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Acquired therapy resistance to cancer treatment is a common and serious clinical problem. The
classic U-shape model for the emergence of resistance supposes that: (1) treatment changes the
selective pressure on the treatment-naive tumour; (2) this shifting pressure creates a proliferative
or survival difference between sensitive cancer cells and either an existing or de movo mutant; (3)
the resistant cells then out-compete the sensitive cells and — if further interventions (like drug
holidays or new drugs or dosage changes) are not pursued — take over the tumour: returning it to a
state dangerous to the patient. The emergence of ruxolitinib resistance in chronic myelomonocytic
leukemia (CMML) seems to challenge the classic model: we see the global properties of resistance,
but not the drastic change in clonal architecture expected with the selection bottleneck. To study
this, we explore three population-level models as alternatives to the classic model of resistance. These
three effective models are designed in such a way that they are distinguishable based on limited
experimental data on the time-progression of resistance in CMML. We also propose a candidate
reductive implementation of the proximal cause of resistance to ground these effective theories.
With these reductive implementations in mind, we also explore the impact of oxygen diffusion and
spatial structure more generally on the dynamics of CMML in the bone marrow concluding that,
even small fluctuations in oxygen availability can seriously impact the efficacy of ruxolitinib. Finally,
we look at the ability of spatially distributed cytokine signaling feedback loops to produce a relapse
in symptoms similar to what we observe in the clinic.

1 Introduction or de novo mutant; (3) the resistant cells then out-compete
the sensitive cells and — if further interventions (like drug hol-
idays [3] or new drugs [4] or dosage changes [5]) are not pur-
sued — take over the tumour: returning it to a state dangerous
to the patient. Clinically this typical process of response and
relapse is characterized by a (usually rapid) decrease in tu-
mour burden followed by a transient period of low tumour
burden, and finally a quick return of the disease. This is the

Chronic myelomonocytic leukemia (CMML) is type of
leukemia that usually occurs in the elderly and is the most
frequent myeloproliferative neoplasm [1]. It has a median sur-
vival of 30 months, with death resulting from progression to
AML in 1/3rd of cases and cytopenias in the others. In 2011,
the dual JAK1/JAK2 inhibitor, ruxolitinib was approved for

treatment of the related cancer of myelofibrosis based on its
ability to relieve the symptoms of the disease. Recently, it
has also started to see use for CMML [2]. Unfortunately, as
with most targeted therapies, resistance eventually develops.

The classic model for the emergence of resistance rests
on the following microdynamical assumptions: (1) treatment
changes the selective pressure on the treatment-naive tumour;
(2) this shifting pressure creates a proliferative or survival dif-
ference between sensitive cancer cells and either an existing

classic U-shape model of resistance.

When treating CMML with ruxolitinib, clinicians typically
see the drastic reduction and then relapse in symptoms (most
notably fatigue and spleen size) but none of the microdynam-
ical signs of the classic model of resistance. Merlevede et al.
[6] used whole-genome sequencing to show that the mutation
allele burden and clonal architecture of the bone marrow in
CMML remained unchanged during treatment. This suggests
that both the total tumour burden and proportional genetic
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Figure 1: Model of hidden Darwinian selection. (a) A plot showing how Darwinian selection could be acting even when no
discernible change in the population size is observed. (b) Even when the tumour size has not changed, the impact of the
treatment on the spleen is clearly visible and follows the traditional U-shape.

composition in the bone marrow remained static while resis-
tance arose. We see the global properties of resistance, but
not the evidence of selection.

This also suggests that it is unlikely that the genotype
is acting as the unit of selection for ruxolitinib resistance
in myeloid neoplasms. Instead, we have to turn to other
units of selection. Units that can propagate epigenetically
against an unchanging genetic background. The most obvi-
ous candidates are in the cytokine network, which is known
to be a factor in the symptoms of CMML. In particular, het-
erodimeric activation of the JAK-STAT pathway — when the
second JAK2 at the cytokine receptor is replaced by a JAK1
or TYK2 [7] — seems like a promising candidate for the unit
of selection.

Given the absence of the usual signs of a selective bot-
tleneck, the evolutionary dynamics underlying resistance in
CMML are hard to observe. In analogy to physics and recent
work on apparently ‘missing’ genes [8], we call this apparently
‘missing’ selective process: dark selection. It is our goal in
this report to sketch the question of dark selection for CMML
resistance. We achieve this in part by providing some candi-
date mechanisms for dark selection.

