U.S. and Chinese samples in each clade, pc is the expected fraction of U.S.

samples in each clade, and p is the expected fraction of U.S. samples in the entire panel. Only clades with ≥ 2 samples are
included in the sum. To focus on the most biologically significant differences, we set

pc =

{
nU .S .
c

nU .S .
c +nChina

c
if

���log (
pc

1−pc

1−p
p

)��� ≥ 1,
p else.

(S4.5)
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To assess the significance of the observed likelihood ratio scores, we compared them to a null model in which the country labels
were randomly permuted between the samples (Fig. S8C). Once again, E. rectale and E. eligens are highly significant, but the
remaining species have much weaker signals.

Our analysis is not meant to imply that there is no geographic structure in the species we have considered, but rather that it does
not appear to be the main driver of the genome-wide patterns that we observe. There may be additional strongly differentiated
clades that were not sampled in our limited panel, or more pronounced geographic structure for genetic differences below our
detection threshold. In addition, there may also be strong signals of population structure among individual loci, even if they are
averaged out in the genome-wide distances that we consider. More sophisticated methods [e.g. F statistics (85) or programs like
STRUCTURE (86)] could be used to investigate this further. These are interesting avenues for future work.

5. POPULATION GENETIC NULL MODEL OF PURIFYING SELECTION FOR PAIRWISE DIVERGENCE ESTIMATES

In this section, we present a minimal model of purifying selection that can account for the varying dN/dS levels in Fig. 3D as a
function of dS . The basic idea is that purifying selection is less efficient at purging deleterious mutations that are very young (in
particular, younger than the inverse of the associated fitness cost). To the extent that synonymous divergence can be associated
with a characteristic timescale, this line of reasoning implies that anomalously low values of dS would be associated with less
efficient purifying selection (i.e., higher values of dN/dS), while typical values of dS would be associated with more efficient
purifying selection (i.e., lower values of dN/dS). Similar ideas have been employed in previous studies (87, 88).
To make this idea more concrete, suppose that the age of a given mutation is bounded by a time T , so that it occured at some

point in the last T generations. This will result in a genetic difference between two randomly sampled lineages with probability

d = E
[∫ T

0

2N(−t)µ f (0;−t)(1 − f (0;−t)) dt
]
, (S5.1)

where N(t) is the population size, f (t; t0) is the frequency of an allele that was created at time t0 and sampled at time t, and the
expectation is taken over all possible realizations of f (t, t0). If T is much smaller than the typical coalescence timescale of the
population, then the mutation cannot rise to a very high frequency by the time of sampling, and we can neglect the f 2 term above
to obtain

d ≈ 2µ

∫ T

0

E[N(−t) f (0,−t)] dt . (S5.2)

By definition, the new mutation will arise at frequency 1/N(−t). If the mutation has a deleterious fitness cost s, then its average
size is simply

E[N(−t) f (0,−t)] = e−st (S5.3)

and we have

d ≈ 2µT ·
1 − e−sT

sT
(S5.4)

If synonymous mutations are assumed to be neutral, we simply have E[dS] = 2µT as expected. If we assume that the
nonsynonymous sites have a distribution of deleterious fitness costs ρ(s), then the nonsynonymous divergence rate satisfies

dN

dS
≈

∫
1 − e−sT

sT
ρ(s) ds . (S5.5)

In the simplest case, ρ(s) will contain a mixture of truly neutral mutations and a fraction fd with deleterious fitness cost s, for
which

dN

dS
≈ (1 − fd) + fd ·

1 − e−sT

sT
. (S5.6)

In order to connect this model with the observed data, we must find a way to estimate T . We assume that for anomalously low
core-genome-wide divergence rates, the divergence time dS/2µ provides a reasonable estimate of the maximum mutation age
T at most polymorphic loci (otherwise, we would expect a more typical value of dS). Based on this assumption, we obtain an
empirical relation between dN/dS and dS:

dN

dS
≈ (1 − f ) + fd ·

1 − e−
sdS
2µ

sdS

2µ

, (S5.7)
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which is valid for dS much smaller than the population median. For small dS , this ratio will start to deviate from unity when
dS & 4µ/s f . At large dS , the ratio approaches 1− fd , and will start to deviate from this value when dS . 2µ fd/s(1− fd). These
landmarks allow us to obtain approximate estimates of fd and s by rough inspection of the data in Fig. 3D.
We note that qualitatively similar behavior is expected in recent models of bacterial evolution proposed by Dixit et al. (68),

