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Abstract1

Perceptions, thoughts and actions unfold over millisecond timescales, while learned behaviors can require many2

days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high3

temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid4

single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor5

components analysis (TCA) can meet this challenge by extracting three interconnected low dimensional descriptions6

of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating7

perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-8

to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse9

datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze10

navigation, and multielectrode recordings of macaque motor cortex during brain machine interface learning.11

1 Introduction12

Two of the most challenging obstacles to understanding neural circuits are their diversity of dynamical timescales13

and the large number of neurons that contribute to their function. For instance, circuit dynamics mediating sen-14

sory perception, decision-making, attentional shifting, motor control, and higher cognition unfold over hundreds of15

milliseconds, while slower processes like motivation, long-term planning, and learning vary slowly, sometimes taking16

days or weeks to fully manifest [1–3]. Moreover, every execution of a behavior can involve the coordinated activity17

of extremely large neural populations, often distributed across multiple brain regions.18

Recent experimental advances enable us to monitor all aspects of this biological complexity by recording large19

numbers of neurons [4–7] at high temporal precision [8] over long durations [9–11]. The resulting datasets can contain20

thousands of neural activity traces collected over thousands of behavioral trials. The genesis of such complex, large21

scale datasets now present a major data-analytic challenge to the field of neuroscience. Namely, how can we develop22

general purpose algorithms to extract from such complex data, simple and interpretable descriptions of collective23

circuit dynamics that underly not only rapid sensory, motor and cognitive acts, but also describe slower signatures24

of long-term planning and learning? Moreover, how can these algorithms operate in an unsupervised manner, to25

enable the discovery of novel and unexpected cognitive states that can vary on a trial by trial basis?26
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Neuroscientists have often turned to unbiased dimensionality reduction methods to understand these complex27

datasets [12, 13]. However, commonly used methods focus on reducing the complexity of fast, within-trial firing rate28

dynamics instead of extracting interpretable slow, across-trial structure. A common approach is to average neural29

activity across trials [13–15], thereby precluding the possibility of understanding of how cognition and behavior30

change on a trial by trial basis. More recent methods, including Gaussian Process Factor Analysis (GPFA) [16] and31

latent dynamical system models [17, 18], identify low-dimensional firing rate trajectories within each trial, but do32

not reduce the dimensionality across trials by extracting analogous low-dimensional trajectories over trials. Other33

works have separately focused on trial-to-trial variability in neural responses [19–22], and long-term trends across34

many trials [1, 3, 23–26], but without an explicit focus on obtaining simple low-dimensional descriptions. Thus, while35

current experimental data can simultaneously capture neural dynamics underlying both fast cognitive processes as36

well as slower learning processes, we lack general-purpose methods for extracting unbiased descriptions of both fast37

cognition and slower learning.38

The most common and fundamental method for dimensionality reduction of neural data is Principal Components39

Analysis (PCA) [12, 13]. Here, we explore a simple extension of PCA that enables multi-timescale dimensionality40

reduction of neural dynamics both within trials and across trials. The key idea is to organize neural firing rates41

into a third-order tensor (i.e., a three-dimensional data table) with three axes corresponding to individual neurons42

(index 1), time within trial (index 2), and trial number (index 3). We then fit a tensor decomposition model43

(CANDECOMP/PARAFAC) [27, 28] to identify a set of low-dimensional components describing variability along44

each of these three axes. We refer to this procedure as Tensor Components Analysis (TCA).45

We demonstrate that TCA yields insightful descriptions of a variety of neural datasets. In particular, it enables us46

to move beyond trial averaging by simultaneously identifying separate low-dimensional features for rapid within-trial47

neural dynamics and slower across-trial neural dynamics. Furthermore, as described below, TCA possesses a set48

of favorable theoretical properties that translate into significant interpretational advantages when applied to neural49

data. In particular, the components returned by TCA are often unique [29], unlike PCA which requires a biologically50

unrealistic orthogonality constraint to yield unique components. Because of the uniqueness of TCA, it achieves a51

demixing of neural data in which individual components are often in one-to-one correspondence with biologically52

interpretable variables. For example, as we see below, in diverse datasets, individual components correspond to53

sensations, decisions, actions, rewards and performance.54

Below, after introducing the method, we show that TCA is equivalent to a form of multi-dimensional gain control55

and so can be interpreted as a generalization of a well-studied model of cortical function [30, 31]. We then give three56

examples of its utility. First, in an artificial neural circuit trained to solve the well-studied motion discrimination57

task [32], we show that TCA yields a simple one-dimensional description of the evolving connectivity and dynamics58

of the circuit during learning. Next, in a maze navigation task in rodents, we show that TCA can recover several59

aspects of trial structure and behavior, including perceptions, decisions, rewards, and errors, in an unsupervised,60

data-driven fashion. Finally, for a monkey operating a brain machine interface (BMI), we show that TCA extracts a61

simple view of motor learning when the BMI is altered to change the relationship between neural activity and motor62

action.63

Thus, this work introduces a simple and broadly applicable method for identifying interpretable structure in64

multi-trial neural data, thereby providing a way to attack two of the most challenging aspects of modern large-65

scale neural recordings: their multi-timescale nature, and their high dimensionality. While TCA is a general-purpose66

method [33], we provide specialized code and step-by-step instructions for applying TCA to neural data, and describe67

how to interpret the outcomes of TCA within the context of systems neuroscience.68
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2 Results69

2.1 Discovering multi-timescale structure through TCA70

Before describing TCA, we first review the application of PCA for analyzing large-scale recordings. Consider a71

recording of N neurons over K experimental trials. We assume neural activity is recorded at T timepoints within72

each trial, but trials of variable duration can be aligned or temporally warped to accommodate this constraint (see,73

e.g., [34]). This dataset is naturally represented as an N×T ×K array of firing rates, which is known in mathematics74

as a third-order tensor. Each element in this tensor, xntk, denotes the firing rate of neuron n at time t within trial75

k. Here, the index n ranges from 1 to N , t ranges from 1 to T , and k ranges from 1 to K.76

These datasets are very challenging to interpret in their raw format. Even nominally identical trials (e.g., neural77

responses elicited by repeats of an identical sensory stimulus) can exhibit significant trial-to-trial variability [22].78

Under the assumption that such variability is simply irrelevant noise, a common method to simplify the table is to79

average across trials, obtaining a two dimensional table, or matrix, x̄nt, which holds the trial-averaged neural firing80

rates for every neuron n and timepoint t (fig. 1a). Even such a matrix can be difficult to understand in large-scale81

experiments containing many neurons and rich temporal dynamics. PCA summarizes these data by performing a82

decomposition into R components such that83

x̄nt ≈
R∑

r=1

wr
nb

r
t . (1)

This decomposition projects the high-dimensional data (with N or T dimensions) into a low-dimensional space (with84

R dimensions). Each component, indexed by r, contains a coefficient across neurons, wr
n, and a coefficient across85

timepoints, brt . These terms can be collected into vectors: wr, of length N , which we call neuron factors (blue86

vectors in fig. 1), and br, of length T , which we call temporal factors (red vectors in fig. 1). The neuron factors87

can be thought of as an ensemble of cells that exhibit correlated firing. The temporal factors can be thought of as88

a trial-averaged dynamical activity pattern for each ensemble. Overall, this trial-averaged PCA procedure reduces89

the original N × T ×K datapoints into R(N + T ) values, yielding a compact, and often insightful summary of the90

trial-averaged data [12, 13].91

However, trial-averaging is motivated by the assumption that trial-to-trial variability is irrelevant noise, which is92

often at odds with our understanding of neural circuits and questions of experimental interest. For instance, even93

under repeated sensory stimuli, trial-to-trial variability may reflect fluctuations in interesting cognitive states, like94

attention or arousal [20, 21]. Also, under situations in which animals are learning a task, there will be systematic95

changes in neural dynamics over many trials, which would be rendered invisible by trial averaging. Intriguingly,96

as the field moves to study more complex tasks, we may find completely unexpected structured variability across97

trials, corresponding to different internal brain states on different trials. Ideally, we would like unbiased, data-driven98

methods to extract such dynamics simply by analyzing the data tensor.99

One approach to retain the variability across trials is to concatenate multiple trials rather than averaging, thereby100

transforming the data tensor into an N×TK matrix, and then applying PCA to this matrix (fig. 1b). This approach,101

which we call trial-concatenated PCA, is similar to Gaussian Process Factor Analysis (GPFA) [16], another specialized102

technique for neural data analysis. In trial-concatenated PCA, the R temporal factors are of length TK and do not103

enforce any commonality across trials. It therefore achieves a less significant reduction in the complexity of the data:104

the NTK numbers in the original data tensor are only reduced to R(N + TK) numbers, which can be cumbersome105

in experiments consisting of thousands of trials.106

Our proposal is to directly deal with neural data in its natural third-order tensor format by performing a di-107

mensionality reduction of this tensor (fig. 1c), rather than first converting it to a matrix. This tensor components108
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Fig 1. Tensor representation of trial-structured neural data. (a) Schematic of trial-averaged PCA for spiking data.
The raw data is represented as a sequence of N × T matrices (top). These matrices are averaged across trials to build a
matrix representation of neural firing rates. PCA approximates the trial-averaged matrix as a sum of outer products of
vectors (see eq. (1)). Each outer product contains a neuron factor (blue rectangles) and a temporal factor (red rectangles).
(b) Schematic of trial-concatenated PCA for spiking data. Raw data are temporally smoothed by a Gaussian filter to
estimate neural firing rates before concatenating all trials along the time axis. Applying PCA produces a separate set of
temporal factors for each trial (subsets of the red vectors). (c) Schematic of TCA. Raw data are smoothed and collected into
a third order tensor with dimensions N × T ×K. TCA approximates the data as a sum of outer products of three vectors,
producing a third set of low-dimensional factors (trial factors, green vectors) that describe how activity changes across trials.

analysis (TCA) method then yields the R-component decomposition [27, 28, 33]109

xntk ≈
R∑

r=1

wr
nb

r
ta

r
k . (2)

In analogy to PCA, we can think of wr as a prototypical firing rate pattern across neurons, and we can think of110

br as a temporal basis function across time within trials. These neuron factors and temporal factors constitute111

structure that is common across all trials. We call the third set of factors, ar, trial factors (green vectors in fig. 1),112

which are new to TCA and not present in PCA. The trial factors can be thought of as trial-specific amplitudes for113

the within-trial activity patterns identified by the neuron and temporal factors. Thus, in TCA, the trial-to-trial114

fluctuations in neural activity are also embeded in R-dimensional space. TCA achieves a dramatic reduction of the115

original data tensor, reducing NTK datapoints to R(N+T +K) values, while still capturing trial-to-trial variability.116

