
WorMachine: Machine Learning-Based Phenotypic Analysis Tool for 

Worms 

Adam Hakim1,+,*,Yael Mor1,2,+,* ,Itai Antoine Toker2, Amir Levine3, Yishai 

Markovitz and Oded Rechavi1,2,* 

1Sagol School of Neuroscience, Tel Aviv University, Israel.  

²Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv 

University, Israel. 

3School of Medicine-IMRIC-Biochemistry and Molecular Biology, Hebrew 

University of Jerusalem, Israel.  

*corresponding authors: adamhakim@mail.tau.ac.il, yaelmor@mail.tau.ac.il, 

odedrechavi@gmail.com. 

+These authors contributed equally to this work. 

Abstract 

While Caenorhabditis elegans nematodes are powerful model organisms, 

quantification of visible phenotypes is still often labor-intensive, biased, and 

error-prone. We developed “WorMachine”, a three-step MATLAB-based 

image analysis software that allows automated identification of C. elegans 

worms, extraction of morphological features, and quantification of fluorescent 

signals. The program offers machine learning techniques which should aid in 

studying a large variety of research questions. We demonstrate the power of 

WorMachine using five separate assays: scoring binary and continuous 

sexual phenotypes, quantifying the effects of different RNAi treatments, and 

measuring intercellular protein aggregation. Thus, WorMachine is a “quick 
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and easy”, high-throughput, automated, and unbiased analysis tool for 

measuring phenotypes.

 

Background 

Caenorhabditis elegans nematodes are powerful genetic model 

organisms which are instrumental for research of a wide-range of biological 

questions. It is relatively simple to grow C. elegans under tightly regulated 

environmental conditions, and since the worm has a short generation time (3 

days), and a large brood size (±250), large sample sizes and statistical power 

are easily obtained. In many cases, however, when phenotypic features are 

examined, the advantage of having a large sample size comes with great 

cost, because of the need to manually analyze the features of interest in the 

tested animals. While in the last several years very useful programs for 

quantifying C. elegans’ phenotypes from still images were released, such as 

WormSizer [1], Fiji [2], and QuantWorm [3], the analysis process is not fully 

automated, and not all informative features can be analyzed simultaneously in 

one package.  

We created WorMachine as a fast, friendly, and high-throughput image 

processing platform. WorMachine enables automated calculation of many 

morphological and fluorescence features, and accessible machine learning 

techniques for higher-level features-based analysis, such as classification and 

phenotype scoring. WorMachine is entirely MATLAB-based, and combines 

the capabilities of different programs into one software; the user-friendly 

interface was designed to suit investigators with no background in MATLAB, 

image processing, or machine learning, and requires no additional plugins or 
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installations. WorMachine is not limited to any specific image format, 

resolution, acquisition software, or microscope. 

 

Implementation 

WorMachine’s workflow includes three sequential programs: Image 

Processor, Feature Extractor, and Machine Learner (Fig. 1). WorMachine’s 

codes, demonstration video, and a sample TIFF image to try the program 

with, are accessible through the supplied manual, available in the 

Supplementary Materials. 

The Image Processor uses still bright-field images of worm plates as 

input (acquired using any typical image acquisition microscope). Fluorescent 

images can similarly be analyzed together with overlapping bright-field 

acquisitions. The image acquisition procedures and parameters which 

enabled optimal processing of images in our hands are detailed in the ‘Online 

Methods’ section. Identifying “real” worms from other elements is normally a 

painstaking stage that delays image analysis. The Image processor of 

WorMachine binarizes, identifies, and crops individual worms from the original 

image automatically.  

The cropped worm masks are then loaded to the Feature Extractor, 

where the worms’ morphological and fluorescent features are analyzed 

individually. During this stage of the analysis, potentially faulty and damaged 

worm images are flagged by a deep learning network designed particularly for 

this task, and made available for the investigator’ review (in case these should 

be removed). The Feature Extractor also enables tagging different worms with 

labels according to the user’s needs, such as assigning worms to different 
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conditions or groups. For example, the worms’ sex can be labeled, and this 

information can be used for creating a training dataset for later classification.  