in which the core genome of closely related strains consists of an asexual ”backbone” (where synonymous mutations occur at
rate µ) interrupted by highly diverged segments of length `r acquired through recombination. The introgressed segments would
enter with low values of dN/dS associated with the average dS value. If the common ancestor of the asexual backbone is younger
than the typical deleterious fitness cost, we would again expect a transition from essentially neutral behavior (dN/dS ≈ 1) to the
typical between-host value (dN/dS ≈ 0.1) as a function of dS , where the transition is now informative of the horizontal transfer
rate. A formal analysis of this model remains an interesting avenue for future work.

6. POPULATION GENETIC NULL MODEL FOR THE DECAY OF LINKAGE DISEQUILIBRIUM

In principle, the rate of decay of linkage disequilibrium in Fig. 4 contains information about the average recombination rate
between pairs of loci (14). For example, in a neutral panmictic population of size N , Ohta and Kimura (55) have shown that

σ2
d =

10 + 2NR
22 + 26NR + 4(NR)2

, (S6.1)

where R is the recombination rate between two loci. Similar functional forms are expected for related measures of linkage
disequilibrium (e.g. r2 (89)). To obtain a relation between the recombination rate R and the genomic distance ` between two loci,
we assume that recombination occurs through the exchange of DNA fragments of with average length `r , which are exponentially
distributed around this mean value and occur uniformly across the genome. Two loci undergo a recombination event when there
is a genetic exchange that involves only one of the two loci. This happens with probability

R(`) = r`r
(
1 − e−`/`r

)
, (S6.2)

where r is a rate constant. Thus, for distances much shorter than `r , this recombination model resembles a linear chromosome
with a crossover rate r per site. For larger distances, Eq. (S6.2) shows that the effective recombination rate saturates at r`r .
Substituting R(`) into Eq. (S6.1), the decay of linkage disequilibrium will have the characteristic shape

σ2
d ∼


5
11 if ` � 1

Nr ,
1

2Nr` if 1
Nr � ` � `r ,

1
2Nr`r

if ` � `r .
(S6.3)

To estimate σ2
d
(`) for a given species, we focused on lineages from the largest top-level clade defined in Table S2. Since

Fig. 3D suggests that evolutionary forces may be different for closely related strains, we chose only a single lineage from each
subclade defined by cutting the core genome tree at divergence d = 10−3. For pairs of SNVs in the same gene, we assigned a
coordinate distance ` based on their relative position on the reference genome. For a given value of `, we then estimated σ2

d
(`)

via

σ̂2
d (`) =

∑ �( fAB − fA fB)2∑ �fA(1 − fA) fB(1 − fB)
(S6.4)

where the sum runs over all pairs of synonymous sites with distances within the range (` − ∆`, ` + ∆`), as described in Fig. 4.
Here, fA = fAb + fAB, and fB = faB + fAB, where fAB, fAb , and faB denote the frequencies of the gametic combinations
in the across-host population. The hat symbols denote unbiased esimators for the respective quantities underneath, based on
the observed gamete counts nAB, nAb , naB, and nab in our sample of hosts. We assume that the counts are sampled from the
frequencies through the multinomial distribution,

Pr[®n| ®f ] =
n!

nAB!nAb!naB!nab!
f nAB

AB
f nAb

Ab
f naB

aB f nab

ab
, (S6.5)

where n = nAB + nAb + naB + nab is the total sample size. The estimate for the hat symbols above are constructed via linear
combinations of polynomials in the n’s chosen to have the same expected value as the quantity underneath the hat. These
expressions are somewhat unwieldy, but are provided in the associated computer code.
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After applying this method, we obtain estimates of within-gene σ2(`) as a function of `, and a core-genome-wide value
estimated from SNVs in different genes (Fig. 4), which can be compared with the theoretical prediction in Eq. (S6.3). Because
the core-genome-wide value of σ2

d
is usually much lower than its intragenic counterpart, we assume that `r is much larger than

the ∼ 3000bp intragenic window we consider, so we formally set `r = ∞. However, it is also clear from Fig. 4 that σ2
d
(`) does not

always approach the neutral expectation as ` → 0. As is common practice, we therefore consider an expanded class of models
of the form

σ2
d (`) = C ·

10 + 2Nr`
22 + 26Nr` + 4(Nr`)2

(S6.6)

for some arbitrary normalization constant C, which must be jointly estimated from the data. (The introduction of C is equivalent
to focusing on the percentage change in σ2

d
, rather than its absolute value.)

