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Abstract

Recent advances in magnetic resonance imaging (MRI) methods, in-
cluding data acquisition, pre-processing and analysis, have enabled re-
search on the contributions of subcortical brain nuclei to human cogni-
tion and behavior. At the same time, these developments have led to
an increasing need for a high-resolution probabilistic in-vivo anatomical
atlas of subcortical nuclei. In order to fill this gap, we constructed high
spatial resolution, three-dimensional templates, using joint high accuracy
diffeomorphic registration of T1- and T2- weighted structural images from
168 typical adults between 22 and 35 years old. In these templates, many
tissue boundaries are clearly visible, which would otherwise be impossible
to delineate in data from individual studies. The resulting delineation
provides a more accurate parcellation of subcortical nuclei than current
histology-based atlases. We further created a companion library of soft-
ware tools for atlas development, to offer an open and evolving resource
for the creation of a crowd-sourced in-vivo probabilistic anatomical atlas
of the human brain.

Background & summary
Especially high spatial resolution magnetic resonance imaging (MRI) and im-
proved data pre-processing, such as non-linear registration techniques [1, 2, 3, 4],
now enable the targeted study of smaller human subcortical brain nuclei than
was previously possible. This progress has led to an increasing need for a high-
resolution probabilistic in-vivo atlas of subcortical nuclei. The need for a prob-
abilistic reference atlas is three-fold. First, several of the relevant subcortical
structures are not discernible in individual structural scans, or even when aver-
aging structural brain scans across participants in a single study. Second, uncer-
tainty about anatomical labels for subcortical structures hinders comparisons
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across studies. Third, in order to account for the small size of some subcortical
nuclei, and potential spatial inaccuracies in co-registration to standard space, it
is critical to maintain probabilistic atlas labels.

To address this, we improved upon an approach we recently developed to
create the California Institute of Technology (CIT168) probabilistic in-vivo at-
las of the human amygdala [5]. We constructed high spatial resolution, three-
dimensional templates, using joint high accuracy diffeomorphic registration of
T1- and T2-weighted structural images from 168 typical adults between 22 and
35 years old, released by the Human Connectome Project [6]. Subsequently,
we constructed eight validation templates from 84 T1w and T2w warped image
pairs, selected randomly from the full set of 168 image pairs in template space.
In each validation template, three observers (WMP, AN, and JMT) labeled sub-
cortical nuclei in the left hemisphere, using a previously agreed upon approach,
with the Allen Brain Atlas as primary reference [7, 8]. Left hemisphere labels for
each observer and validation template were mapped to the right hemisphere to
generate a bilateral labeling. Each bilateral subregion label was then averaged
over all 24 label volumes (eight validation templates with three observers). This
resulted in a bilateral probabilistic atlas with minimal left-right observer bias.

The previous CIT168 atlas of the human amygdala has already provided a
useful research tool for neuroscience studies across domains. Using a symmetric
normalization (SyN) diffeomorphic image transform to map preoperative struc-
tural scans of epileptic patients onto the CIT168 atlas, it was possible to discover
electrophysiological evidence for item-specific working memory activity in the
human amygdala [9]. Another study, with the CIT168 atlas as reference, com-
bined electrophysiological, lesion, and functional MRI data, and found evidence
that the human amygdala processes both the degree of emotion in facial expres-
sions and the categorical ambiguity of the emotion shown, and that these two
aspects of amygdala processing can be most clearly distinguished at the level of
single neurons [10]. The present extension of the CIT168 has already been used
in a recent functional MRI study, which found evidence for state value predic-
tion errors in the human substantia nigra (pars compacta), while participants
solved a Markovian decision making task [11].

The present extension of the previously released CIT168 in-vivo atlas of
the human amygdala [5] focuses on subcortical nuclei of reinforcement learning.
Research in rodents and non-human primates has identified a network of subcor-
tical nuclei at the core of cognition and behavior (for reviews, see [12, 13, 14]).
The central tenet of this research is that a network of diverse subcortical nuclei
orchestrates dopamine release in the striatum. This dopamine release imple-
ments a feedback mechanism for an individual to learn based on successes and
failures in its interactions with the environment [15, 16]. More recently, advances
in functional magnetic resonance imaging (fMRI) have enabled the search for
analogous subcortical mechanisms in humans (for reviews, see [17] or [18]).