A subtle, but critical, difference between PCA and TCA is the uniqueness of the identified factors. In order to117

obtain unique factors, PCA constrains both the neuron and temporal factors to be orthogonal sets of vectors. This118

assumption is motivated by mathematical convenience rather than scientific principles. In real biological circuits,119

cell ensembles may overlap and temporal firing patterns may be correlated, producing non-orthogonal structure that120

is missed by PCA. In contrast, the TCA model often has a unique solution without further assumptions [29]. As we121

demonstrate below, TCA tends to extract non-orthogonal features of data that are more interpretable and meaningful122

than those extracted by PCA. In particular, we will see that TCA not only performs dimensionality reduction, but also123

demixing, by learning individual components that are in one-to-one correspondence with biologically interpretable124

variables.125
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2.2 TCA as a generalized cortical gain control model.126

Although TCA was originally developed as a statistical method [33], here we show that it concretely relates to a127

prominent theory of neural computation when applied to multi-trial datasets. In particular, performing TCA on128

neural data is equivalent to fitting a gain-modulated linear network model. In this network, N observed neurons129

(light gray circles, fig. 2a) are driven by a much smaller number of R unobserved, or latent, inputs (dark gray circles,130

fig. 2a) that have a fixed temporal profile but have varying amplitudes for each trial. The neuron factors of TCA,131

wr
n in eq. (2), correspond to the synaptic weights from each latent input r to each neuron n. The temporal factors132

of TCA, brt , correspond to basis functions or the activity of input r at time t. Finally, the trial factors of TCA, ark,133

correspond to amplitudes, or gain, of latent input r on trial k. Such trial-to-trial fluctuations in amplitude have been134

observed in a variety of sensory systems [22, 35–37], and are believed to be an important and ubiquitous feature135

of cortical circuits [30, 31]. Furthermore, plausible cellular mechanisms for gain modulation have been examined136

by a number of experimental and computational studies [38–41]. The TCA model can be viewed as a higher, R-137

dimensional generalization of such theories. By allowing an R-dimensional space of possible gain modulations to138

different temporal factors, TCA can capture a rich diversity of changing multi-neuronal activity patterns across139

trials.140

An important feature of TCA is that these network parameters can often be unambiguously identified from141

simulated data alone, due to the previously mentioned uniqueness property of TCA [29]. We confirmed this in a142

simple simulation with three latent inputs/components. In this example, the first component grows in amplitude143

across trials, the second component shrinks, and the third component grows and then shrinks in amplitude (fig. 2a).144

This model generates rich simulated population activity patterns across neurons, time, and trials as shown in (fig. 2b),145

where we have added Gaussian white noise to demonstrate the robustness of the method. When applied to noisy146

multi-neuronal traces, TCA with R = 3 components precisely extracted the network parameters (fig. 2c).147

In contrast, neither PCA nor independent components analysis (ICA) [42] can recover the network parameters,148

as demonstrated in fig. 2d and fig. 2e respectively. Unlike TCA, both PCA and ICA are fundamentally matrix, not149

tensor, decomposition methods. Therefore they cannot be applied directly to the data tensor, but instead must be150

applied to three different matrices obtained by tensor unfolding (fig. 2 supp. 1; [33]). In essence, the unfolding151

procedure generalizes the trial-concatenated representation of the data tensor (fig. 1b) to allow concatenation across152

neurons or timepoints. This unfolding destroys natural structure across neurons, time, and trials in the third-order153

data tensor, thereby precluding the possibility of finding the ground truth synaptic weights, temporal basis functions,154

and trial amplitudes that actually generated observed neural activity patterns.155

2.3 Choosing the number of components.156

A schematic view of the process of applying TCA to neural data is shown in fig. 2f (see Methods for more details). As157

in PCA and many other dimensionality reduction methods, a critical issue is the choice of the number of components,158

or dimensions R. We employ two methods to inform this choice. First, we inspect an error plot (fig. 2f, inset), which159

displays the model reconstruction error as a function of the number of componentsR. We normalize the reconstruction160

error to range between zero and one as described in section 4.5.1. This provides a metric analogous to the fraction161

of unexplained variance, which is used in PCA. As in PCA, a kink or leveling out in this plot indicates a point162

of diminishing returns for including more components. Unlike PCA, we run the optimization algorithm underlying163

TCA at each value of R multiple times from random initial conditions, and plot the normalized reconstruction error164

for all such models. Such repeated optimization runs enable us to check whether some runs converge to suboptimal165

solutions with high reconstruction error. As shown in (fig. 2f, inset), the error plot reveals that all runs at fixed166

R yield the same error, and moreover, the kink in the plot unambiguously reveals R = 3 as the true number of167

components in the generated data, in agreement with the ground truth.168

A second method to assess the number of components involves generating a similarity plot (fig. 2f, inset), which169
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Fig 2. TCA precisely recovers the parameters of a linear model network. (a) Schematic of model network. Three
input signals (dark gray) were delivered to a 1-layer, linear neural network with N = 50 neurons (light gray). Gaussian noise
was added to the output units. (b) Simulated activity of all neurons on example trials. (c) The factors identified by
3-component TCA precisely match the network parameters. (d-e) Applying PCA (in d) or ICA (in e) to each of the tensor
unfoldings does not recover the network parameters. (f) Analysis pipeline for TCA. (f, inset 1) Error plots showing
normalized reconstruction error (vertical axis) for TCA models with different numbers of components (horizontal axis). The
red line tracks the minimum error (i.e., best-fit model). Each black dot denotes a model fit from different initial parameters.
All models fit from different initializations had essentially identical performance. Reconstruction error did not improve after
more than 3 components were included. (f, inset 2) Similarity plot showing similarity score (eq. (12); vertical axis) for TCA
models with different numbers of components (horizontal axis). Similarity for each model (black dot) is computed with
respect to the best-fit model with the same number of components. The red line tracks the mean similarity as a function of
the number of components. Adding more than 3 components caused models to be less reliably identified.
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Fig 3. Unsupervised discovery of low-dimensional learning dynamics and mechanism in an model RNN. (a)
Model schematic. A noisy input signal is broadcast to a recurrent population of neurons with all-to-all connectivity (yellow
oval). On (+)-trials the input is net positive (black traces), while on (-)-trials the input is net negative (red traces). The
network is trained to output the sign of the input signal with a large magnitude. (b) Learning curve for the model, showing
the objective value on each trial over learning. (c) Scree plot showing the improvement in normalized reconstruction error as
more components are added to the model. (d) An example (+)-cell and (-)-cell before and after training on both trial types.
Black traces indicate (+)-trials, and red traces indicate (-)-trials. (e) Factors discovered by a one-component TCA applied
simulated neuron activity over training. The neuron factor identifies (+)-cells (black bars) and (-)-cells (red bars), which
have opposing correlations with the input signal. These two populations naturally exist in a randomly initialized network
(trial 0), but become separated after during training, as described by the trial factor. (f) The neuron factor identified by
TCA closely matches the principal eigenvector of the synaptic connectivity matrix post-learning. (g) The recurrent synaptic
connectivity matrix post-learning. Resorting the neurons by their order in the neuron factor in (e) uncovers competitive
connectivity between the (+)-cells and (-)-cells. (h) Simplified diagram of the learned mechanism for this network.

displays how sensitive the recovered factors are to the initialization of the optimization procedure underlying TCA.170

For each component, we compute the similarity of all fitted models to the model with lowest reconstruction error by171

a similarity score bounded between zero (orthogonal factors) and one (identical factors). See section 4.5.1 for more172

details. Adding more components to the model can produce lower similarity scores, which complicates exploratory173

analysis since multiple low-dimensional descriptions may be consistent with the data. Like the error plot, the174

similarity plot unambiguously reveals R = 3 as the correct number of components, as decompositions with R > 3 are175

less consistent with each other (fig. 2f, inset). Notably, all models with R = 3 converge to identical components (up176

to permutations and re-scalings of factors), suggesting that only a single low-dimensional description, corresponding177

to the ground truth network parameters, achieves minimal reconstruction error. TCA consistently identifies this178

solution across multiple optimization runs.179
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2.4 TCA elucidates learning dynamics, circuit connectivity and computational mech-180

anism in a nonlinear network181

While TCA corresponds to a linear gain-modulated network, it can nevertheless reveal insights into the operation182

of more complex nonlinear networks, analogous to how PCA, a linear dimensionality reduction technique, allows183

visualization of low-dimensional nonlinear neural trajectories [12, 13]. We examine the application of TCA to184

nonlinear recurrent neural networks (RNNs), a powerful class of models that can learn to approximate any dynamical185

system [43]. RNNs have achieved success both in machine learning applications [44] and in modeling neural dynamics186

and behavior [45–48]. However, such models are so complex that they are often viewed as “black boxes.” Statistical187

methods that shed light on the function of RNNs and other complex computational models are therefore of great188

interest [49, 50]. Notably, while previous studies have focused on reverse-engineering RNNs with static parameters189

[51], few works have attempted to characterize how computational mechanisms in RNNs emerge over the process of190

learning, or optimization, of network parameters. Here we show TCA can naturally yield such a characterization191

for an RNN that learns to solve a simple sensory discrimination task, analogous to the well-known random dots192

direction-discrimination task [32].193

Specifically, we trained an RNN with 50 neurons to estimate whether a noisy input signal had net positive or194

negative activity over a short time window, and indicate this estimate by exciting or inhibiting an output neuron195

(fig. 3a). We call trials with a net positive input (+)-trials and trials with a net negative input (-)-trials. The average196

amplitude of the input can be viewed as a proxy for the average motion energy of moving dots along a directional197

axis, with +/- corresponding to left/right, for example. The synaptic weights were updated by a simple gradient198

descent rule using backpropagation through time on a logistic loss function [52]. Within 750 trials the network199

performed the task with virtually 100% accuracy (fig. 3b).200

Remarkably, TCA needed only a single component to capture both the within-trial multi-neuronal circuit dynamics201

of decision making and the across-trial dynamics of learning. Adding more components led to negligible improvements202

in reconstruction error (fig. 3c). A single-component TCA model makes two strong predictions about this dataset.203

First, within all trials, the time course of evidence integration is shared across all neurons and is not substantially204

effected by training. Second, across trials, the amplitude of single cell responses are simply scaled by a common factor205

during learning. In essence, prior to learning, all cells have some small, random preference for one of the two input206

types, and learning corresponds to simply amplifying these initial tunings. We visually confirmed this prediction by207

examining single trial responses of individual cells. We observed two cell types within this model network: (+)-cells208

which were excited on (+)-trials and inhibited on (-)-trials (fig. 3d, left), and (-)-cells which were excited on (-)-trials209

and inhibited on (+)-trials (fig. 3d, right). The response amplitudes of both cell types magnified over learning, and210

typically the initial tuning (pale lines) aligned with the final tuning (dark lines). These trends are verified across the211

full population of cells in fig. 3 Supplement 1a-b.212

We then visualized the three factors of the single-component TCA model (fig. 3e). We sorted the cells by their213

weight in the neuron factor, and plotted this factor, w1, as a bar plot (fig. 3e; left). Neurons with a positive weight214

are precisely the (+)-cells (black bars) defined earlier, while neurons with a negative weight were (-)-cells (red bars).215