Finally, the Machine Learner builds on the obtained features and labels 

to conduct binary classification using Support Vector Machine, or visualization 

and scoring of high-dimensional data and dimensionality reduction using 

“Principal Component Analysis” (PCA) or "t-Distributed Stochastic Neighbor 

Embedding" (t-SNE) [4,5]. 

 

Image Processor  

WorMachine is best suited to handle TIFF images with one or multiple 

channels, which can have a maximum size of about 500 megabytes, 

depending on the memory of the user’s computer. However, it also supports a 

wide range of additional formats used by biologists, as it incorporates the Bio-

Formats Library [6] for image reading. Imported images are automatically 

gray-scaled and contrast-adjusted to accentuate the differences between 

worms and the background, and accordingly to improve the detection of 

nematodes. The program generates a binary mask based on the imported 

image, using adaptive local thresholding [7], which is then “cleaned” and 

segmented using MATLAB’s own image processing toolbox (for details, see 

“Online Methods”). Individual worms within a likely size are automatically 

identified, smoothed, filled, and cleaned, using standard image processing 

procedures included in MATLAB’s Image processing toolbox. All individual 

worm images are numbered and saved to a folder based on their respective 

image channel (BF, Fluorescence, Masks, Etc.). This procedure may be 
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applied automatically on multiple images, using the “Batch Analysis” option 

(see Manual and demo movie, in the Supplementary Materials). 

 

Feature Extractor  

Once individual worm masks are imported into this program, the 

analysis may be performed on all channels in parallel. All morphological and 

fluorescence measurements currently available in WorMachine are detailed in 

Table 1, and each extraction technique is detailed in the “Online Methods” 

section. After extraction, objects which deviate in area size, length, or 

skeleton disfigurement are flagged for manual inspection, together with 

images identified as “noise” by the deep-learning network. Thus, the user may 

further clean and refine her database. The proportion of worms excluded by 

this step is detailed in Supplementary Table 1.  

 

Machine Learner 

At this stage, data extracted from the previous stages can be analyzed 

with different Machine-Learning techniques. First, users may visually review 

and select features relevant to their analysis. Next, the user can choose 

between two techniques: (1) SVM for binary classification based on supplied 

or user-generated training data, (2) High-dimensionality visualization and 

scoring of complex phenotypes based on various features using PCA or t-

SNE. The algorithms and their use are detailed in the “Online Methods” 

section, and examples for different applications are provided in the “Results” 

section. 
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Results  

We examined WorMachine’s ability to facilitate analyses of multiple 

different phenotypes. First, we describe the use of the software for 

classification of worm populations based on binary sex phenotypes (males or 

hermaphrodites). Then we demonstrate, using a mutant that displays a 

continuous sexual phenotype, that WorMachine can accurately create a 

common scale of worm masculinization. Next, we show how the software can 

be used to quantify RNAi-induced gene silencing, protein aggregation, and 

puncta distribution.  

  

Binary classification of the worms’ sex  

C.elegans nematodes have two sexes – the great majority of the 

worms are self-fertilizing XX hermaphrodites, and a small minority (0.1%-

0.2%) are X0 males [8]. WorMachine can be used to calculate in a high-

throughput and precise manner the sex ratios in different strains and 

conditions. To distinguish between the sexes WorMachine uses 

morphological and brightness features that differentiate between 

hermaphrodites and males, and also, when fluorescent reporters are 

available, sex-specific expression patterns. The mutant worms that we used 

here (him-5(e1467); zdIs13 [tph-1p::GFP] IV]), segregate many males, and 

express GFP in the serotonergic neurons. Mutations in him-5 increase the 

frequency of XO males (to about 30%) by elevating the frequency of X 

chromosome nondisjunction [9]. The tph1p::GFP transgene allows 

distinguishing the worms’ sex as it drives GFP expression in males-specific 

and hermaphrodites-specific neurons: the hermaphrodite-specific neuron 
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(HSN), the males ventral cord motor neurons (CPs), and some tale-specific 

neurons [10,11]. We classified worms based on morphological, brightness, 

and fluorescent features (Supplementary Fig. 1), and reached 98% 

classification accuracy when we trained on all features using 1800 worms. 