The present CIT168 extension includes one group of nuclei that have been
found to be driving forces behind activity in the midbrain dopamine system
[14, 13, 19]. These nuclei include the hypothalamus (HTH), habenular nucleus
(HN), ventral pallidum (VeP), and the nucleus accumbens (NAC). Within the
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Figure 1: Simplified schematic illustration of subcortical nuclei and their interac-
tions during reward learning and decision making (see main text for discussion).
See Table 1 for acronyms.

dopaminergic midbrain, we labeled the substantia nigra pars compacta (SNc),
parabrachial nucleus (PBP), and the ventral tegmental area (VTA). We further
included subcortical nuclei that are, either directly or indirectly, modulated by
dopamine release, and guide behavior [20, 21, 22]. These nuclei include the
caudate nucleus (Ca) and putamen (Pu), and downstream areas, including the
external and internal segments of the globus pallidus (GPe and GPi, respec-
tively), the subthalamic nucleus (STH), substantia nigra pars reticulata (SNr),
and the thalamus. In addition, the atlas includes labels of subcortical structures
that act as landmarks. This last group includes white matter tracts running in-
between the structures of interest, and nuclei that may be misidentified as one
of the above nuclei of interest. See Figure 1 and the Method section for an
overview and detailed discussion of labeled nuclei.

In summary, we strove to create a probabilistic in-vivo reference atlas for
subcortical nuclei involved in reward learning and decision making, but not in-
cluded in existing in vivo atlases [23, 24, 25]. The current delineation provides
a finer parcellation of subcortical nuclei, with more accurate external bound-
ary definition than current histology-based atlases, when used in conjunction
with high accuracy registration methods, such as diffeomorphic warping. These
templates and delineation are intended to be an open and evolving resource for
future functional and structural imaging studies. In particular, we have created
a library of Python tools, which allow collaborative improvements of the present
atlas, both in terms of increasing the accuracy of included anatomical labels,
but also to include additional brain structures.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/211201doi: bioRxiv preprint 

https://doi.org/10.1101/211201
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods

Source data
All structural images were obtained from the Human Connectome Project (HCP)
S500 subject release, August 2014 [6], which includes 526 MRI datasets from
individual adult human subjects, including 700 µm isotropic T1-weighted (T1w)
and T2-weighted (T2w) whole brain images. The only inclusion criterion applied
was that the T1w and T2w structural images were constructed by simple aver-
aging of two single-average images following 6-parameter rigid body alignment
[26], which reduced the available sample to 208 subjects. Age and sex unbiasing
was performed by balancing the number of male and female subjects at each
integer age between 22 and 35 years old (inclusive), resulting in a final sample
of 168 individuals (84 males and 84 females, mean ± sd age in both groups =
28.9 ± 3.6 years). All structural images provided by the HCP S500 data release
were gradient non-linearity and radiofrequency (RF) bias corrected, rigid-body
AC-PC aligned, and readout distortion corrected with accurate co-registration
of the individual T2w to T1w imaging spaces [26]. Sinc and spline-based inter-
polation was used throughout by the HCP preprocessing pipeline to minimize
cumulative smoothing from repeated resampling. However, some residual blur-
ring and spatial noise correlation are inevitable in the final individual T1w and
T2w images used to construct the templates below.

Group template construction
An unbiased template was constructed using diffeomorphic registration with a
joint cost function over both T1w and T2w high-resolution 3D images from
all 168 retained subjects. All registrations were performed using the bivari-
ate symmetric normalization (SyN) algorithm implemented by the Advanced
Normalization Toolbox (ANTs) [4]. Initial unbiased seed templates were con-
structed for T1w and T2w volumes by simple averaging across all subjects as
all volumes were already rigid-body AC-PC aligned (i.e. without linear scaling)
by the minimal HCP structural preprocessing pipeline.