While it is conceptually helpful to discretely categorize cells, the neuron factor illustrates that the model cells actually216

fall along a continuous spectrum rather than two discrete groups. The temporal basis function extracted by TCA,217

b1, reveals a common dynamical pattern within all trials corresponding to integration to a bound (fig. 3e; middle),218

similar to the example cells shown in Figure 3d. Finally, the trial factor of TCA, a1, recovered two important aspects219

of the neural dynamics (fig. 3e; right). First, the trial amplitude is positive for (+)-trials (black points) and negative220

for (-)-trials (red points), thereby providing a direct readout of the input on each trial. Second, over the course221

of learning, these two trial types become more separated, reflecting stronger internal responses to the stimulus and222

a more confident prediction at the output neuron. Intriguingly, this analysis reveals that the process of learning223

simply involves monotonically amplifying small but random initial selectivity for the +/- stimulus into a strong final224
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selectivity.225

This analysis also sheds light on the synaptic connectivity and computational mechanism of the RNN. To perform226

the task, the network must integrate evidence for the sign of the noisy stimulus over time. Linear model networks227

achieve this when the synaptic weight matrix has a single eigenvalue equal to one, and the remaining eigenvalues close228

to zero [53]. The eigenvector associated with this eigenvalue corresponds to a pattern of activity across neurons along229

which the network integrates evidence. The nonlinear RNN converged to a similar solution where one eigenvalue230

of the connectivity matrix is close to one, and the remaining eigenvalues are smaller and correspond to random231

noise in the synaptic connections (fig. 3, supp. 1a). Although the TCA model was fit only to the activity of the232

network, the prototypical firing pattern extracted by TCA in (fig. 3e; left) closely matched the principal eigenvector233

of the network’s synaptic connectivity matrix (fig. 3f). Thus, TCA extracted an important aspect of the network’s234

connectome from the raw simulated activity.235

The neuron factor can also be used to better visualize and interpret the weight matrix itself. Since the original236

order of the neurons is arbitrary, the raw synaptic connectivity matrix appears to be unstructured noise (fig. 3g, left).237

However, re-sorting the neurons based on the neuron factor extracted by TCA, reveals a competitive connectivity238

between the (+)-cells and (-)-cells (fig. 3g, right). Specifically, neurons tend to send excitatory connections to cells239

in their same class, and inhibitory connections to cells of the opposite class. We also observed positive correlations240

between the neuron factor and the input and output synaptic weights of the network (fig. 3 supp. 1b-c). Taken241

together, these results provide a simple account of network function in which the input signal excites (+)-cells and242

inhibits (-)-cells on (+)-trials, and vice versa on (-)-trials. The two cell populations then compete for dominance in a243

winner-take-all fashion. Finally, the decision of the network is broadcast to the output cell by excitatory projections244

from the (+)-cells and inhibitory projections from the (-)-cells (fig. 3h).245

In summary, TCA extracts a simple one-dimensional description of the activity of all neurons over all trials246

in this nonlinear network. Moreover, each of the three factors extracted by TCA have a simple neurobiological247

interpretation: the neuron factor w1 reveals a continuum of neurons interpolating between two cell assemblies, the248

temporal factor b1 describes the dominant neural activity underlying decision making, namely integration to a bound,249

and the trial amplitudes a1 reflect the trial-by-trial decisions of the network, as well as the long term amplification250

of stimulus selectivity underlying learning. Finally, even though the low-dimensional TCA factors were found in an251

unsupervised fashion from the raw neural activity, they provide direct insights into the synaptic connectivity and252

emergent computational mechanism underlying the network’s ability to learn and decide.253

2.5 TCA compactly represents prefrontal activity during spatial navigation254

Given the demonstrated success of TCA on an artificial nonlinear network, we next examined the performance of TCA255

on large-scale neurobiological datasets. We first examined the activity of cortical cells in mice performing a spatial256

navigation task with variable reward contingencies. A miniature microendoscope [54] was used to record fluorescence257

in GCaMP6m-expressing excitatory neurons in the medial prefrontal cortex while mice navigated a four-armed maze.258

Mice began each trial in either the east or west arm and chose to visit either the north or south arm, at which point259

a water reward was either dispensed or witheld (fig. 4a-b). We examined a dataset from a mouse containing N = 282260

neurons recorded at T = 111 timepoints (at 10 Hz) on K = 600 behavioral trials, collected over a five day period.261

The rewarded navigational rules were switched periodically, prompting the mouse to explore different actions from262

each starting arm. Fluorescence traces for each neuron were shifted and scaled to range between zero and one in263

each session, and organized into a N × T ×K tensor.264

Neural firing in prefrontal cortical areas have previously been found to encode task variables, outcomes, value265

judgments, and cognitive strategies [25, 55–59]. We observed that many neurons selectively correlated with individual266

task variables on each trial: the initial arm of the maze (fig. 4c), the final arm (fig. 4d), and whether the mouse267

received a reward (fig. 4e). Notably, many of these neurons — particularly those with strong and robust coding268
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Fig 4. Reconstruction of single-cell activity during spatial navigation by unconstrained and nonnegative
TCA. (a) All four possible combinations of starting and ending position on a trial. (b) Color scheme for three binary task
variables (start location, end location, and reward). Each trial involves a sequential selection of these three variables. (c)
Median fluorescence of example neurons that encode the starting location. Dashed lines denote upper and lower quartiles of
the fluorescence. (d-e) Same as (d) but showing neurons that encode the ending location and the presence/absence of water
reward. (f) Scree plot showing normalized reconstruction error for unconstrained (blue) and nonnegative (red) TCA, and
the condition-averaged baseline model (black dashed line). Models were optimized from multiple initial parameters; each dot
corresponds to a different optimization run. (g) Median coefficient of determination (R2) for neurons as a function of the
number of model components for unconstrained TCA (blue), nonnegative TCA (red), and the condition-averaged baseline
(black). Dots show the median R2 and the extent of the lines shows the first and third quartiles of the distribution. (h)
Model similarity (section 4.5.1) as a function of model components for unconstrained (blue) and nonnegative (red) TCA.
Each dot shows the similarity of a single optimization run compared to the best-fit model within each category. (i) Sparsity
(proportion of zero elements) in the neuron factors of unconstrained (blue) and nonnegative decompositions. For each
decomposition type, only the best-fit model is shown. (j) Neuron dimensionality (section 4.5.2) plotted against variance in
activity. The size and color of the dots represent the R2 of a nonnegative decomposition with 15 components. (k) Normalized
reconstruction error plotted against number of free parameters for trial-averaged PCA, trial-concatenated PCA, and TCA.
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properties — varied most strongly in amplitude across trials, suggesting that low-dimensional gain modulation is269

a reasonable model for these data. A TCA model with 15 components accurately modeled the activity of these270

individual cells and recovered their coding properties (fig. 4c-e; middle column; R2 between 0.44 and 0.91).271

Since the fluorescence traces were normalized to be nonnegative, we also investigated the performance of non-272

negative TCA. This variant of TCA constrains the neuron, temporal, and trial factors to have nonnegative elements273

but is otherwise identical to standard TCA. Nonnegative TCA can produce more interpretable models, since the274

model is constrained to reconstruct the original data only through adding, but not subtracting, components, similar275

to nonnegative matrix factorization [60]. Despite this additional constraint, nonnegative TCA with 15 components276

reconstructed the activity of individual neurons with similar fidelity to an unconstrained TCA model (fig. 4c-e; right277

column; R2 between 0.42 and 0.89).278

We then characterized the performance of TCA and nonnegative TCA across the full population of neurons. We279

compared both methods to a condition-average baseline model, which predicts the neural activity on each trial to be280

the trial-average population activity conditioned on the same trial trajectory (same starting arm and ending arm)281

and trial outcome (reward vs. error). That is, we computed the mean activity within each of the eight possible282

combinations of trial conditions, decisions, and outcomes, as used this to predict single-trial data. In essence, this283

baseline captures the average effect of all task variables, but does not account for trial-to-trial variability within each284

combination of task variables.285

An error plot for unconstrained and nonnegative TCA showed three important findings (fig. 4f). First, nonnegative286

TCA had similar predictive performance to unconstrained TCA in terms of reconstruction error across all numbers287

of latent components (small gap between red and blue lines, fig. 4f). Second, both forms of TCA converged to288

very similar reconstruction error from twenty different random initializations, suggesting that the models did not289

get caught in highly suboptimal local minima during optimization (all blue points and all red points reached similar290

error, fig. 4f). Third, TCA models with more than 6 components matched or surpassed the condition-average baseline291

model, suggesting that relatively few components were needed to explain a substantial fraction of explainable variance292

in the dataset (dashed black line, fig. 4f). We also examined the performance of nonnegative and unconstrained TCA293

in terms of the R2 of individual neurons. Again, nonnegative TCA performed similarly to unconstrained TCA as294

judged by the median and upper/lower quartiles of the single neuron R2, and both models surpassed the simple295

condition-average baseline if they included more than 7 components (fig. 4g).296

In addition to achieving similar accuracy to unconstrained TCA, nonnegative TCA possesses two important297

advantages. First, a similarity plot showed that nonnegative models converged more consistently to a similar set of298

low-dimensional components (fig. 4h). Second, the components recovered by nonnegative TCA were more sparse,299

meaning that each neuron’s activity across all trials was reconstructed by a smaller and more interpretable subset of300

components (fig. 4i).301

While TCA could reconstruct the activity of many neurons very well (fig. 4c-e), other neurons were more difficult302

to fit (fig. 4, supp. 1). However, we observed that neurons with low R2 had firing patterns that were unreliably303

timed across trials and did not correlate with task variables (fig. 4, supp. 1b). To visualize this, we plotted the304

total variance and the dimensionality of each cell’s activity against the fit of a nonnegative TCA model with 15305

components (fig. 4j). The dimensionality of each cell’s activity (see Methods, section 4.5.2) measures the trial-to-trial306

reliability of a cell’s firing: cells that fire consistently at the same time in each trial will be low-dimensional relative307

to cells that fire at different time points in each trial. First, this plot shows a negative correlation between variance308

and dimensionality: cells with higher variance (larger dynamic ranges in fluorescence) tended to be lower dimensional309

and thus more reliably timed across trials. Second, this plot shows these low-dimensional cells were well fit by TCA,310

suggesting that TCA summarizes the information encoded most reliably and strongly by this neural population.311