Figure 2 displays the true positive rates of the machine-learning program, 

based on training sets of different sizes (30 to 2000 worms), with or without 

taking advantage of the sex-specific fluorescence pattern. 

 

Quantifying a continuous sex phenotype  

Continuous morphological phenotypes are common, and due to their 

complex nature, their quantification is often challenging. We used the CB5362 

strain, which is mutated in the sex determination genes xol-1 and tra-2. These 

worms display an intersex phenotype, which depends on temperature [12]. 

We used WorMachine to determine the sexual phenotype (= degree of 

masculinization) of each worm, based on multiple features: The shape of the 

tale (angle evaluation) [13], the presence or absence of eggs in the gonad 

(eggs bearing worms have larger mid-width) the worm's length and area 

(males are smaller than hermaphrodites), the head and tail brightness (males 

have darker tales in bright field) (Supplementary Fig. 1). We grew CB5362 

worms at three different temperatures (15, 20 & 25 degrees Celsius) and 

imaged them at the first day of adulthood. The program determined the sex of 

each worm, based on a sexual phenotype spectrum ranging from male to 

hermaphrodite, using dimensions reduction. The technique yielded scores 

that were concurrent with previous literature, showing higher masculinity 

scores for higher temperatures (Fig 3, Supplementary figures 2,3). 
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Quantifying RNAi-induced phenotypes 

 We used WorMachine to quantify the RNAi response of worms fed with 

anti-dpy-11 or anti-mCherry dsRNA-expressing bacteria.  

anti-dpy-11 RNAi: Knockdown of dpy-11 results in a “Dumpy” phenotype 

(lower length) [14]. In addition to using wild-type worms (N2), we examined 

the RNAi response also in rrf-3(pk1426) mutants, which are hypersensitive to 

RNAi (exhibit an Enhanced RNAi, or Eri, phenotype) (Simmer et al., 2002). As 

can be seen in Fig. 4.A, WorMachine successfully captures the stronger 

response to RNAi of rrf-3 mutants, in comparison to N2 wild-types (p<10-4). 

Anti-mCherry RNAi: We used worms that express mCherry 

ubiquitously (EG7841 oxTi302 [eft-3p::mCherry::tbb-2 3'UTR + Cbr-unc-

119(+)], [15]. Worms were treated with dsRNA-expressing bacteria grown to 

different O.D. values (to obtain a gradient of silencing efficiencies), and whole-

worm CTCF was measured. As expected, worms exposed to bacteria grown 

to higher O.D values, showed lower CTCF values which reflect greater levels 

of silencing (p<10-4) (Fig. 4.B). The differences in CTCF values (silencing 

levels) that were measured by WorMachine were comparable to the 

differences measured when using ImageJ (Supplementary Fig.4). 

 

Quantification of intercellular protein aggregation  

Protein aggregation can be toxic, and is a hallmark of many diseases 

[16]. The Cohen lab (The Hebrew University) studies the cellular mechanisms 

of polyglutamine toxicity, and agreed to test whether WorMachine can be 

useful for quantifying the aggregation of polyglutamine proteins. Importantly, 

the analysis of this phenotype and the acquisition of the data was done 
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outside of the Rechavi lab, using a different microscope, and by non-Rechavi 

lab members (Amir Levine, from the Cohen lab). The transgenic AM140 worm 

strain expresses a polyglutamine protein (35 repeats) tagged with the Yellow 

Fluorescent Protein (polyQ-YFP) in body wall muscles [17]. These animals 

form visible polyglutamine puncta that accumulate in an age-dependent 

manner. The sizes and quantity of these puncta serves as a measure for toxic 

polyglutamine aggregation [17,18]. The large variability of puncta quantities 

among worms in a population, and the large differences in puncta sizes within 

each individual worm, normally requires the collection of large data sets to 

achieve reproducible and consistent results. WorMachine was able to 

measure the number and size distributions of polyQ-YFP in a high-throughput 

manner. The abundance of polyQ35-YFP puncta increases with age (in 

accordance with the literature), while the relative sizes of polyQ35-YFP 

puncta decreases (Fig.5). The differences in the number of puncta between 

the different experimental conditions (different days) that were identified 

manually were also identified by WorMachine (Supplementary Fig 4). 