This model has two free parameters (Nr and C), which can be estimated from the observed values of σ2
d
at any two values of

`. We fix one of these at a reference location `1 = 9bp, which was chosen to balance the desire to have `1 � 1/Nr , but also to
be as large as possible to minimize contamination from compound mutation events. For the second value of σ2

d
(`), we focus on

distances of the form

`p = min

{
` :

σ2(`)

σ2(`1)
≤ p

}
(S6.7)

for some fraction p (e.g., p = 1/2, p = 1/4, etc.). In other words, `p is the distance at which the observed value of σ2(`) first
falls to a percentage p of its value at `1. According to the model in Eq. S6.6, these distances should satisfy

σ2
d
(`p)

σ2
d
(`1)
=

10 + 2Nr`p
22 + 26Nr`p + 4(Nr`p)2

·
22 + 26Nr`1 + 4(Nr`1)2

10 + 2Nr`1
= p (S6.8)

which depends only on Nr . Solving this function numerically, we obtain estimates for Nr for different values of p.
In the neutral model that leads to Eq. S6.1, the population size N can be estimated from the average pairwise divergence,

dS = 2Nµ. Thus, we normalize the estimated values of Nr by dS/2 to obtain an estimate of the ratio r/µ for different values of
p. As long as the model is a good description of the data, these estimates should be approximately independent of the choice of
p. The observed deviations in r/µ as a function of p (Fig. S9) point to fundamental deviations from the model in Eq. (S6.6) that
cannot be accounted for by simply varying the parameters. This suggests that the decay of σ2

d
(`)may hold power for investigating

departures from the simple neutral model above (e.g. to include hitchhiking, population structure, variation in recombination
rate within genes, etc.).

7. CLONAL AND LOCAL SWEEPS WITHIN HOSTS

In this section, we describe a preliminary search for clonal and local sweeps in the longitudinal cohort from the Human
Microbiome Project Consortium (44). The results in the main text suggest that recombination is important for initially acquiring
adaptive segments. The resulting selective sweep can then proceed in one of two ways. If recombination is rare, then the initial
recombinant could sweep in a clonal fashion, purging any variation along the rest of the genome. If recombination is sufficiently
common, then additional recombination events (either from the original donor strain, or within the focal population) could allow
the adaptive variant to spread to many genetic backgrounds and sweep only in a local genomic region .

In principle, we can distinguish between these scenarios by checking whether diversity is maintained at more distant genomic
loci during the sweep. However, the confidently phaseable samples we have focused on so far are poorly suited for this purpose,
since they were originally selected to have a low density of SNVs that start at intermediate frequencies within hosts. Instead,
we turned to the subset of non-confidently phaseable individuals in our panel that harbored a large number of intermediate
frequency polymorphisms at the initial timepoint (Fig. S5). These samples no longer conform to the null model used to derive
the false positive rate in SI Section 3.4, making it more difficult to distinguish true SNV changes from sampling noise. To guard
against false positives, we therefore focused only on individuals with at least one gene with ≥ 2 independent SNV changes. We
also required the independent SNV changes to be separated by more than 100bp, to ensure that they are supported by different
sequencing reads.

In the case of a clonal sweep, we would expect the allele frequencies on the rest of the genome to shift with the SNVs on
the focal gene. In a local sweep, the SNVs on the focal gene should sweep independently of most other intermediate-frequency
SNVs. Across our panel, we can find examples of both behaviors. For example, in Fig. S14A, a small number of alleles shifted
from low frequencies (< 20%) to ∼ 90%, which potentially dragged a large number of marker SNVs to the same final frequency,
a classic signature of a clonal sweep. In contrast, in Fig. S14B and C, SNVs in three genes swept and appear to have dragged
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the remaining SNVs in those gene to fixation in a manner similar to Fig. S14A. Yet the vast majority of genome-wide SNVs
remained at intermediate frequencies, which is suggestive of a local sweep.