Moreover, outlier cells that defy a simple statistical characterization can be algorithmically identified and flagged for312

secondary analysis by sorting neurons by their R2 score under TCA.313

TCA’s performance in summarizing neural population activity with very few parameters far exceeds that of trial-314
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Fig 5. Nonnegative TCA of prefrontal cortical activity during spatial navigation. Eight low-dimensional
components, each containing a neuron factor (left column), temporal factor (middle column), and trial factor (right column)
are shown from a 15-component model (see fig. 5, supp. 1 for the remaining seven components). For each component, the
trial factor is color-coded by the task variable it is most highly correlated with.

averaged PCA, which has sub-par performance, and trial-concatenated PCA, which requires many more parameters315

to achieve similar performance. This comparison is summarized in Figure 4k, which plots reconstruction error against316

the number of free parameters over 1 to 20 low-dimensional components for each class of models. Trial-averaged PCA317

(fig. 4k, gray line) has fewer parameters than TCA, but cannot account for trial-to-trial changes in activity, cannot318

achieve much lower than 60% error, and by construction entirely misses trial-to-trial fluctuations in neural firing that319

encode task variables. In contrast, trial-concatenated PCA (fig. 4k, black line) achieved comparable reconstruction320

error to TCA but required roughly 100x more free parameters, and is therefore much less interpretable. A TCA321

model with 15 components reduces the complexity of the data by 3 orders of magnitude, from ∼107 datapoints to322

∼104 parameters; whereas a trial-concatenated PCA model with a comparable number of components only reduces323

the number of parameters to ∼106.324

2.6 Individual TCA components selectively correlate with individual task variables325

These results demonstrate that TCA accurately describes the firing rates of single cells in a highly compact manner.326

We then examined whether this model identified an interpretable set of low-dimensional components. Figure 5327

shows eight components from a 15-component nonnegative TCA model (the remaining seven factors carry similar328

information and are shown in fig. 5, supp. 1). Each nonnegative TCA component identified a sub-population, or329

assembly of cells (neuron factor; left column) with a common intra-trial temporal dynamics (temporal factor; middle330

column) that was differentially activated across trials (trial factor; right column).331

In contrast, PCA identified factors that contained complex mixtures of coding for the mouse’s position, choice,332
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and reward on each trial (fig. 5, supp. 2), hampering interpretability [34]. TCA on the other hand, isolated each of333

these task variables into separate components: each trial factor selectively correlated with a single task variable, as334

indicated by the color-coded scatterplots in fig. 5. Overall, the TCA model uncovers, in a completely unsupervised335

manner, a compelling qualitative view of prefrontal dynamics in which largely distinct subsets of neurons (fig. 5, left336

columns) are active at successive times within a trial (fig. 5 middle column) and whose variation across trials (fig. 5337

right column) encodes a highly interpretable single task variable.338

Specifically, components 1-2 uncover neurons that encode the starting location (component 1, east trials; com-339

ponent 2, west trials), components 5-6 encode the destination arm (component 5, north trials; component 6, south340

trials), and components 7-8 encode the trial outcome (component 7, rewarded trials; component 8, error trials). In-341

terestingly, the temporal factors indicate that these components are sequentially activated in each trial: components342

1-2 activated before components 5-6, which in turn activated before components 7-8, in agreement with the schematic343

flow diagram shown in fig. 4b.344

Intriguingly, TCA also uncovers unexpected components, like components 3-4 which activate prior to the des-345

tination and outcome-related components (i.e., components 5-8). Component 4 displays systematic reductions in346

activity across trials within each day, while component 3 is active on nearly every single trial. Component 4 could347

potentially correspond, for example, to a novelty or arousal signal that wanes over trials within a day. While further348

experiments will be required to ascertain whether this interpretation is correct, the extraction of these components349

illustrates the potential power of TCA as an unbiased exploratory data analysis technique to extract unobserved350

cognitive states and separate them from observable aspects of trial-to-trial variations in behavior.351

It is important to emphasize that TCA is an unsupervised method that only has access to the neural data tensor,352

and does not receive any information about task variables like starting location, ending location, and reward. There-353

fore, the correspondence between TCA trial factors and behavioral information demonstrated in fig. 5, constitutes an354

unbiased revelation of task structure directly from neural data. Moreover, individual components extracted by TCA355

are in one-to-one correspondence with meaningful aspects of task structure and behavior, a property not shared by356

many other dimensionality reduction algorithms.357

2.7 TCA reveals two-dimensional learning dynamics in macaque motor cortex after358

a BMI perturbation359

In the previous section we validated TCA on a dataset where the animal’s behavior decomposed into a set of discrete360

experimental conditions, choices, and trial outcomes. We next applied this method to a brain-machine interface361

(BMI) learning task, in which the behavior on each trial was quantified by a continuous path of a computer cursor.362

The cursor movement on each trial is never identical and is difficult to summarize concisely in a principled manner.363

In these more unstructured scenarios, supervised methods such as classification and regression can be difficult to364

construct, making unsupervised dimensionality reduction methods an important tool to explore hypotheses and let365

the low-dimensional structure of the data “speak for itself.”366

Specifically, we collected multi-unit data from the pre-motor and primary motor cortices of a Rhesus macaque367

(Macaca mulatta) controlling a computer cursor in a 2D plane through a brain-machine interface (fig. 6a). Spikes368

were recorded when the voltage signal crossed below -4.5 times the root-mean-square voltage. The monkey was369

trained to make point-to-point reaches from a central position to one of eight radial targets. For simplicity, we370

initially investigated neural activity during 45° outward reaches. The cursor velocity was controlled by a velocity371

Kalman filter decoder, which was driven by non-sorted multi-unit activity (-4.5 root-mean-square threshold crossings)372

and fit using relations between neural activity and reaches by the monkey’s contralateral arm at the beginning of373

the experiment [61]. We analyzed multi-unit activity during subsequent reaches, which used this decoder as a BMI374

interface directly from neural activity to cursor motion. These initial reaches were accurate (fig. 6b, left) and took375

less than one second to execute (fig. 6c, first 30 trials).376
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Fig 6. TCA reveals two-dimensional learning dynamics in primate motor cortex during BMI cursor control.
(a) Schematic of monkey making center-out, point-to-point reaches in BMI task. (b) Cursor trajectories to a 45° target
position. Twenty trials are shown at three stages of the behavioral session showing initial performance (left), performance
immediately after a 30° counterclockwise visuomotor perturbation (middle), and performance after learning, at the end of
the behavioral session. Cyan and magenta points respectively denote the cursor position at the beginning and end of the
trial. (c) Time for the cursor to reach target for each trial in seconds. The visuomotor perturbation was introduced after 31
trials (red line). (d) An optimal 3-component nonnegative TCA on smoothed multi-unit spike trains recorded from motor
cortex during virtual reaches reveals two components (2-3) that capture learning after the BMI perturbation.

We then perturbed the BMI decoder by rotating the output cursor velocities counterclockwise by 30° (a visuomotor377

rotation). Thus, the same neural activity pattern that originally caused a motion of the cursor towards the 45°378

direction, now caused a maladaptive motion in the 75° direction, yielding an immediate drop in performance: the379

cursor trajectories were biased in the counterclockwise direction (fig. 6b, middle), and took longer to reach the target380

(fig. 6c, trials following perturbation). These deficits were partially recovered within a single training session as the381

monkey adapted to the new decoder. By the end of the session, the monkey made more direct cursor movements382

(fig. 6b, right) and achieved the target more quickly (fig. 6c).383

We applied TCA and nonnegative TCA to the raw spike trains smoothed with a Gaussian filter with a standard384

devation of 50 ms [34]. We again found that nonnegative TCA fit the data with similar reconstruction error and higher385

reliability than unconstrained TCA (fig. 6 supp. 1). To examine a simple account of learning dynamics, we examined386

a nonnegative TCA model with 3 components. Models with fewer than 3 components had substantially worse387

reconstruction error, while models with more components had only moderately better performance and occasionally388

converged to dissimilar parameters during optimization (fig. 6 supp. 1).389

The neuron, temporal, and trial factors of the nonnegative TCA model are shown in Figure 6d. Component390

1 (red) described multi-units that were active at the beginning of each trial, and were consistently active over all391

trials. The other two components described multi-units that were inactive before the BMI perturbation, and became392

active only after the perturbation, thereby capturing motor learning. Component 2 (blue) became active on trials393

immediately after the BMI perturbation, but then slowly decayed over successive trials. Within a single trial, this394

component was only active at late stages in the reach. Component 3 (green) on the other-hand was not active395

on trials immediately following the BMI perturbation, but did activate slowly across successive trials. Within a396

single trial, this component was active earlier in the reach. These results suggest a mode of motor learning in which397

a suboptimal, late reaching-stage correction is initially used to perform the task (component 2). Over time, this398
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component is slowly traded for a more optimal early reaching-stage correction (component 3). Interestingly, motor399

learning did not involve extinguishing neural dynamics present before the perturbation (component 1), even though400

this component is maladaptive after the perturbation.401

We were able to confirm this intuition by relating each of these components to a different phase of motor execution402

and learning. Figure 7a plots cursor trajectories on individual reaches before the perturbation (left), immediately403

following the perturbation (middle), and at the end of the behavioral session (right). Every 50ms the trajectory was404

colored based on the component with the largest activation at that timepoint and trial. Prior to the perturbation,405

component 1 (red) dominated; the other two components were nearly inactive since their TCA trial factor amplitudes406

were near zero before the perturbation (see fig. 6d). Immediately following the perturbation, component 1 still407

dominated in the early phase of each trial, producing a counterclockwise off-target trajectory. However, component408

2 dominated the second half of each trial at which point the monkey performed a “corrective” horizontal movement409

to compensate for the initial error. Finally, near the end of the training session, component 3 was most active410

at many stages of the reach. Typically, the cursor moved directly towards the 45° target when component 3 was411

active, suggesting that component 3 captured learned neural dynamics that were correctly adapted to the perturbed412

visuomotor environment.413

Based on these observations, we called the component active at the beginning of each trial the early component414

(#1 in fig. 6), the component active at the end of each trial the corrective component (#2 in fig. 6), and the415

component active in the middle of each trial the learned component (#3 in fig. 6). These components are colored416

red, blue, and green respectively in both Figure 6 and Figure 7. We then fit 3-component TCA models separately417

to each of the eight reach angles, and operationally defined the components as early, corrective, and learned based418

on the peak magnitude of their associated within-trial temporal basis functions (fig. 7b). This very simple definition419

yielded similar interpretations for low-dimensional components separately fit across different reach angles.420