 

Conclusions  

WorMachine offers the nematode research community an easy-to-

used, automated, accurate, and unbiased methodology to analyze 

morphological and fluorescent worm features from images obtained using 

standard microscopes. The program analyzes images in three steps, 

detection of worms, extraction of features, and machine-learning applications. 

The software has a modular design in each step that is adaptable to user-

specific requirements. 
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Importantly, WorMachine also includes a deep-learning neural network 

that recognizes, flags, and omits non-suitable objects, to ensure a high level 

of quality for the users’ generated data. The use of the machine-learning 

algorithms can uncover new information about the data, that would be hard to 

reveal using standard analyses. The software is user-friendly, free, and can 

be edited by any user, as it is implemented in MATLAB. There are many more 

possible applications for WorMachine, in addition to quantification of the 

biological features that we analyzed in this paper, and hopefully many users 

would find this software helpful in the near future.  
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Online Methods 

Preparation of Worms for Imaging  

Worms were synchronized at each generation using one of two 

standard ways: (1) Mothers were allowed to lay eggs for a limited span of 24 

hours, or (2) by bleaching (“egg-prep”) [19]. Adult worms were washed 3 

times to get rid of bacteria (OP50) residues. Worms were left in ~100 

microliter of M9 buffer and paralyzed via the addition of Sodium Azide (final 

concentration of 25-50mM). The paralyzed worms were transferred to imaging 

plates and then physically separated from each other using a platinum-wire 

pick. Separation of the worms is important for allowing the software to 

correctly process each worm individually. The imaging plates were 60mm 

petri dishes filled with 8mL of modified transparent NGM (2% Agarose, 0.3% 

NaCl, 5mM K2PO4, 1mM CaCl2, 1mM MgSO4). 

 

Microscopy Image Acquisition 

Images were taken on an Olympus IX83 microscope, using 

fluorescence excitation with a LED light source on two channels: Green 

Fluorescent Protein (GFP) (FITC/Cy2) and mCherry Fluorescence. For bright 

field (BF) imaging, a relatively long exposure time was used for trails erasure 

and contrast was increased to better differentiate between worms and 

background. Pictures were taken with 4X/0.75 Universal Plan Super 

Apochromat objective. 

For the Protein aggregation assays images were acquired using a Nikon 

SMZ18 stereoscope fitted with 1X objective, set-up to capture both bright-field 

illumination and YFP fluorescence. 
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C. elegans Strains  

The C. elegans strains employed in this work are as follows: wild-type Bristol 

N2 strain, BFF23: CB1467 him-5(e1490) V; zdIs13 (tph-1p::GFP) IV, CB5362: 

tra-2(ar221) II; xol-1(y9) X, AM140: rmIs132 (unc-54p::Q35-YFP) I, NL2099: rrf-

3 (pk1426), EG7841: oxTi302 [eft-3p::mCherry::tbb-2 3'UTR + Cbr-unc-

119(+)]. 

 

RNAi Treatment.  

We used a standard RNA interference (RNAi) feeding protocol, as 

previously described [19]. In each stage of the different experiments, worms 

were cultivated either on HT115 bacteria that transcribe a specific dsRNA 

(e.g., targeting mCherry or dpy-11) or on control HT115 bacteria that contain 

only an “empty vector” that does not lead to dsRNA transcription. The NGM 

plates contained IPTG for induction of dsRNA expression. The offspring which 

hatched on these plates were examined.  

 

Image Binarization, Cleaning & Segmentation  

A mask image is produced by applying adaptive local thresholding [7], 

using the free parameters ‘neighborhood’ and ‘threshold’. The first determines 

the number of pixels around a given pixel that would be considered when 

deciding its value, while the second sets the relative intensity for thresholding 

the given pixel. The mask image is a matrix of equal size, as the original 

image, containing Ones where a suspected worm is present, and Zeros in the 

background. The filter’s parameters, ‘neighbors’ and ‘threshold’, may be 

adjusted manually, though several default recommended presets are offered, 
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per the image’s resolution. After binarization, objects with areas smaller than 

a specified value will be deleted, including objects touching the edges of the 

image, which are unlikely to be whole worms. All the objects in an image are 

identified using MATLAB’s “regionprops” function, and are considered worms 

only if their area is within a specified relative range.  