This paper is structured as follows. First, we consider three
different alternative effective (cell population level) theories
for explaining dark selection: Darwinian (Section 2.1), and
two Lamarckian models (Section 2.2): one cell-autonomous
and the other non-cell autonomous. These Lamarckian mod-
els require a ratcheted phenotypic switch for the proximal re-
sistance mechanisms (like the TYK-bypass described by Kop-
pikar et al. [7]), so we propose a candidate molecular model
of this in Section 3.1 as a reductive implementation. Once
models shift from an effective description to a reductive im-
plementation, concerns like the spatial structure of the bone
marrow become increasingly more important. In Section 3.2,
we explore how oxygen is spatially distributed in the bone
marrow and how small changes in oxygen penetration and
consumption rates can have a large impact on the cells ther-
apy response. This suggest an alternative mechanisms of re-
sistance and/or an amplifier for the others. Finally, in Sec-
tion 3.3 we consider some of the cytokine signaling network

ideas from Section 2.2 in a spatially structured setting. Sec-
tion 4 summarized the results and sketches future directions.

2 Darwinian and Lamarckian population-
level models

2.1 Hidden Darwinian selection

Drastic population changes are not necessary for evolution.
Theoretical and mathematical biologist using evolutionary
game theory have traditionally Evolutionary game theo-
rists are more than comfortable thinking about evolution in
constant sized populations, and Darwinian evolution itself
emerged in the context of a species competing at carrying
capacity. As such, the proper null model for us is selection at
carrying capacity: a hidden Darwinian selection.

For the hidden Darwinian selection model, we introduced
selection through a highly reduced cell turnover. The hypoth-
esis is that as the tumour fills up the bone marrow, it pushes
the extra daughter cells out into the peripheral blood; these
accumulate in the spleen and cause its drastic enlargement.
As therapy takes effect, the division rate of sensitive cells is
greatly reduced. The reduction is enough so that many fewer
cells are pushed into the periphery, but not so drastic that
the tumour burden decreases. Fewer excess cells are made,
but the made cells are still excess.

With this model of hidden selection, it is possible to re-
capitulate the dynamics of the spleen shrinking and relaps-
ing. As we do in figure 1. However, there are tensions with
our microdynamical knowledge in the bone. Merlevede et al.
[6] observed no changes in the clonal architecture of the tu-
mour, meaning that this hidden selection would have to be
epigenetic. They also don’t see large changes in prolifera-
tion rate, which would be required for this model. In future
experiments, it would be useful to measure the variance in
proliferation rates carefully to rule out hidden selection.
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Figure 2: Dynamic models of Lamarckian cell-autonomous (red) vs. non-cell autonomous (blue) dark selection. (a) Discovery
of JAK-TYK bypass is independent of levels of cytokines in the cell-autonomus (red) case or creates a positive-feedback loop
in the non-cell autonomous (blue) case: as more cells discover the bypass to more cytokines, other cells are more likely to
discover the same bypass. (b) This results in qualitative different dynamics: cell-autonomous process has a concave path with
relatively low variance compared to non-cell-autonomous process with a convex (or sigmoidal) path with higher variance.

2.2 Lamarckian selection: cell-autonomous and
non-cell autonomous

Since we are forced to move from the genetic to the epigenetic
level of description, it becomes important to suggest a plau-
sible mechanism for heritable epigenetic effects. One hypoth-
esis is that the acquired JAK-TYK bypass described by Kop-
pikar et al. [7] is heritable. There are many mechanisms by
which this non-genetic heritability might be achieved [9] and
thus leading to Lamarckian selection. For example, the non-
genetic heritability mechanism might be the up-regulation of
TYK2 following successful discovery and then Poisson varia-
tion in the inheritance of the protein among the two daughter
cells. Receptors can be divided in a similar way, probably
even more uniformly due to the even division of the cyto-
plasm. And since daughter cells occupy area close to where
their mother cell used to be, local extracellular cytokine con-
centration are also inherited. We discuss the microdynamical
details of this in section 3.1.

At the population level, this allows us to think of the dis-
covery of the heterodimerization bypass as a therapy-induced
mutation. The central question becomes if this mutation rate
is constant or dependent on the local concentration of cy-
tokines. If it is constant then we have a standard Lamar-
ckian model and if it increases with cytokine concentration
then our process is non-cell autonomous. This is represented
in Figure 2a, with the Lamarckian process in the red panel
and non-cell autonomous in the blue. On the left of each
panel is the CMML cell in drug, with the standard pathway
blocked. Non-cell autonomous process have been studied in
cancer both theoretically — with tools like evolutionary game
theory [10-14] — and experimentally [15-17], and are believed
to be important in the emergence of resistance in some sys-
tems [13, 14, 17]. For the Lamarckian process, their rate of
discovery of the heterodimerization bypass is independent of
the number of cytokines around them, for the non-cell au-
tonomous it is low with few cytokines and high with many.