Similar to computing a directional tuning curve for an individual neuron [62], we examined the preferred cursor421

angles of each low-dimensional component by computing the average cursor velocity weighted by activity of the422

component (see Methods, section 4.4.7). To compare across all target reach angles, we rotated the preferred angles423

so that the target was situated at 0° (black line, fig. 7c). All preferred angles were computed on post-perturbation424

trials. When the early component was active, the cursor typically moved at an angle counterclockwise to the target425

(p < 0.05, one sample test for the mean angle), reflecting our previous observation that the early component encodes426

pre-perturbation dynamics that are maladaptive post-perturbation (fig. 7c, left). When the corrective component was427

active, the cursor typically moved at an angle clockwise to the target (p < 0.01, one sample test for the mean angle),428

reflecting a late-trial compensation for the error introduced by the early component (fig. 7c, middle). Finally, the429

learned component was not significantly different from the target angle, reflecting a tuning that was better adapted430

for the perturbed visuomotor environment.431

Having established a within-trial interpretation for each component, we next examined across-trial learning dy-432

namics. For visualization purposes, we gently smoothed all TCA trial factors by a Gaussian filter with a standard433

deviation of 1.5 trials. Across all reach angles, the early component was typically flat and insensitive to the visuomo-434

tor perturbation (fig. 7d, left). In contrast, the learned component activated soon after the perturbation was applied,435

although the rapidness of this onset varied across reach angles (fig. 7d, right). Together, this reinforces our earlier436

observation that adaptation to the visuomotor rotation typically involves the production of new neural dynamics437

(captured by the learned component), rather than the suppression of maladaptive dynamics (captured by the early438

component).439

Finally, the corrective component was consistently correlated with the animal’s behavioral performance on all reach440

angles (p < 0.05, Spearman’s rho test). Since performance differed across reach angles, we separately plotted the441

corrective component (blue) against the time to acquire the target (black) for each reach angle (fig. 7e). Remarkably,442

in many cases, the corrective component provided an accurate trial-by-trial prediction of the reach duration, meaning443

that trials with a large corrective movement took longer to execute.444
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Fig 7. TCA tracks performance and uncovers “corrective” dynamics in BMI adaptation task. (a) Cursor
trajectories for 45° cursor reaches. Every 50 ms, the trajectory is colored by the TCA component with the strongest
activation at that timepoint and trial. Components were colored according to the definition in panel (b). Three example
trajectories are shown at three stages of the experiment: reaches before the visuomotor perturbation (left), reaches
immediately following the perturbation (middle), and reaches at the end of the behavioral session. (b) Average
low-dimensional temporal factors identified by nonnegative TCA across all eight reach angles. The early component had the
earliest active temporal factor (red). The corrective component had the last active temporal factor (blue). The learned
component was the second active temporal factor (green). Solid and dashed lines denote mean +/- standard deviation. (c)
Preferred cursor angles for each component type after the visuomotor perturbation. All data were rotated so that the target
reach angle was at 0° (solid black line). Dashed black lines denote +/- 30° for reference, which was the magnitude of the
visuomotor perturbation. On average, the early component was associated with a cursor angle misaligned counterclockwise
from the target (red). The corrective component preferred angle was aligned clockwise from the target (blue) by about 30°,
in a way that could compensate for the 30° counterclockwise misalignment of the early component. The learned component
preferred angle not significantly different from that of the actual target. (d) Smoothed trial factors for the early component
and learned component. Colored lines denote averages across all reach angles; gray lines denote the factors for each of the
eight reach conditions. Factors were smoothed with a Gaussian filter with 1.5 standard deviation for visualization purposes.
(e) Smoothed trial factor for the corrective component (blue) and smoothed behavioral performance (black) quantified by
seconds to reach target. Each subplot shows data for a different reach angle. All signals were smoothed with a Gaussian
filter with 1.5 standard deviation for visualization.
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Together, these results demonstrate that TCA can identify, in a purely unsupervised manner, both learning445

dynamics across trials and single trial neural dynamics. Indeed, each trial factor can be related to within-trial behav-446

iors, such as error-prone cursor movements and their subsequent correction. Furthermore, these basic interpretations447

largely replicate across all eight reach angles, despite differences in the learning rate within each of these conditions.448

Most intriguingly, a single trial factor, extracted only from neural data, can directly predict execution time on a trial449

by trial basis, without ever having direct access to this aspect of behavior (fig. 7e).450

3 Discussion451

Recent experimental technologies enable us to record from more neurons, at higher temporal precision, and for452

much longer time periods than ever before [4, 8, 11], thereby simultaneously increasing the size and complexity of453

datasets along three distinct modes. However, methods for multi-timescale dimensionality reduction that describe454

both rapid neural dynamics within trials and long-term changes in neural dynamics across-trials are still lacking. As455

a result, experimental investigations of neural circuits are often confined to a single timescale, even though bridging456

our understanding across multiple timescales is of great interest [9]. Here we demonstrated a unified approach,457

TCA, that simultaneously recovers low-dimensional and interpretable structure across neurons, time within trials,458

and trials.459

TCA and other tensor decomposition techniques have been extensively studied from a theoretical perspective460

[29, 63–65], and have been applied to a variety of biomedical problems [66–68]. Several studies have applied tensor461

decompositions to EEG and fMRI data, most typically to model differences across subjects or Fourier/wavelet462

transformed signals [69–72], rather than across trials [73]. A recent study examined trial-averaged neural data across463

multiple neurons, conditions, and time within trials as a tensor, but they did not study trial-to-trial variability, and464

only examined different unfoldings of the data tensor into matrices, rather than applying TCA directly to the data465

tensor [74]. Other studies have modeled the receptive fields of neurons in auditory and visual cortex as third-order466

tensors with low-rank structure [75, 76]. We go beyond these previous studies by applying TCA to a broader class467

of artificial and experimental datasets, drawing a novel connection between TCA and theories of gain modulation,468

and demonstrating that visualization and analysis of the TCA trial factors can directly yield functional clustering of469

neural populations (i.e., cell assemblies) as well reveal learning dynamics on trial-by-trial basis.470

In particular, we demonstrated that TCA reveals a simple description of learning in an artificial nonlinear neural471

network trained to solve the analog of a motion discrimination task [32]. TCA discovered a one-dimensional learning472

process in which initial, small random selectivity is monotonically amplified over time to yield the final learned473

decision making dynamics. Moreover, cell-type information extracted by TCA in an unsupervised manner enabled474

us to re-organize the network’s connectome, thereby yielding conceptual insights into how this connectome gives rise475

to mechanisms for decision making. Also, in calcium imaging data recorded from rodent pre-frontal cortex during a476

maze navigation task, TCA uncovered functional subsets of neurons that fired sequentially within trials, and whose477

amplitude on each trial selectively mapped onto task-relevant variables, including starting location, ending location478

and reward (in that order).479

Finally, in electrophysiological recordings from macaque motor and premotor cortex, TCA revealed a simple480

two-dimensional learning process in response to a BMI perturbation. Interestingly, this learning process did not481

involve extinguishing maladaptive dynamics that were established in the pre-perturbation period (i.e., the “early482

component” identified by TCA). Rather, it involved the addition of two components that compensated for the483

maladaptive dynamics. The first “corrective” component was a suboptimal, late stage within-trial correction that484

was active in trials soon after the perturbation, which extinguished over trials to give rise to a second “learned”485

component that implemented a more optimal early stage within-trial correction. Moreover, the late stage correction486

could predict time to target acquisition on a trial-by-trial basis. Importantly, all of these results were discovered487
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purely from the neural data and not behavioral measurements, suggesting that TCA can uncover unexpected and488

otherwise unobservable neural dynamics in a data-driven, unsupervised manner.489

In addition to the empirical success of TCA in diverse scenarios presented here, there are three other reasons490

we expect TCA to have widespread utility in neuroscience. First, TCA is arguably the simplest generalization of491

PCA that can handle trial-to-trial variability. Given the widespread adoption of PCA, we believe that TCA may492

also enjoy widespread adoption and success, especially as technologies enabling long-term and large-scale recordings493

become more accessible. Second, as we have shown, TCA has an intriguing interpretation as a network model with494

low-dimensional gain-modulated inputs. This model is supported by experimental evidence in many contexts [22,495

37, 76–78], and underlies influential theories of cortical computation [30, 31] and perceptual learning [79].496

Third, while TCA is a simple generalization of PCA, its theoretical properties are strikingly more favorable. A497

fundamental limitation of PCA is that the components it recovers are restricted to be orthogonal to each other,498

and moreover these components can be rotated amongst each other without changing the reconstruction error. This499

invariance to rotations in PCA leads to a fundamental ambiguity, and so the factors identified by PCA are unlikely500

to be directly interpretable as biological signals (see Methods, section 4.4.2). In contrast, the factors identified by501

TCA are not invariant to many transformations [29], yielding more interpretable results. This advantage was first502

demonstrated in fig. 2 where the factors recovered from neural firing rates, matched the underlying parameters of the503

model neural network in a one-to-one fashion. Similarly, in the rodent prefrontal analysis, TCA uncovers demixed504

factors that individually correlate with interpretable task variables, whereas PCA does not (compare fig. 5 to fig. 5505

supp. 1). And finally, when applied to neural activity during BMI learning, TCA consistently found, across multiple506

reach angles, a “corrective factor” that significantly correlated with behavioral performance on a trial-by-trial basis507

(fig. 7).508

In this paper, we examined the simplest form of TCA by making no assumptions about the temporal dynamics509

of neural activity within trials or the dynamics of learning across trials. As a result, we obtain extreme flexibility:510

for example, trial factors could be discretely activated or inactivated on each trial (fig. 5), or they might emerge511

incrementally over longer timescales (fig. 6). However, future work could augment TCA with additional structure512

and assumptions, such as a smoothness penalty or dynamical systems structure within trials [16]. Intriguingly, a513

dynamical system could just as easily be incorporated along the trials axis of the data tensor to potentially relate514

high-dimensional neural activity to low-dimensional models of learning [80].515

Further work in this direction could connect TCA to a large body of work on fitting latent dynamical systems516

to reproduce within-trial firing patterns. In particular, single trial neural activity has been modeled with linear517

dynamics [81–84], switched linear dynamics [85, 86], linear dynamics with nonlinear observations [17], and nonlinear518

dynamics [18, 87]. In practice, these methods require many modeling choices, validation procedures, and post-hoc519

analyses. Simple linear models have a relatively constrained dynamical repertoire [12], while models with nonlinear520

elements often have greater predictive abilities [17, 18], but at the expense of interpretability. In all cases, the learned521

representation of each trial (e.g., the initial condition to a nonlinear dynamical system) is not transparently related522

to single trial data. In contrast, the trial factors identified by TCA have an extremely simple interpretation as523

introducing trial-specific linear gain modulation. Overall, we view TCA as a simple and complementary technique524

to identifying a full dynamical model, as has been previously suggested for PCA [12].525