The initial unbiased bivariate template was refined iteratively by the con-
catenation of affine and diffeomorphic registrations of individual T1w and T2w
structural images to their respective templates generated by the previous iter-
ation. A single diffeomorphic mapping was optimized for each individual brain
using a joint cross-correlation similarity metric with equal weighting to the T1w
and T2w images [27]. Only a single diffeomorphism is required as the individual
T1w and T2w images were accurately coregistered during HCP preprocessing
[26]. The velocity field of the diffeomorphic transform was regularized using a
local Gaussian-weighted kernel with σ = 3.0 voxels to avoid overfitting the warp
field to image noise [28]. It should be noted that the ANTs template construc-
tion pipeline includes normalization to the whole volume mean intensity and a
Laplacian edge enhancement filter by default. The purpose of the edge enhance-
ment is to compensate for blurring induced by intensity averaging alone, and
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serves the same purpose as the blurring inversion proposed by Avants et al. for
the symmetric group normalization (SyGN) algorithm in [29]. Both approaches
result in edge-enhanced templates that emphasize both the shape and appear-
ance of anatomical structures. The template refinement was terminated after
four iterations, resulting in AC-PC aligned T1w and T2w unbiased templates
with 700 µm isotropic spatial resolution. These templates are subsequently
referred to as the CIT168 templates.

Probabilistic atlas construction
Some of the included subcortical nuclei are difficult to delineate in individ-
ual structural images from the HCP dataset. In contrast, most nuclei become
sufficiently well-defined, either directly, or because of well-defined surrounding
subcortical structures. This enables manual labeling in unbiased bivariate tem-
plates generated from approximately 80 or more registered individual structural
images [5]. The final iteration of the joint template construction results in 168
T1w and T2w image pairs warped from individual spaces to the template space,
which are then averaged to generate the final T1w and T2w templates. Con-
sequently, we constructed validation templates from 84 T1w and T2w warped
image pairs, selected randomly from the full set of 168 image pairs in template
space. The unselected 84 image pairs were used to construct complementary
T1w and T2w templates, which were also used for labeling validation. This
process was repeated with new random samples to generate eight (four pairs
of complementary) T1w and T2w templates for manual labeling by three ex-
perienced observers. The number of validation templates was considered to be
a reasonable balance between total labeling time (typically 4 to 8 hours per
template per observer) and the need for intra-rater validation.

All three observers (AN, JMT and WMP) labeled subcortical nuclei in the
right hemisphere in each of the eight validation templates using an agreed upon,
ordered approach, with the Allen Brain Atlas as primary reference. The joint
unbiased T1w and T2w templates were viewed simultaneously in ITK-SNAP
(version 3.6.0) [30] using a yoked 3D cursor allowing tissue volumes to be defined
by referencing both contrasts. Labeling was performed in the right hemisphere
only. Because each of the eight validation templates were constructed in the
master CIT168 template space (see above), the probabilistic labels for each
division were constructed by simple averaging over all manually labeled volumes.

Right-hemispheric labels for each observer and validation template were
mapped to the left hemisphere using the following approach. Each T1w and
T2w validation template was reflected about the mid-sagittal plane and warped
to its unreflected version using a joint cost function affine and diffeomorphic
transform. The combination of a reflection, followed by an affine and then a dif-
feomorphic transform (reflection warp) results in an anatomically constrained,
high accuracy mapping of points in the right hemisphere to their homotopic
counterparts in the left hemisphere. The reflection warp is then applied to the
observer labels with nearest neighbor interpolation to generate a bilateral label-
ing. Each bilateral subregion label was then averaged over all 24 label volumes
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(eight validation templates with three observers). This resulted in a bilateral
probabilistic atlas with minimal left-right observer bias (any unique observer
variations in the left hemisphere would be duplicated in the right hemisphere).
Labeling only one hemisphere is not without precedence in the subcortical atlas
literature [31, 32]. The accuracy of reflection warping is addressed in previous
work [5].