For the dependence of the JAK-TYK bypass discovery rate

on the levels of cytokines in the non-cell autonomous model, it
is again good to turn to models at the levels of receptors. De-
pending on the sort of feedback loops possible within the cell’s
internal signaling, it is possible to get different functional
forms for the mutation rate. To avoid testing against any pos-
sible mutation function, it is best to consider the functional
form that comes out of biologically reasonable assumptions of
the cellular pathways. We propose a specific biological basis
in Section 3.1. Depending on the sort of data available, it
might be worth considering adapting recent techniques like
Lever et al. [18] for inferring the form of the minimal sig-
naling pathway from standard molecular and systems biology
experiments.

As seen from Figure 2b, these two processes result in dras-
tically different relapse curves. In red is the Lamarckian pro-
cess, and in blue is the non-cell autonomous. Both have the
same average mutation rate, but for the former it is constant
through time while the latter scales with the amount of cy-
tokines and thus increases over time. The result is that the
relapse curve for blue is much more convex and has a higher
variance.

With qualitative different curves like the ones above, we
can hope to distinguish between the models with the sort of
noisy data that one can expect from biological experiments.
In particular, from proximity ligation of JAK-TYK, one could
see which cells have discovered the bypass in bone histologies
of mice. By taking bone histologies from an experimental
model like mice sacrificed at different time points, we can
build up a time series of acquisition of resistance to test our
models against.

3 Ratcheting & microenvironment

3.1 Ratcheting the TYK-bypass

Whereas the above is an effective theory at the level cell pop-
ulations — akin to a game assay [17] — for distinguishing be-
tween cell-autonomous and non-cell autonomous processes, it
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Figure 3: Dynamics of a chemical reaction network with possibility of ratcheted switch [19]. Due to stochastic fluctuations,
even with the same initial conditions, it is possible to either (a) not discover the JAK-TYK switch or (b) to ratchet into the

alternative pathway (b).

can also be useful to have a reductive theory at the level of
molecules and pathways. We need to find a stochastic ratch-
eted phenotypic switch among the pathways of the CMML
cells. Here, the Koppikar et al. [7] study of the microdynami-
cal basis of roxlitinib resistance becomes very valuable. In the
untreated cancer cell, two JAK2 attach to a receptor, cross-
phosphorylate each other, and then active a STAT. Roxlitinib
blocks the ability of the JAK2 pair to do this, shutting down
the JAK-STAT pathway. Koppikar et al. [7] showed that
some CMML cells find a way around this by having JAK2
heterodimerize with JAK1 or TYK2 instead of another copy
of JAK2. Once the cell finds this alternative pathway, it is
able to maintain it and start over-producing cytokines as it
did before. With enough cells discovering this bypass path-
way, global cytokine levels can become elevated again, leading
to a return of symptoms.

To discover a reaction that explains our higher level models
it is prudent to look for the simplest possible reaction that ful-
fills the requirements of these models, then try to break down
actual biological reactions in CMML towards our reductionist
model to see if they can fulfill these requirements. As such
we first consider one of the simplest reactions possible, where
one type of chemical transforms into another: A < B. One
can work out that a stable equilibria occurs at ]X,—: = :fr;"ﬁ
(where N, is the number of A molecules, N, is the number
of B molecules, 7forwara is the reaction rate as A transforms
to B and rreverse is the reaction rate as B transforms to A).

Our model requires a chemical reaction that can switch
from one state to another either randomly or due to the mi-
gration of molecules from a nearby cell. With an unstable
equilibrium we create a barrier which can be crossed in either
of the previous two scenarios, but ordinarily would not. We
therefore split our simpler reaction into several parts to create
this unstable equilibrium. We start with a heterodimerization
reaction where A and B bind: A+ B — AB.

If we then converted AB to two B’s we would have a classic
autocatalysis reaction. But that is not enough for our pur-

poses since this reaction relies just as much on A as it does
on B: we need the reaction to rely more on B since unsta-
ble equilibria rely on the predominance of the species being
created; this is also why we need autocatalysis.