An important property of TCA is that it extracts salient features of a dataset in a data-driven, unbiased fashion.526

Such unsupervised methods are a critical counterpart to supervised methods, such as regression, which can directly527

assess whether a dependent variable of interest is represented in population activity. Recently developed methods like528

demixed PCA [34] combine regression with dimensionality reduction to isolate linear subspaces that selectively code529

for variables of interest. Again, we view TCA as a complementary approach, with at least three points of difference.530

First, like trial-concatenated PCA and GPFA, demixed PCA only reduces dimensionality within trials by identifying531

a different low-dimensional temporal trajectory for each trial. In contrast, TCA identifies a common low-dimensional532

temporal trajectory (temporal factors) for all trials, which are modulated by different amplitudes (trial factors) on533
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each trial. Second, demixed PCA can separate neural dynamics in cases where trials have discrete conditions and534

labels, such as in the rodent prefrontal analysis in fig. 5; however, it is not designed to handle continuous dependent535

variables, such as those describing learning dynamics (see fig. 3 and fig. 7). Furthermore, unsupervised techniques536

like TCA can identify unexpected cognitive states and dynamics corresponding to unknown or difficult to measure537

dependent variables. Finally, the same rotation invariance of PCA is present within the linear subspaces identified538

by demixed PCA. Thus, both PCA and demixed PCA are fundamentally subspace identification algorithms, while539

TCA can often extract directly meaningful features from data, such as clusters of functional cell types or neural540

populations that grow or shrink in magnitude across trials.541

An intriguing direction for future research is to expand TCA to higher-order tensors beyond those encoding542

neurons, timepoints, and trials. For example, we can also record across multiple subjects learning to solve the same543

task, yielding a fourth order data tensor, with individual subjects as the fourth index. Similarly, if an individual544

subject is taught multiple learning tasks, one could encode experimental task or condition as a fourth index. However,545

directly applying TCA to these tensors may be undesirable, since we record from different neural populations in546

different subjects and the learning rate may vary from subject-to-subject or from task-to-task. Instead, we could547

model such data via coupled tensor factorizations [88] which allow some measured tensor axes to be fit as common548

factors, while others are fit in a separate and unconstrained fashion. For instance, we could assign separate neuron and549

trial factors for each subject, but use shared temporal factors across subjects if they are hypothesized to share similar550

low-dimensional within trial cognitive dynamics. This scheme could extract common circuit dynamics from small551

numbers of neurons through increased statistical power obtained via pooling across multiple subjects. Moreover, the552

separate neuron factors would then provide “translations” between subjects, by revealing how the same cognitive553

variable is encoded in different population activity patterns in different subjects. In essence, while moving from554

second to third-order tensor methods provides a new window into how circuit dynamics changes across trials to555

mediate learning, moving additionally to fourth order tensor methods may provide new insights into how the learning556

dynamics itself changes across subjects and tasks.557

Overall, this work highlights the prevalence of tensor structure in neural datasets and demonstrates that exploiting558

this structure can provide extremely useful insights into complex, multi-timescale, high-dimensional neural data,559

including the unsupervised discovery of cell assemblies, within trial neural dynamics underlying perceptions, actions560

and thoughts, and across trial learning dynamics. Just as PCA has become part of the standard canon of neural561

data analyses for trial-averaged neural recordings, the combined simplicity and power of TCA suggests it may have562

widespread utility in the analysis of multineuronal data at the level of single trials.563

4 Methods564

4.1 Key Resources Table565

4.2 Contact for Reagent and Resource Sharing566

Further requests for resources should be directed to and will be fulfilled by the Lead Contact, Alex H. Williams567

(ahwillia@stanford.edu)568

4.3 Data and Software Availability569

We provide specialized tools for fitting and visualizing TCA in https://github.com/ahwillia/tensortools. Other570

resources for fitting tensor decompositions include [93–95].571
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Reagant or Resource Source Identifier

Software and Algorithms

tensortools This paper https://github.com/ahwillia/

tensortools

Alternating Least Squares [27] N/A

SciPy [89] https://scipy.org/

Matplotlib [90] https://matplotlib.org/

scikit-learn [91] http://scikit-learn.org/

PyTorch none http://pytorch.org/

MATLAB MathWorks https://www.mathworks.com/

products/matlab.html

Simulink Realtime MathWorks https://www.mathworks.com/

products/simulink-real-time.

html

Experimental Models: Organisms/Strains

C57BL/6J mice The Jackson Laboratory 000664

Rhesus macaque (Mucacca
Mulatta)

Wisconsin and Yerkes primate
centers

N/A

Recombinant DNA

pGP-CMV-GCamP6m [92] #40754, https://www.addgene.

org/Douglas_Kim/

Other

Miniature fluorescence
microscope

Inscopix https://www.inscopix.com/

nvista

Utah Microelectrode Arrays Blackrock Microsystems http://blackrockmicro.com/

neuroscience-research-products/

low-noise-ephys-electrodes/

blackrock-utah-array/

Cerebus System Blackrock Microsystems http://blackrockmicro.com/

neuroscience-research-products/

neural-data-acquisition-systems/

cerebus-daq-system/

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/211128doi: bioRxiv preprint 

https://doi.org/10.1101/211128
http://creativecommons.org/licenses/by/4.0/


4.4 Method Details572

4.4.1 Notation and Terminology573

Colloquially, a tensor is a data array or table with multiple axes or dimensions. More formally, the axes are called574

modes of the tensor, while the dimensions of the tensor are the lengths of each mode. Throughout this paper we575

consider a tensor with three modes with dimensions N (number of neurons), T (number of timepoints in a trial),576

and K (number of trials).577

The number of modes is called the order of the tensor. We denote vectors (order-one tensors) with lowercase578

boldface letters, e.g., x. We denote matrices (order-two tensors) with uppercase boldface letters, e.g., X. We denote579

higher-order tensors (order-three and higher) with boldface calligraphic letters, e.g., X . Scalars are denoted by580

non-boldface letters, e.g., x or X. We use XT to denote the transpose of X. We aim to keep other notation light581

and introduce as it is first used — readers may refer to [33] for notational conventions.582

4.4.2 Matrix and Tensor models583

Neural population activity is commonly represented as a matrix with each row holding a neuron’s activity trace [12].584

Let X denote an N × T matrix dataset in which N neurons are recorded over T time steps. For spiking data, X585

may denote trial-averaged spike counts or a single-trial spike train smoothed with a Gaussian filter. If fluorescence586

microscopy is used in conjunction with voltage or calcium indicators, the data entries could be normalized fluorescence587

(∆F/F).588

PCA is a special case of matrix decomposition. A matrix decomposition model approximates the data X as a589

rank-R matrix, X̂, yielding R components. This approximation can be expressed as the product of an N ×R matrix590

W and a T ×R matrix B:591

X ≈ X̂ = WBT . (3)

We call the columns of W neuron factors, denoted wr, and the columns of B temporal factors, denoted br. The592

rows of W, denoted wn, provide an R-dimensional description of each neuron’s activity trace. Likewise the rows of593

B, denoted bt, provide an R-dimensional description of the full neural population activity pattern at each timepoint.594

In order to reduce the dimensionality of the data we chose R < N and R < T . Note that eq. (3) is equivalent to595

eq. (1) in the Results.596

Perhaps the simplest matrix decomposition problem is to identify a rank-R decomposition that minimizes the597

squared reconstruction error:598

minimize
W,B

‖X−WBT ‖2F . (4)

Here, ‖·‖2F denotes the squared Frobenius norm of a matrix, which is simply the sum of squared matrix elements:

‖X‖2F =
N∑

n=1

T∑
t=1

x2
nt .

PCA provides one solution to eq. (4). Most critically, the PCA solution constrains the neuron factors and temporal599

factors to be orthogonal, meaning that WTW and BTB are diagonal matrices. However, this solution does not600

uniquely minimize the squared reconstruction error. In fact, there is a continuous manifold of matrix decompositions601

that solve eq. (4), since any invertible linear transformation F can produce a new set of parameters, W′ = WF−1
602

and B′ = BFT that produce an equivalent reconstruction of the data:603

WBT = WF−1FBT = W′B′T = X̂ (5)

This result — sometimes called the rotation problem — has a fundamental consequence: if the data were truly604
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generated as a combination of R low-dimensional components, then PCA cannot not recover these ground truth605

components. At best, PCA can only be expected to recover the same linear subspace of the true components.606

In essence, after fitting a PCA model, one might be tempted to interpret the columns of W as identifying sub-607

populations of neurons with firing patterns given by the columns in B. However, eq. (5) shows that these putative608

sub-populations can be linearly mixed by a broad class of transformations, so long as the components are mixed by609

the appropriate inverse transformation. Thus, the latent factors identified by PCA are poorly constrained, and it610

is better to interpret PCA as finding an orthogonal coordinate basis for visualizing data. As reviewed below, the611

optimization problem addressed by TCA has superior uniqueness properties relative to eq. (4), which gives us greater612

license to directly interpret the TCA factors as potentially biologically meaningful neural populations and activity613

patterns.614

TCA is a natural generalization of PCA to higher-order tensors. Let X denote a N × T ×K data tensor, and let615

xntk represent the activity of neuron n at time t on trial k. For a third-order tensor, TCA finds a set of three factor616

matrices, W, B, and A, with dimensions N ×R, T ×R, and K ×R, respectively. As before, the columns of W are617

the neuron factors, the columns of B are the temporal factors. Analogously, the columns of A are the trial factors,618

denoted ar, and the rows of A, denoted ak, embed each trial into an R-dimensional space.619

To reformulate eq. (2) into an equivalent matrix equation, let Xk denote an N × T matrix holding the data from620

trial k. TCA models each trial of neural data as:621

X̂k = WDiag(ak)BT , (6)

where Diag(ak) embeds ak as the diagonal entries of an R×R matrix. Again, eq. (6) is equivalent to eq. (2) in the

Results. In this paper, we also employed the nonnegative TCA model, which simply adds a constraint that all factor

matrices have nonnegative elements:

W ≥ 0, B ≥ 0, A ≥ 0 .