Region delineation
The primary reference for regional delineation was the Allen Institute Adult 34
year old human atlas available at http://brain-map.org. Tissue boundaries were
characterized as either explicit, with clear contrast between neighboring regions,
or implicit, where low tissue contrast forces the observer to use surrounding
landmarks to estimate the boundary location when labeling (see Figure 2).

The present extension of the CIT168 atlas consists of 16 gray matter re-
gions labeled by three observers in eight templates. Template construction is
described in detail in [5]. The regions and the approach to delineation for each
is detailed below (see also Figure 3). The following paragraphs provide a dis-
cussion of labeling criteria, as well as the motivation for including them in the
current release. For the majority of subnuclei, this motivation is based on the
established role of each of these nuclei in reinforcement learning in non-human
animals.

Caudate Nucleus (Ca)

The Ca receives strong dopaminergic innervation from the ventral tier of the
SNc [33]. It receives synaptic input from prefrontal areas, and also exerts a
modulatory influence over prefrontal areas, via the output nuclei (see below) of
the basal ganglia [34, 35]. The Ca is involved in various goal-directed behavior
and cognitive functions [36, 37, 38]. The Ca is well-defined in both T1w and
T2w templates.

Putamen (Pu)

The Pu receives strong dopaminergic innervation from the ventral tier of the
lateral SNc [33]. The Pu is critical for the execution of motor behavior [39, 40].
The Pu is well-defined in both T1w and T2w templates. We include the ventral
putamen in the main Pu label, rather than as a separate anatomical label.

Nucleus Accumbens (NAC)

The NAC is bidirectionally interconnected with the VTA and the dorsal tier of
the SNc [33]. It thus is both the target of strong dopaminergic innervation, and
also modulates dopamine release in dorsal striatal areas [33]. The boundaries
between the nucleus accumbens and the caudate and putamen respectively are
indistinct, but not entirely invisible.
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Figure 2: Example explicit (solid lines) and implicit (dashed lines) boundaries
between the red nucleus (RN), parabrachial pigmented nucleus (PBP), substan-
tia nigra (SNc and SNr) and subthalamic nucleus overlayed on the CIT168 T1w
and T2w templates [5]. The isotropic voxel size is 700 µm. See Table 1 for
definitions of label acronyms.
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Figure 3: Coronal montage of probabilistic subcortical nuclei that were added
in this release of the CIT168 atlas, overlaid on the T1w template. See Table 1
for definitions of label acronyms.
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Ventral Tegmental Area (VTA)

The VTA is rich in dopamine neurons, and triggers dopamine release in the
ventral striatum [33, 41]. The VTA is the target of projections from the shell of
the nucleus accumbens [33], as well as from the central nucleus of the amygdala
[42]. The VTA is ventral to the RN and ventromedial to the PBP. The boundary
with the RN is well defined (explicit boundary), but the transition from PBP to
VTA cannot be resolved in either T1w and T2w templates and must be inferred
(implicit boundary).

Parabrachial Pigmented Nucleus (PBP)

Similar to the VTA, the PBP is rich in dopamine neurons [43], and also projects
mainly to the ventral striatum [41]. The PBP is visible as a dark band in the
T1w templates, dorsomedial to the SNc. The PBP has a high contrast boundary
with the red nucleus dorsomedially and a lower contrast boundary with the SNC
ventrolaterally.

Substantia Nigra, pars compacta (SNc)

The SNc is lateral to the VTA, between the SNr and the PBP. Similar to the
VTA, it contains predominantly dopaminergic neurons, and triggers dopamine
release in the striatum [33]. Previous work has shown an important distinction
between a dorsal and a ventral tier within the SNc [33]. However, it is not
possible to distinguish these tiers in vivo in individual structural images by
MRI. The SNc is visible in the T1w templates as a semi-continguous, irregularly-
shaped, light band.

Substantia Nigra, pars reticulated (SNr)

Within the frontal cortical - basal ganglia circuitry [34], the SNr receives in-
hibitory projections from the striatum [44]. Neurons in the SNr are tonically
active and exert tonic inhibition of the thalamus [44]. Therefore, activation
of striatal projection neurons cause a disinhibition of the thalamus, which is
thought to produce a gating function [45, 46, 47] for working memory and mo-
tor programs in cortical areas [48]. The SNr is visible as a darker band in the
T1w templates, ventral to the SNc.