Therefore, we need a “peer-pressure” reaction step: AB +
B — ABB — 3B. Here A is outnumbered by B in the
complex and is therefore converted to aB. We do the same
for B’s converting to A’s: 3A « AAB + AB + A.

Note that the net reaction is still one A being converted to
one B. If we assign reaction coefficients of 1 to all reactions
except those where complexes are used up (which will have
coefficients that are >> 1 (here 1000) in order to keep the
concentration of complexes small) we can approximate the
change in the expected number of B molecules as:

% = N, x Nf — N2 x Ny = Ny(To — N3) (2N, — To) (1)
where To = Ng,0 + Np,0, the total number of A and B at the
beginning of the simulation.

For this sytem, three equilibria exist: one with all A, one
with all B and one in between where N = Ty /2;by checking
the signs on both sides of this last equilibrium we see that it
is unstable.

If we plug these values into the Gillespie algorithm the
probability of having an A turn into a B when there are no
other B’s around is 0. Therefore, in order to have a stochas-
tic change in state, we need a leak equation where the net
reaction (A <+ B) occurs spontaneously, but at a lower rate
than the autocatalytic reaction.

These reactions act as both ‘mutation’ and mode of inher-
itance. Stochastic changes in the amount of chemical due
to the ‘leak’ reactions can lead to a spontaneous change in
state in some cells — mutation (as seen in figure 3b but not
in figure 3a). But other cells can also impose this state by
increasing the number of molecules of one chemical species,
either through diffusion or through activation by some other
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diffusing species: inheritance. Hence two requirements, vari-
ation and inheritance, can be satisfied by a relatively simple
set of chemical reactions.

3.2 Role of oxygen in the bone marrow

Oxygen distributions inside tumour micro-environments are
typically complex, with pockets of chronic hypoxia being a
common facet in solid tumours [20-23]. The physical ra-
tionale for this is relatively straightforward - as oxygen dif-
fuses through tissue, it is depleted by cells as a vital compo-
nent in aerobic respiration [24-26]. In healthy tissue, there
is generally adequate vascular supply of oxygen and no hy-
poxia. However, the tumour micro-environment is much more
chaotic, marked by tortuous and poorly perfused vascular net-
works with an excess of cells.

As a consequence, oxygen supply is generally disordered
and demand higher, leading to regions of extensive hypoxia.
Whilst the mechanism might be simple, the net result is in-
trinsically complex. This diffusion-limited hypoxia gives rise
to a number of detrimental effects. It has also long been
known that extensive hypoxia has a negative implication for
patient prognosis [27]. The reason for this is deeply evolu-
tionary; under hypoxic conditions, tumour cells can respond
to hypoxia by activating oxygen sensitive signalling path-
ways [28], including hypoxia inducible factor pathways and
the unfolded protein response [29].

While the precise mechanisms remain poorly understood, it
is thought that these signaling pathways alter gene expression
in an attempt to promote survival under adverse conditions,
and ultimately allow cellular phenotypes to arise with evasive
mutations, including the ability to metastasize. This is of
importance for solid tumours, where spatial limitations on
oxygen diffusion yield such chaotic pockets of anoxia.

It might even be tempting to dismiss it as a dead-end av-
enue. But given the ubiquity of micro-environmental influ-
ence, we opted to investigate it further in the search for po-
tential mechanisms of ruxolitinib resistance, or at the very
least to understand what factors might influence this. So if
we were to search for the mechanistic fingerprint of oxygen
effects, where better to look than the scene of the crime —
inside the bone marrow itself.

Bone marrow is relatively unusual in one respect, with a
surprisingly low oxygen partial pressure, ranging typically
from a low of 9 mmHg to highs of 32 mmHg [30]. To see
this in perspective, typical partial pressures at the capillary
wall tend to be around 40 mmHg, whereas many human or-
gans have oxygen tensions well in excess of 150 mmHg. It is
important to note that despite this low relative oxygen ten-
sion, bone narrow is not hypoxic in the conventional sense.
Cells can quite happily survive much lower oxygen pressures,
happily undergoing mitosis as low as 0.5 mmHg [31, 32].

Let’s look again at how ruxolitinib itself works. The drug
doesn’t attack the cancer — ruxolitinib is a Janus kinase in-
hibitor, and works by repressing the JAK-STAT pathway to
ease the symptoms of the illness.