 

Flagging Faulty Worms  

Aberrant worms are flagged using two methods. First, the program 

locates outliers - worms with extremely large or small areas or lengths, or with 

non-continuous skeletons. Then, a C-NN network developed particularly for 

this task is used. This network has been trained on over 8000 mask images, 

half of valid worms and half with a variety of faulty features. New mask 

images are first padded and rescaled to fit the network, and then classified 

into “Worm” or “Non-Worm” categories, clearly marked for the users’ 

convenience. 

 

Morphological Measures  

The calculation of the worms’ morphological features includes several 

steps. First, the worm is skeletonized to a single line using the “bwmorph” 

function, which is then cleaned and pruned from branches to obtain the 

worms’ straight skeleton. Afterwards, the worms’ edges are located using the 

“edge” function with the “Sobel” technique. A worm’s area is calculated using 

the “bwarea” function on the mask image, which is then multiplied by pixel 

height and pixel width. Its length is calculated by using the same function on 

the skeleton, which is then multiplied by pixel width. A pixel’s height and width 
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is given as editable input in the program’s interface. Thickness is calculated 

by dividing the area by the length. Middle-width is computed using our own 

“cross_section” function, which locates the length of the worm’s cross section 

which is perpendicular to the pixel in the exact center of the skeleton. Lastly, 

the extraction of head and tail diameter ratios was adapted from WormGender 

[20], but with some modifications. The software calculates the mean intensity 

in the bright-field image around the two ends of the worm’s skeleton. It was 

previously shown [21] that ends with higher intensity are characteristic to the 

head of the worm. The first diameter of each end (D1) is the longest cross-

section found 10 pixels from the worm’s end and up to 10% of the worm’s 

length. If the longest cross section is at 10% of its length, then the length of 

the cross-section at 2.5% of the worm’s length is taken as D1. The search for 

the second diameter of each end (D2) begins 20 pixels from D1’s location, 

and continues up to 20% of the worm’s length, until the shortest cross-section 

is found. Lastly, the diameter ratio for each end is calculated by dividing D1 by 

D2. We developed this algorithm to maximize the diameter ratio of the wider 

male tails [21], without biasing against hermaphrodites’ tails, to improve 

distinctiveness between sex phenotypes. Following these adjustments our 

software distinguishes the worms’ sex successfully in 95% of the cases tested 

(see in details bellow in the Results section). 
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Fluorescent Analysis  

We applied MATLAB’s “LocalMaximaFinder” to locate the local 

maximum intensities (Peaks) throughout the image, using the adjustable 

parameters – Neighborhood and Threshold. The ‘Neighborhood’ parameter 

specifies the size of a square surrounding an identified peak, within no other 

local maxima can be considered as peaks. A large Neighborhood allows only 

the brightest and most further apart peaks to be identified, while a small 

neighborhood allows many adjacent peaks to be identified separately. The 

‘Threshold’ parameter enables control over the minimal intensity that can be 

considered as a peak, and is set by choosing the desired percentage from the 

image’s maximum intensity. The number of peaks identified, their mean 

intensity, and standard deviation are reported for each worm. In addition, Raw 

Integrated Density (RID) is calculated by summing the intensity values of all 

pixels within the worm’s area, and subtracting the mean background intensity 

multiplied by the number of pixels in the worm’s area. Lastly, Corrected Total 

Cell Fluorescence (CTCF) is calculated by subtracting the mean intensity 

within the worm from the mean intensity of its background, which is then 

multiplied by the worm’s area. 

 

Binary Classification  

This allows the creation of a Support Vector Machine (SVM) model for 

binary classification, based on a labeled data set generated by the Feature 

Extractor. Users may choose a kernel method, whether to standardize their 

data, and the number of cross validations on the data, aimed at reducing 

model overfitting. The program splits the data to a training set and a test set, 
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and performs optimization towards an appropriate SVM model. The resulting 

model may be later used to classify unlabeled data sets with similar features 

into the labels it was trained on. One may create one’s training data set by 

manually labelling worms, and then use the model created based on the data 

to classify unlabeled worms. Alternatively, one may utilize the data set to 

obtain prediction rates for various combinations of features, in order to assess 

the contribution of each feature towards accurate prediction (Fig. 2). We 

supply a trained model for the purpose of worm sex classification, but 

recommend customized labeling and training to create bespoke models that 

would better suit each lab’s specifications. 