Globus Pallidus (GP)

The internal and external segments of the globus pallidus are considered the
output nuclei of the basal ganglia [39, 49]. Both the internal (GPi) and external
(GPe) segments of the globus pallidus have well-defined margins in both the
T1w and T2w templates.
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Subthalamic Nucleus (STH)

The tonic activation of neurons of the SNr is at least partially attributable to
excitatory input from the STH [39, 50]. The STH is well-defined in both the
T1w and T2w templates. Because the ventromedial boundary of the STN with
SNr and PBP is indistinct in the T2w templates, segmentation of the STH
relied on combined evaluation of the T1w and T2w contrast, as this boundary
is clearly visible in the T1w contrast.

Hypothalamus (HTH)

The HTH is involved in a diverse set of functions that are beyond the scope of
this report. Briefly, it is involved in hormone release, control of food intake, fear
processing, and sexual behavior. Within the scope of reinforcement learning,
the lateral HTH is thought to mediate the delivery of rewards [51], and to cause
dopamine release in correspondence with a reward prediction error [52]. The
hypothalamus is internally heterogeneous in both T1w and T2w templates and is
best defined in relation to external landmarks including the anterior commissure,
mammillary nucleus, extended amygdala, sublenticular fascicle and thalamus.

Habenular Nuclei (HN)

The HN have been found to exert a modulatory influence over the dopaminergic
midbrain [53]. The lateral HN has been hypothesized to play an role during
aversive learning [54]. In the context of reward learning, it has been shown to
be involved in predicting the exact timing of reward delivery [55, 54, 56]. The
habenular nucleus, or habenula, is well-defined in both T1w and T2w templates.

Neighboring structures
Several neighboring structures were also included in the probabilistic atlas, so
that they could be used as landmarks during atlas construction, but also for
researchers or students who are using the atlas for their work. The red nu-
cleus (RN) is well defined in the T2w template but almost invisible in the T1w
templates. It is an important landmark for the PBP, SNr, SNc and VTA la-
bels. The mammillary nucleus (MN) is well defined in both T1w and T2w
templates. The extended amygdala (EXA) consists of the bed nuclei of the
stria terminalis (BNST) and the sublenticular extended amygdala (SLEA). The
interstitial nucleus of the posterior limb of the anterior commissure, typically
considered part of the extended amygdala, is poorly resolved by MRI and is
excluded accordingly. The anterior commissure (AC) is well-defined in the T1w
template and separates GPe/i from VeP. We further delineated the fornix (FX),
as it provides a useful reference structure for the hypothalamus (HTH), which is
otherwise somewhat indistinct. Similarly, we also labeled the optical tract (OT).
The ventral pallidum (VeP) is internally heterogenous in both T1w and T2w
templates, partially due to its relatively small size, and edge effects with sur-
rounding tissue introduced during midspace template construction (see Methods
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Label Acronym Volume (µl)

Putamen Pu 5224
Caudate Ca 4493
Nucleus Accumbens NAC 397
Extended Amygdala EXA 134
Globus Pallidus, External GPe 696
Globus Pallidus, Internal GPi 383
Ventral Pallidum VeP 68
Ventral Tegmentum VTA 33
Substantia Nigra, Pars Compacta SNc 132
Substantia Nigra, Pars Reticulata SNr 261
Parabrachial Pigmented Nucleus PBP 99
Red Nucleus RN 301
Hypothalamus HTH 602
Subthalamic Nucleus STH 135
Habenular Nuclei HN 29
Mamillary Nucleus MN 63

Table 1: Volumes of subcortical nuclei: We derived the volume of each
subcortical nucleus of the left hemisphere in microliters by spatial integration
of label probabilities.

“Group template construction”). However, it is not entirely indistinct, and can
be well localized because of surrounding nuclei. Rostrally, it borders with the
nucleus accumbens. Ventrally, it borders with the hypothalamus and substantia
innominata (nucleus basalis of meynert). Dorsally, it borders with the anterior
commissure.