If the oxygen micro-environment interfered with the drug
rather than the CMML cells, then perhaps these seemingly
disparate facts might tell us another story. As ruxolitinib’s
mechanism of action relies on its ability to block JAK-STAT

signally, we might ask whether availability of oxygen poten-
tially modulates or diminishes inhibitor efficacy. Wang et al.
[33] had looked at the levels of JAK-STAT signalling under
both low and high oxygen conditions. And in both cases,
JAK-STAT signalling was increased under hypoxia. It’s im-
portant to note that the paper didn’t use ruxolitinib specif-
ically but instead a different JAK-STAT inhibitor, AG490,
but for our purposes we initially assume the mechanisms are
broadly similar. Hypoxia diminished the effectiveness of the
inhibitor drastically, and this reduction impact was non-linear
and markedly less effective when oxygen was scarce.

This finding was intriguing, suggesting that oxygen might
indeed have a role, albeit an unusual one. If treatment was to
fail, there mightn’t be any need for clinical hypoxia — just a
small reduction in available oxygen tension might be enough
to hobble the drug’s ability to quench JAK-STAT signals.
But for this to be the case there would have to be some-
thing capable of changing the oxygen profile in the bone mar-
row. This hypothesis could have at least two mechanistic
explanations— the first is simply that increased density of
cells depletes available oxygen more than in non-cancerous
marrow. Another potential reason is the strange metabolistic
properties of tumour cells — oxygen consumption rate (OCR)
has a distinct effect of available oxygen, and if cells had up-
regulated their OCR this could easily give rise to diminished
oxygen availability.

Both these mechanisms are plausible. But if this were the
potential mechanism of treatment resistance, then the reduc-
tion in oxygen would have to be relatively subtle — enough
that to impact the drug efficacy without significantly stress-
ing the cells to the point where they would display hallmarks
of clinical hypoxia. To look into this, we used a vascular
model based on Grimes et al. [32] to simulate the oxygen
profile between two hypothetical blood vessels, each with a
wall-pressure of 32 mmHg. We then changed the OCR of
the bulk tissue slightly, giving rise to subtly different oxygen
profiles (mean p02 15.9 mmHg, 13.1 mmHg and 10.1 mmHg
respectively), shown in figure 4a. Crucially, in all simulated
cases the global oxygen pressure is far beyond that which
would be expected to have clinical significance.

Armed with a simulated oxygen profile and the experimen-
tal data on the variation of JAK-STAT inhibition with oxygen
tension, we produced a simplified 2D model of how these ef-
fects might interplay. In the bone marrow, ruxolitinib diffused
in from the blood vessels, across a discrete matrix of cells with
varying oxygen tension, each of which produced JAK-STAT
signal. In the model, We assumed that the drug perfectly
perfused the tissue and thus the drug level is assumed to be
spatially homogeneous. The drug acted to reduce the JAK-
STAT signal in a manner proportional to oxygen tension, with
the linear coefficient calibrated from experimental data ?7. A
simplified schematic is shown in figure 4b, alongside the gen-
eral form of the model PDE. The PDE describes how the
concentration of cytokines produces by CMML cells is dis-
tributed (by stationary 2D diffusion) over the bone marrow.

With this schema in place, we were free to run a simula-
tion — and the results were striking. Figure 4c indicates that
even marginal differences in oxygen profile and mean pO2
had substantial impact of the efficacy of the drug. Indeed,
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Figure 5: Spatially-explicit signaling network dynamics. After drug is added at time 1000, cells may randomly switch to a
drug-insensitive phenotype, and become active and release cytokines. We model scenarios where the probability that a cell
becomes drug-insensitive is (a) independent and (b) dependent on local cytokine levels. Local spatial dynamics of cytokine
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the situation where the drug was applied at a mean pO2 of
10.1 mmHg was virtually identical to an absence of drug at
a slightly higher oxygen tension (mean pO2 = 15.9 mmHg).
This was a fascinating result, and consistent with the candi-
date hypothesis. If this were the case, then slight variability
in oxygen tension could have a marked effect on treatment,
and might be part of the reason for the emergence of resis-
tance.

Of course, this remains at the moment just an interesting
candidate hypothesis — we would need a lot more evidence to
state that this is the mechanism responsible. What’s difficult
to account for with this approach is the timing of and variance
in relapse. But it is also an approach that could be combined
with any of the previous suggestions as a way to amplify the
effect of small epigenetic or signaling changes.