However, it is important to note that there is a purely clonal process that can produce this pattern. For example, if the sample
begins as a mixture of two widely diverged strains (as it does in Fig. S14B and C), then large portions of the accessory genome
will be present in only one of the two strains. If there is a clonal sweep in one of these genes, which does not disturb the
coexistence between the two strains, then the sweeping allele will rise to 100% frequency in the reads that align to that gene.
Meanwhile, the diversity at genes that are shared between the two strains will remain relatively stable, giving the appearance of
a local sweep. Consistent with this hypothesis, the relative coverage of the two genes in Fig. S14B is on the lower end of the
core-genome-wide distribution (Fig. S14D). This is not the case for the gene in Fig. S14C, although the coverage is still an outlier
compared to the genome-wide distribution. Additional analysis of within-host haplotype patterns will therefore be required to
determine whether these are true examples of local sweeps.

8. FUNCTIONAL PARALLELISM IN GENE CONTENT VARIATION WITHIN HOSTS

To investigatewhether similar functional categories are enriched in gene content changeswithin hosts, we analyzed the annotations
of these genes based on the annotations provided by the PATRIC database (76). Specifically, for the set of genes in Fig. 6B, we
grouped the corresponding PATRIC annotation strings based on several manually-defined keywords (Table S3). For example,
all genes with the keyword ’Conjugative transposon protein’ were grouped into a single category labeled ’transposon’. If the
annotation string did not match any manually-defined category, a new category was created using the annotation string itself.
The number of observed within-host changes in each category is listed in Table S3.

Since different categories will vary in the number of genes that are assigned to them, we compared the observed number of
changes within category to the expected number of changes under three null models. We computed the expected number of
gene changes by sampling the same number of gene changes as observed, and averaged the resulting values over 100 bootstrap
iterations. The three null distributions we considered included: (1) Between-host gene differences, which allowed us to test
whether of gene changes within a host are different from genes changes between hosts. Genes that changed recurrently between
different pairs of hosts were counted multiple times in the null. (2) Genes present within hosts, which allowed us to test whether
gene changes within hosts are different from any random gene present at either time point. Genes present at more than one time
point were counted multiple times, while genes present at only 1 time point were counted once. (3) Pangenome, which allowed
us to test whether the within-host gene changes are enriched for any gene categories compared to the total distribution of gene
categories in the pangenome.

For recombination-related proteins, the categories of genes drawn from the between-host gene differences null distribution
was similar to the observed data, reflecting that gene changes between hosts are likely similar to gene changes within hosts. The
the categories of genes drawn from the pangenome also resembled the observed data, which is consistent with the pangenome
being enriched for more accessory genes than are present on average within a host.

9. POSTERIOR CONFIDENCE INTERVALS FOR PER-SITE RATE ESTIMATES

To obtain the approximate confidence intervals for the rates in Figs. 1E and S7, we used a standard Bayesian procedure based on
a poisson approximation. We outline this here for completeness.

If we let L denote the total number of sites examined and let n denote the number of “successes” (intermediate frequency
polymorphisms in the case of Fig. 1E and between host differences in Fig. S7), then we assume that n is drawn from a Poisson

n ∼ Poisson(rL) , (S9.9)

where r is the per site rate plotted in Figs. 1E and S7. Since r is a positive quantity that varies over many orders of magnitude, we
use a uniform prior over log r . After applying Bayes’ rule, this yields a standard conjugate Gamma posterior distribution for r:

p(r |n, L) =
Ln

(n − 1)!
rn−1e−rL . (S9.10)

whose posterior mean is just ∫
rp(r |n, L) dr =

n
L
, (S9.11)
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as expected. For all n > 0, we define a 1−α confidence interval to be the α/2 and 1−α/2 percentiles of this posterior distribution.
In the case where n = 0, the posterior distribution is improper:

p(r |0, L) ∝ r−1e−rL . (S9.12)

In this case, we define the lower limit of the confidence interval to be 0, and the upper limit to be the point where e−rL ∼ α/2.
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