Volumes of subcortical nuclei
In order to assess the size of the different subcortical nuclei, we estimate the
volume of each of the subcortical nuclei by spatial integration of the their voxel-
wise probabilities over the entire volume (Table 1).

Cumulative probability distribution of each atlas label
The construction of a probabilistic rather than deterministic atlas helps encode
observer uncertainty in a natural and well-established way. The cumulative
density distribution of probabilistic atlas labels provides a representation of this
uncertainty (Figure 4).
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Figure 4: Cumulative probability distributions: To provide a representa-
tion of the uncertainty around each subcortical nucleus label, we calculated the
cumulative probability distribution across the membership probability for each
voxel associated with a subcortical label. Pu and Ca are examples of labels with
a high degree of both inter- and intra-rater similarity, while the more convex
cumulative distributions observed for PBP and VTA reflect increased inter-rater
variance as the label volume decreases and the tissue boundaries become less
reliably defined.
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Code availability
Tools and utilities for generating probabilistic atlases from segmented templates,
and for evaluating inter- and intra-rater reliability, are maintained in a publicly
available code repository https://github.com/jmtyszka/atlaskit.

Data Records
The probabilistic atlas, including anatomical images, T1w and T2w templates,
as well as segmentations of labels are available at the Open Science Framework
(OSF) http://osf.io/jkzwp. We invite contributions by other researchers, in
terms of alternative opinions on labeling included subcortical nuclei, as well as
inclusion of additional subcortical nuclei.

Technical Validation
Intra- and inter-rater labeling reliability between equivalent labels was assessed
using two similarity measures: 1. the Dice coefficient, D, (also known as the
Sörensen index), and 2. the directed or forward Hausdorff distance, H. The
Dice coefficient, D, is defined as a ratio of the intersection volume of two labels
to the mean volume of the two labels, in the range [0,1] [57]. To calculate H
between two labeled regions, A and B, we first determine for each voxel in A
the minimum Euclidean distance to any voxel in B, and then determine the
maximum of all these minimum distances. This definition of H is sensitive to
the ordering of A and B, and is therefore typically referred to as the directed
Hausdorff distance [58]. H has identical units to the voxel dimensions, and is
a measure of proximity between two regions which takes account of shape and
orientation. It finds frequent application in machine vision to locate a template
object within a scene [59]. Inter- and intra-rater Dice and Hausdorff metrics
are conveniently viewed as matrices for each label. Example inter-rater Dice
and Hausdorff metrics for the first template are shown in Figures 5 and 6 intra-
rater labeling reliability for observer AN is shown in Figure 7. Full similarity
metrics for all observers and templates are provided in the OSF repository (see
Data Citations below). Summary statistics for inter- and intra-rater similarity
metrics are presented in Table 2 and 3.

It should be noted that the Dice coefficient is sensitive to the average volume
of the two regions being compared. As the average volume decreases, small
errors in overlap begin to dominate, until in the extreme of a single voxel label,
an overlap error of only one voxel results in a Dice coefficient of zero. We
therefore do not expect Dice coefficients for small volume labels to approach
those typically encountered for large volume labels, such as brain masks, which
routinely exceed 0.95 [60]. The Hausdorff distance is sensitive to small outlier
regions present in one label only, so that even a single voxel at a distance
from the main label region can skew the final metric if it is not present in the
compared label volume. Taken together, the two metrics provide complementary
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Dice Coefficient Hausdorff Distance (mm)
Label Name Mean SD Mean SD
Pu 0.94 0.04 2.67 2.12
Ca 0.93 0.05 3.64 3.39
NAC 0.81 0.15 2.11 1.85
EXA 0.75 0.18 2.11 2.07
GPe 0.88 0.09 1.25 1.03
GPi 0.89 0.08 1.11 0.91
VeP 0.69 0.25 1.20 0.97
VTA 0.55 0.35 2.57 2.31
SNc 0.77 0.17 1.61 1.36
SNr 0.79 0.16 1.72 1.40
PBP 0.62 0.28 2.57 2.53
RN 0.92 0.07 0.79 0.61
HTH 0.81 0.14 2.51 2.16
STH 0.84 0.13 1.09 0.95
HN 0.87 0.10 0.69 0.58
MN 0.85 0.12 0.81 0.65

Table 2: Inter-rater Similarities: Summary statistics for inter-rater Haus-
dorff distances and Dice coefficients averaged over all observers and templates.
See Table 1 for acronyms.

information about label shape, positioning and overlap similarities within and
between observers and between atlases.