3.3 Emergent spatially-explicit signaling net-
work behavior

Inhibition of JAK-STAT signaling axis in leukemic and stro-
mal cells impacts abundance of cytokines, including direct
targets of STAT transcriptional regulators, as well as those
induced as the result of altered cell-cell communication. The
net impact is lower level of activating signaling stimulation
in CMMI cells. However, cell signaling is a complex dynamic
process involving positive and negative regulatory loops [34].
We speculated that relapse of activation of CMML cells de-
spite the lasting primary effects of JAK inhibition might
reflect adaptation of signaling networks operating between
cells, perhaps reflecting homeostatic buffering dynamic mech-
anisms.

To test for the potential feasibility of this hypothesis, we
constructed an agent-based model of cell cytokine release to
investigate the plausibility that epigenetic and/or phenotype
switching to a drug insensitive state may lead to recurrent tu-
mor dynamics. We also use this model to investigate potential
differences in dynamics that may arise depending on whether
the rate of insensitivity switching is conditional on the local
cytokine load. Briefly, our model is initiated with a specified
density of immobile cells arranged n silico on a 2-dimensional
grid. Cells may be active, and release cytokines at every itera-
tion of the simulation, and become inactive if cytokines build
up over a specified inactivation threshold. Inactivated cells
may become activated after a cool-down period if their local
cytokine levels build up over a specified activation threshold.
Cytokines diffuse and decay in this space. A drug is intro-
duced uniformly throughout the grid at some time point, and
this drug blocks all cytokine release and cytokine response.
Due to the persistent lack of cytokines, all cells in the simula-
tion build up a lower tolerance to any cytokines present, i.e.,
cells have a lower threshold for activation if they come into
contact with cytokines, perhaps through known mechanisms
such as increased cytokine receptor densities per cell. Cells
have some probability to switch to a less sensitive state and
release and respond to cytokines even with the drug present.
These dynamics reveal that cytokine levels, and therefore tu-
mor activity, return to before-drug levels over time, even with
no change in tumor burden (Figure 5).

We find that cytokine levels return to an equilibrium sim-

ilar to that found before treatment in both cytokine-level-
independent (Figure 5a) and cytokine-level-dependent (non-
cell autonomous; Figure 5b) insensitivity scenarios, however,
when the rate at which cells switch to drug insensitivity is
dependent and positively correlated with the local cytokine
loads, the return to equilibrium is faster. For both scenar-
ios, cytokine levels begin low, as the simulations begin with
zero cytokines present and a random subset of cells active,
and gradually build up to equilibrium (e.g., Figure 5¢ for the
non-cell autonomous scenario). After drug introduction, the
cumulative level of cytokines decay to near-zero, as they are
no longer produced except for in a small number of cells that
entered into a drug-insensitive state (Figure 5d). As time
progresses, more cells stochastically become drug-insensitive,
and the cytokine levels increase to an equilibrium near that
of the pre-drug state of the system (Figure 5e).

4 Conclusion

It is hard to solve a problem that almost no one sees. As
such, our goal in in this paper was to illuminate an interesting
theoretical problem: dark selection. Dark selection is the
emergence of resistance without the apparent microdynamical
hallmarks of the classic U-shaped model of resistance. We
used CMML as our case study. However, we expect that
once we learn how to look for it, dark selection might reveal
itself in other cancers.

To more clearly define the boundaries of this theoretical
problem we proposed some models as potential solutions. We
considered two types of models: microdynamical and effec-
tive. The goal of the microdynamical models is to propose
concrete biological mechanisms at the molecular and micro-
environmental level like ratcheting via JAK-TYK bypass,
oxygen diffusion affecting the JAK-STAT pathway, and spa-
tial structure of cytokine signaling. These models are meant
as heuristics to motivate further discussion with experimen-
talists. The effective models, however, aimed to connect di-
rectly to the type of data that can be gathered from patients,
mice, or in-vitro experiments. As such, they sacrifice mech-
anistic detail to differentiate between three different kinds of
selection: hidden Darwinian selection, and Lamarckian selec-
tion that is either cell-autonomous or non-cell autonomous.
Although these population-level models might not provide
insights to the molecular basis for drug targets, they do pro-
vide an explicit target population-dynamic for more reductive
models to produce.

At the current stage, the goal of these models is not rigour
but the encouragement of creative exploration of hypothe-
ses. Our aim is not to solve the problem that we saw, but
to use these avenues of answers as a better outline of the ter-
rain. The next step is to design experiments that can help
inform these models. By understanding dark selection from
both a mathematical and experimental perspective, we will
have a new tool in our arsenal against the emergence of ther-
apy resistance in chronic myelomonocytic leukemia and other
cancers.
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