 

Unsupervised Scoring  

"t-Distributed Stochastic Neighbor Embedding" [4], is a technique for 

dimensionality reduction that is particularly well-suited for the visualization of 

high-dimensional datasets, and gives each data point a location on a two or 

three-dimensional map. The technique is a variation of Stochastic Neighbor 

Embedding that is easier to optimize, and produces better visualizations [22]. 

This method of unsupervised learning essentially enables scoring data within 

a single common dimension, giving each sample a continuous value. The 

data is pre-processed using “Principal Component Analysis” (PCA) [5], 

reducing the dimensionality. Later, dimensionality is reduced again via the t-

SNE technique. If the data is indeed labeled, although labels are not used by 

t-SNE itself, they can be used to color the resulting plot. The algorithm’s final 

output is the low-dimensional data representation. 
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Figures Legends  

 

Figure 1. WorMachine workflow. The software includes three sequential 

programs: An Image Processor, a Feature Extractor, and a Machine Learner. 

 

Figure 2. Success rates in classifying the worms’ sex as a function of 

the number of worms used for training. Shown are results when the 

fluorescence of a reporter expressed in sex-specific neurons was taken into 

account (dark blue, dots), and when only morphological and brightness 

features were considered (light blue, triangles). The classification is based on 

these morphological features: Head BF, Tail BF, Area, Length, Midwidth, 

Thickness, Tail Ratio, and on these fluorescent features: Peak number 

(count), CTCF, and Mean peak intensity. 

 

Figure 3. A PCA visualizing the effect of temperature on the sexual 

phenotype. CB5362 worms were grown in different temperatures and imaged 

during the first day of adulthood. The PCA was calculated on scaled data and 

was based on the statistically significance features that distinguish between 

the sexes (e.g. Area, Length, Midwidth, Thickness, Tail ratio, Head BF, and 

tail BF, as Supplementary Fig 1.A). Red = 15 degrees Celsius; blue = 20 

degrees Celsius; yellow = 25 degrees Celsius. Each dot represents an 

individual worm. Upper panel, representative worm at each temperature.  

 

Figure 4. Quantification of RNAi-induced phenotypes. The worms were 

imaged during the first day of adulthood. The values for each worm were 
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divided by the mean value of the corresponding control group. Each dot 

represents an individual worm. Bars represent mean ± standard deviation. **** 

p<10-4, ** p<10-2. A. Quantification of the Dumpy phenotype following dpy-11 

RNAi treatment. N2 worms (upper panel) or rrf-3 mutants (lower panel) were 

fed with bacteria expressing an empty vector control or dsRNA 

complementary to dpy-11. B. Quantification of fluorescence intensity in whole 

animals. EG7841 worms expressing mCherry in all somatic cells were fed 

with bacteria expressing either an empty vector control or dsRNA 

complementary to mCherry. The RNAi-producing bacteria were grown to the 

optical density (O.D.) which is indicated. P0 condition: The eggs were laid on 

RNAi-producing bacteria lawns. F1 condition: The progeny of the RNAi 

treated worms, that were laid and grown on standard OP50 bacteria.  

 

Figure 5. Quantifying intercellular protein aggregation. A. Representative 

images of polyQ35-YFP expressing animals at day 2, 4, and 6 of adulthood. 

BF = bright field illumination. Fluorescent protein aggregations are marked 

with white arrows. B. The abundance of polyQ35-YFP puncta at days 2 (red, 

n=64), 4 (blue, n=37), and 6 (green, n=42) of adulthood. p<10-4. C. The 

relative sizes of polyQ35-YFP puncta per worm on days 2 (red), 4 (blue), and 

6 (green) of adulthood. Distributions of relative puncta sizes per worm at all 

ages, shown as a density plot.  
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Table Legends 

 

Table 1. Morphological and fluorescent features and their calculation  

methods.  
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