Nonnegative TCA has been previously studied in the tensor decomposition literature [64, 96–98], and is a higher-622

order generalization of nonnegative matrix factorization (NNMF) [60, 99]. Similar to eq. (3), in this paper both623

unconstrained and nonnegative TCA were fit to minimize the squared reconstruction error:624

minimize
W,B,A

‖X − X̂‖2F (7)

Both PCA and TCA can be extended to incorporate different loss functions, such as a Poisson negative log-likelihood625

[100], however we do not consider these models in this paper.626

Fitting TCA to data is a nonconvex problem. Unlike PCA, there is no efficient procedure for achieving a627

certifiably optimal solution [65]. We use established optimization algorithms to minimize eq. (7) from an initial628

guess (see section 4.4.3). Although this approach may converge to local minima in the objective function, our results629

empirically suggest that this is not a major practical concern. Indeed, as long we does not choose too many factors630

(too large an R) and use nonnegative factors, we find that the multiple local minima yield similar parameter values631

and similar reconstruction error.632

An important advantage of TCA is that the low-dimensional components it uncovers are often “essentially unique,”633

up to permutations and scalings. More precisely, in [29], it was proven that every local minimum of the TCA objective634

function is isolated in parameter space; it is not part of a continuous manifold of parameters that achieve exactly635

the same reconstruction error, as in matrix factorization described above. Instead, this continuous degeneracy, or636

ambiguity is replaced by a much more benign ambiguity, namely a set of solutions with the same reconstruction637

error related to each other simply by permutations and rescalings. For instance, the columns of W, B, and A can638

be jointly permuted without affecting the model. Also, the columns of any pair of W, B, and A can be jointly639

rescaled. For example, if the rth column of W is multiplied by a scalar s, then the rth column of either B or A can640
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be divided by s without affecting the model’s prediction. These transformations, which are also present in PCA, are641

inconsequential since the direction of the latent factors and total size of any set of factors, rather than their order,642

are of primary interest. Thus the parameter set corresponding to the global minimum of TCA is essentially unique,643

up to permutations and scalings. Of course, in general we are not guaranteed to find this global minimum, but as644

we have shown in the main text, in situations where we do not choose too many factors, all the local minima we645

find using multiple runs of TCA achieve similarly low reconstruction error, and moreover are close to each other in646

parameter space. In such a situation, all the local minima likely cluster near the global minimum, and the resultant647

parameter values are likely to be biologically meaningful, or interpretable.648

In summary, when the factors are all linearly independent (i.e., W, B, and A have full column rank), TCA649

is, in the sense described above, provably unique up to rescalings and permutations [29]. TCA can nevertheless650

be difficult to optimize if latent factors are approximately linearly dependent [101]. To quantify and monitor this651

possibility, we computed a similarity score between TCA models based on the angles between the extracted factors652

(see section 4.5.1). In practice, we did not find this to be a critical problem.653

4.4.3 Model optimization654

TCA can be applied to neural data by a series of simple steps (Figure 2f). First, to incorporate the common655

assumption that latent neural firing rates are smooth in time [16], spiking data can be temporally smoothed (e.g.,656

with a Gaussian filter). The width of this smoothing filter affects the smoothness of the latent temporal factors657

recovered by TCA. Analogous smoothness hyperparameters are present in other dimensionality reduction methods.658

For example, in GPFA, the timescale of latent dynamics are set by the autocorrelation in the prior’s covariance659

matrix [16]. Depending on the dataset, it may be important to apply other common preprocessing steps, such as660

z-scoring the activity traces of neurons, or applying variance-stabilizing transformations such as taking the square661

root of spike counts [12].662

Like many dimensionality reduction methods, TCA can only be fit by iterative optimization algorithms. While663

these procedures may get stuck in sub-optimal local minima, in practice we found that all optimization fits converged664

to similar reconstruction errors. Other techniques, such as nonnegative matrix factorization [60], also demonstrate665

practical success while being NP-hard in terms of worst-case analysis [102].666

Specialized algorithms for fitting TCA are an area of active research. We used the classic method of alternating667

least-squares (ALS) to obtain estimates of the factor matrices. ALS is motivated by the observation that fixing668

two of the factor matrices and optimizing over the third in eq. (7) is a least-squares subproblem that is convex and669

has a closed-form solution. For illustration, consider optimizing the neuron factors W, while temporarily fixing the670

within-trial factors, B, and the trial factors A. This yields the following update rule:671

W← argmin
W̃

∑
ntk

(
xntk −

∑
r

w̃r
nb

r
ta

r
k

)2

, (8)

which can be solved as a linear least-squares matrix problem. In particular, with some manipulation of the indices,672

eq. (8) can be rearranged into a matrix equation (see [33]) and solved by standard matrix library routines. This673

procedure is then cyclically repeated: the temporal factors B are updated while fixing W and A, then the trial674

factors A are updated while fixing W and B and so on until the objective function converges. The ALS algorithm675

is available in several open-source packages [tensortoolbox2.6, 94, 95], and is reviewed in [33]. For nonnegative676

TCA, we solved each sub-problem using a specialized nonnegative least squares solver [103], instead of standard677

least-squares.678
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4.4.4 Linear gain-modulated model network679

In fig. 2, we constructed a linear network model with three input neurons connected to N = 50 observed neurons680

by random Gaussian weights. The outgoing weights of each input neuron were normalized to unit Euclidean length.681

Each input neuron had a different temporal firing pattern lasting T = 150 time steps, parameterized as probability682

density functions of Gamma distributions. The trial-specific amplitude of the first two input neurons were respectively683

parameterized as increasing and decreasing logarithmically spaced points over K = 100 trials. The amplitude of684

the third input neuron linearly increased for K < 50 and then linearly decreased to the same starting value. All685

within-trial waveforms and across-trial amplitude vectors were normalized to unit Euclidean length. As described686

in the Results, the activity of all neurons is modeled by the same equations as TCA (eq. (2)). Independent and687

identically distributed Gaussian noise with a standard deviation of 0.01 was added to the simulated data. ICA and688

PCA were performed on this simulated dataset via the scikit-learn Python package [91].689

4.4.5 Nonlinear recurrent neural network model690

We simulated a discrete-time recurrent neural network with a hyperbolic tangent nonlinearity.

xt = tanh(Jrecxt−1 + Jinut + β) (9)

yt = Joutxt (10)

Here, xt is a vector of N neural firing rates of the recurrently connected neural population at time t, ut and yt are the691

inputs and outputs of the network, Jrec, Jin, Jout are synaptic weight matrices for the recurrent, input, and output692

connections, and β is a N -dimensional vector of bias terms. The input and output of the were one-dimensional693

signals, as illustrated in fig. 3a. Thus, the recurrent synaptic weights were held in a N ×N matrix, Jrec, the input694

weights were held in a N × 1 matrix, Jin, and the output weights were held in a N × 1 matrix, Jout.695

On each trial, the input signal to the network consisted of T = 40 independent draws from a standard normal696

distribution with mean µ = 1 or µ = −1 (chosen randomly with equal probability on each trial). The goal of the697

network was to produce a positive output (yt > 0) when the input was net-positive, and produce a negative output698

(yt < 0) when the input was net-negative. The performance of the network on each trial was measured by a logistic699

loss function (applied to the output on the final time step, yT ):700

`(yT , µ) = log(1 + exp(−µyT )))

For each simulated trial, we used the deep learning framework PyTorch to compute the gradient of this loss function701

with respect to all network parameters {Jrec,Jin,Jout,β} via the backpropagation through time algorithm. A small702

parameter update in the direction of the negative gradient for each weight matrix was applied after each trial703

(stochastic gradient descent, with a learning rate of 0.005). This was repeated for K = 750 trials. The activity of704

the recurrent units (xt in eq. (9)) over all timepoints and trials was collected into a N × T ×K tensor for analysis.705

4.4.6 Mouse spatial navigation task706

We injected 500 nL of AAV2/5-CaMKIIα-GCaMP6m into the medial prefrontal cortex (AP: 1.9, ML: 0.95, DV:707

2.25, relative to bregma) into mice aged ∼8 weeks. Approximately one week after virus injection, we installed708

glass-bottom stainless steel guide tubes into the prefrontal cortex to enable deep brain optical imaging using a 1709

mm diameter GRIN microendoscope (1050-002176, Inscopix). Two weeks following guide tube surgery, we checked710

for cellular Ca2+ signals with a miniaturized fluorescence microscope (nVista HD, Inscopix). Animals with robust711

Ca2+ responses were selected for further behavioral study. Mice selected for behavioral training underwent water712

restriction (1 mL per day) to reach ∼85% of their ad libitum weight.713
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Mice performed spatial navigation on a custom-built elevated plus maze. The center-to-end arm length of the714

maze was 38 cm. By blocking one of the arms with an opaque barrier, the plus maze could be converted into a715

T-maze with any of the four arms as the stem. Additional gates on each of the arms (at ∼15 cm from the end) could716

be used to confine the mouse at the arms. At the end of each arm, a proximity sensor enabled detection of the mouse717

and a water spout allowed for reward delivery. The maze was placed in a rectangular housing whose four side walls718

were uniquely defined by distinctly patterned curtains.719

The mice performed 100-150 trials on each session. At the beginning of each trial, the experimenter placed the720

mouse in the stem arm of the T-maze with the corresponding gate closed. After 5 s holding time in the stem arm,721

the “start” gate was opened to allow the mouse to run to either end of the T-maze. Once the mouse was detected in722

one of the ends, the “end” gate was closed behind the mouse to confine it in the chosen arm for another 5 s. If the723

mouse’s choice was consistent with the reward contingency, 5-10 µL of water was delivered to the spout. Trained724

mice typically made the run in 2 s; hence the typical trial was ∼12 s long. At the end of each trial, the experimenter725

retrieved the mouse and wiped the maze with ethanol.726

During trials, we recorded prefrontal Ca2+ activity at 20 Hz using the miniature fluorescence microscope. An727

overhead camera (DMK 23FV024, The Imaging Source) mounted above the behavioral apparatus synchronously728

recorded the position of the mouse on the maze. To extract cells and their activity traces from the Ca2+ movies,729

we followed a procedure previously described in [5], and we then tracked individual neurons across sessions using730

previously described methods [104].731

The tensor representation of neural activity requires that the number of samples within each trial be the same732

for all trials, whereas the mice took a variable amount of time to complete each trial. Hence, we used the largest733

number of intra-trial samples common to all trials (or, equivalently, the duration of the shortest trial) as the length734

of the intra-trial time dimension. We chose to temporally align trials to the end of each trial, because the mice735

showed more consistent behavior across trials at the ends (i.e. approaching the choice arm and consuming reward,736

if available) rather than the beginnings (where mice could take variable time to initiate motion after opening of the737

start gate).738

Along the trial dimension of the tensor, we simply concatenated trials across days. However, all Ca2+ activity739

traces were normalized to the range [0, 1] based on the cell’s minimum and maximum fluorescence values on each740

day. This normalization procedure was crucial for forming across-day tensors, since the exact amplitude of a Ca2+
741

trace was dependent on precise, micron-level axial positioning of the microscope — which could vary randomly from742

session to session.743

4.4.7 Primate BMI task744

The monkey’s hands were restrained for the full duration of the experiment. Voltage signals were band-pass filtered745

from each electrode (250 Hz - 7.5 KHz). A spike was recorded whenever these filtered signals crossed below a746

threshold of -4.5 times the root-mean-square voltage.747

The neural recordings from PMd and M1 were used jointly and without distinction to train a BMI decoder by748

the recalibrated feedback-intention trained Kalman filter (ReFIT) procedure [61]. At the start of each session, the749

monkey observed 600 trials of automated cursor movements from the center of the workspace to one of 8 radially750

arranged targets at a distance of 12 cm. During these observation trials, the cursor velocity began at 8 cm/s, and751

increased by 2 cm/s every 200 trials. Under the premise that the monkey is imagining the intended task during these752

observation trials, we used the neural activity and cursor kinematics to fit a Kalman filter decoder. The velocity753

gain of the decoder was calibrated by the experimenter to help the monkey achieve fast reaches (improved by high754

gain) while still holding the cursor steady (improved by low gain).755

The monkey then executed instructed-delay cursor movements to indicated radial target locations, before return-756

ing to the center position and repeating the cursor movement to another target. This essential behavioral paradigm757
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has been previously described [105]. Each target position and the center position were indicated on the screen.758