Usage Notes
We strongly recommend using the probabilistic labels as weights for calculations,
rather than converting to maximum-likelihood or thresholded deterministic la-
bels. One of the main reasons for this recommendation is that the SNc/SNr
boundary is highly inter-digitated in individual brains, a feature that is entirely
eliminated by averaging in the T1w and T2w templates. Consequently, deter-
ministic labels (binary or integer valued) give a false impression of precision for
the SNr/SNc boundary when mapped back to individual brains, and should be
avoided where possible.

We ask researchers who would like to contribute to this evolving resource
to visit the project on the open science framework (OSF) http://osf.io/jkzwp.
Briefly, contributers will be asked (1) to download the validation templates, (2)
to label their brain region of interest in their preferred tool (e.g. ITK-SNAP),
to then either (3a) upload the labeling files to the OSF project page, or to (3b)
send them to the corresponding author.
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Figure 5: Inter-rater Dice Coefficients: Means (top) and and standard de-
viations (SD; bottom) of Dice similarity coefficients among raters of the 16 main
subcortical nuclei included in this atlas. Each row and column correspond to one
rater (AN, JMT, and WMP). Each rater labeled subcortical nuclei in each of the
eight validation templates. Means and standard deviations were calculated by
aggregating Dice similarity coefficients across templates. Underlying inter-rater
Dice coefficients for the different validation templates can be found in the OSF
repository (see Data Citations). See Table 1 for acronyms of subcortical nuclei.
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Figure 6: Inter-rater Hausdorff Distances: Means (top) and and standard
deviations (SD; bottom) of Hausdorff distances among raters of the 16 main
subcortical nuclei included in this atlas. Each row and column correspond to
one rater (AN, JMT, and WMP). Each rater labeled subcortical nuclei in each of
the eight generated templates. Means and standard deviations were calculated
by aggregating Hausdorff distances across templates. Underlying inter-rater
Hausdorff coefficients for the different validation templates can be found in the
OSF repository (see Data Citations). See Table 1 for acronyms.
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Figure 7: Example Intra-rater Similarities: Intra-rater Hausdorff (top) dis-
tance and Dice (bottom) coefficient matrices for each atlas label for observer
AN. Each row and column of the matrix represents the results of pairwise com-
parisons among the eight validation templates. Analogous validation graphs for
the other raters can be found in the OSF repository (see Data Citations). See
Table 1 for acronyms.
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Dice Coefficient Hausdorff Distance (mm)
Label Name Mean SD Mean SD
Pu 0.95 0.03 2.24 1.15
Ca 0.94 0.03 2.08 1.08
NAC 0.83 0.10 1.80 1.03
EXA 0.78 0.10 1.87 1.28
GPe 0.90 0.06 1.36 0.82
GPi 0.89 0.06 1.21 0.63
VeP 0.70 0.14 1.33 0.76
VTA 0.71 0.13 1.17 0.59
SNc 0.75 0.11 1.71 0.92
SNr 0.80 0.08 1.74 0.97
PBP 0.72 0.13 1.76 0.95
RN 0.93 0.04 0.90 0.43
HTH 0.83 0.07 2.20 1.11
STH 0.82 0.09 1.30 0.74
HN 0.87 0.07 0.81 0.43
MN 0.86 0.08 0.83 0.41

Table 3: Intra-rater Similarities: Summary statistics for intra-rater Haus-
dorff distances and Dice coefficients averaged over all observers and templates.
See Table 1 for acronyms.
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