Monkeys started by holding the cursor on the central target continuously for 500 ms. After a randomized delay759

(sampled uniformly from 400-800 ms), monkeys moved the cursor within a 4 x 4 cm acceptance window of the cued760

target. This target also had to be held continuously for 500 ms. The target changed color to signify the hold period.761

If the cursor left the acceptance window, the timer was reset, but the trial was not immediately failed. Monkeys had762

2 s to acquire the target. Success was accompanied with a liquid reward, along with a success tone. Failure resulted763

in no reward, and a failure tone. The center target was then presented, which the monkeys also had to acquire and764

hold.765

For our analysis, we collected the non-sorted spiking activity of all N = 192 multiunit recordings during all center766

to outward cursor reaches (reaches back to the center were not analyzed). Spike times were aligned to the end of the767

delay period (t = 0) and ended at the time of first target acquisition or after two seconds had elapsed and the target768

was still not required. The data tensor was zero padded to ensure a consistent trial length of two seconds. Data769

were smoothed within each trial with a Gaussian filter with a standard deviation of 50 ms (same as in [34]). Using770

a smaller filter did not qualitatively effect the trial factors extracted by TCA, but resulted in less smooth temporal771

factors.772

4.5 Quantification and Statistical Analysis773

4.5.1 TCA model analysis774

Unlike PCA (but similar to ICA and other methods), TCA needs to be iteratively optimized to minimize a cost775

function. In theory, each optimization run may converge to a sub-optimal local minimum. Additionally, the number776

of components in the model can affect the final result [63]. This is different from PCA where the largest components777

do not change by adding additional components (a consequence of the Eckert-Young theorem; [106]). Thus, we fit778

all TCA models from multiple initial parameters and with different numbers of low-dimensional factors. We then779

inspect this ensemble of models for a consistent and interpretable summary of the data.780

The most basic metric to compare models is the squared reconstruction error, since this is what TCA aims to781

minimize. For interpretability, we normalize the reconstruction error on a scale of zero to one:782

‖X − X̂‖2F
‖X‖2F

. (11)

We typically visualize reconstruction error as a function of the number of model components (see, e.g., fig. 4g), which783

we call an “error plot.”784

As discussed in section 4.4.2, TCA is invariant to permutations and rescalings of the factors. In PCA, the

components are often normalized to unit Euclidean length and ordered by variance explained. An analogous procedure

exists for TCA [33]. First, rescale the columns of W, B, and A to be unit length, and absorb these scalings into λr

for each component r. Then the estimate of the data becomes:

x̂ntk =
R∑

r=1

λrw
r
nb

r
ta

r
k ,

If desired, the components can be sorted by decreasing λr.785

To quantify the similarity of two fitted TCA models, we used a similarity score based on the angles between786

latent factors [107]. Formally, for two TCA models, {W,B,A} and {W′,B′,A′}, the similarity score is:787

min
ω∈Ω

1

R

R∑
r=1

[(
1−

|λr − λω(r)|
max(λr, λω(r))

)
(wT

r w
′
ω(r) · b

T
r b
′
ω(r) · a

T
r a
′
ω(r))

]
(12)
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Where Ω denotes the set of all permutations of the factors, and ω is a particular permuation. For example, for a three788

component model (R = 3) the score is computed for all possible permutations, ω = {1, 2, 3}, {2, 1, 3}, {3, 2, 1}, and789

{3, 1, 2}, and the lowest score is taken. For TCA models with more than 10 components, enumerating all permutations790

can be computationally prohibitive. In these cases we match factors in a greedy fashion to identify a permutation791

that provides a good (though not certifiably optimal) alignment of the models. Note that this measurement of792

model similarity is quite severe, since the distance of each pair of factors are multiplied – if any single dimension is793

orthogonal, For our datasets, models with similarity scores above 0.8 were qualitatively similar and led to similar794

quantitative results in post-hoc analyses. Models with similarity scores within the 0.6−0.8 range also appeared quite795

similar in our applications.796

4.5.2 Mouse spatial navigation task797

We quantified the dimensionality of a single neuron across trials by the following quantity:798

dim
(
X(n)

)
=

(
∑

i λi)
2∑

i λ
2
i

, (13)

where λi are the eigenvalues of the covariance matrix; i.e., λi = σ2
i where σi are the singular values of X(n), which is799

a K×T matrix holding the activity of neuron n across all trials. This is a continuous measure of dimensionality used800

in condensed matter physics, and was previously applied to analyze neural circuits [108]. For example, (13) reduces801

to N when all the λi are evenly distributed and take the same value, and reduces to 1 if only one λi is nonzero. For802

uneven distributions of λi, this measure sensibly interpolates between these two extremes.803

4.5.3 Primate BMI task804

In fig. 7, statistical tests on the mean preferred angle of TCA components were performed using PyCircStat (https:805

//github.com/circstat/pycircstat). Statistical tests on Spearman’s rho were computed using the SciPy statistics806

module (https://docs.scipy.org/doc/scipy-0.14.0/reference/stats.html).807

4.6 Experimental model and subject details808

4.6.1 Mice809

The Stanford Administrative Panel on Laboratory Animal Care approved all mouse procedures. We used male810

C57BL/6 mice, aged ∼8 weeks at start. Throughout the entire protocol, we monitored the weight daily and looked811

for signs of distress (e.g., unkempt fur, hunched posture). Mice were habituated to experimenter handling and the812

behavioral apparatus for ∼2 weeks prior to the five day behavioral protocol.813

4.6.2 Monkey814

Recordings were made from motor cortical areas of an adult male monkey, R (Macaca mulatta, 15 kg, 12 years old),815

performing an instructed delay cursor task. The monkey had two chronic 96-electrode arrays (1 mm electrodes,816

spaced 400 µm apart, Blackrock Microsystems), one implanted in the dorsal aspect of the premotor cortex (PMd)817

and one implanted in the primary motor cortex (M1). The arrays were implanted 5 years prior to these experiments.818

Animal protocols were approved by the Stanford University Institutional Animal Care and Use Committee.819
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Figure 2, Supplement 1. Illustration of tensor unfolding for applying matrix decompositions to tensor datasets. A
N × T ×K dimensional tensor can be reshaped into three different matrices: a “neurons unfolding” with dimensions
N × TK, a “time unfolding” with dimensions T ×NK, and a “trials unfolding” with dimensions K ×NT . Applying PCA or
other matrix decomposition methods to each unfolding yields a different set of low-dimensional factors.
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Figure 3, Supplement 1. Cell tuning and synaptic connectivity properties in a nonlinear RNN trained on a stimulus
discrimination task. (a) Activity of all cells on (+)-trials and (-)-trials before and after training. Cells were sorted by the
low-dimensional neuron factor, w1

n, as in fig. 3e. (b) Cell tuning quantified as peak activity on (+)-trials minus peak activity
on (-)-trials before and after training (averaged over ten trials). Cells with positive tuning scores are (+)-cells, while cells
with negative tuning scores are (-)-cells. The initial tuning was positively correlated with final tuning for each cell. (c)
Eigenvalues of the synaptic connectivity matrix after training. Similar to the solution in linear networks [53], the
connectivity matrix has a single eigenvalue near 1 + 0i; and all other eigenvalues are small in magnitude. (d-e) The neuron
factor identified by a 1-component TCA model is positively correlated with the input-to-network synaptic weights (d), and
the network-to-output weights (e).
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Figure 4, Supplement 1. An example cell with low R2. (a) Raster heatmaps showing the cell’s fluorescence over the 200
most active trials (left), and the estimate of a 15-component nonnegative TCA model on these trials (right). On a small
subset of trials the cell is active, but at variable phases of the trial. Note that on the remaining trials, the cell was hardly
active at all (not shown). (b) Median fluorescence traces averaged over various task variables (start location, end location,
and reward delivery). The cell does not, on average, show a preference for any task variable. Dashed lines denote the first
and third quartiles of the fluorescence trace. (c) Median estimated fluorescence of the 15-component nonnegative TCA
model for this cell. The estimate is closely matched to the median firing rates shown in panel b. Dashed lines denote first
and third quartiles.
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Figure 5, Supplement 1. Additional detail on the decomposition of mouse prefrontal cortex dynamics. (a) Remaining
seven TCA factors from the 15-component decomposition shown in fig. 5. (b) The magnitude (Euclidean length) of each
factor in the decomposition, a metric analogous to the variance explained by each component (see Methods, section 4.5.1).
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Figure 5, Supplement 2. PCA components in trial-space do not cleanly encode individual task variables, in line with
previous observations [34]. Each row shows a principal component, ordered by variance explained. Each column shows a
different coloring of that principal component by a different task variable. With few exceptions (notably the top component),
any single coloring does not yield a simple interpretation of the component.
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Figure 6, Supplement 1. Diagnostic plots for TCA models fit to 45° reaches in the primate BMI dataset. (a) Scree plot
for unconstrained (blue) and nonnegative (red) TCA. As elsewhere in this manuscript, each dot denotes a model fit from
different initial parameters, demonstrating that neither model got caught in appreciably sub-optimal local minima during
optimization. Nonnegative decomposition provided similar explanatory power to unconstrained decompositions. (a)
Similarity plot for unconstrained (blue) and nonnegative (red) CP decompositions. As elsewhere in this manuscript, each dot
denotes the similarity score between a model and the best-fit model with the same number of components. Nonnegative
decomposition had larger similarity scores, suggesting that the latent factors were more reliably identified and less sensitive
to initialization.
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