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SUMMARY 1	

Although functional metagenomics has been widely employed for the discovery of genes relevant to biotechnology 2	

and biomedicine, its potential for assessing the diversity of transcriptional regulatory elements of microbial 3	

communities has remained poorly explored. Here, we have developed a novel framework for prospecting, 4	

characterising and estimating the accessibility of promoter sequences in metagenomic libraries by combining a bi-5	

directional reporter vector, high-throughput fluorescence assays and predictive computational methods. Using the 6	

expression profiling of fluorescent clones from two independent libraries from soil samples, we directly analysed 7	

the regulatory dynamics of novel promoter elements, addressing the relationship between the “metaconstitutome” 8	

of a bacterial community and its environmental context. Through the construction and screening of plasmid-based 9	

metagenomic libraries followed by in silico analyses, we were able to provide both (i) a consensus exogenous 10	

promoter elements recognizable by Escherichia coli and (ii) an estimation of the accessible promoter sequences 11	

in a metagenomic library, which was close to 1% of the whole set of available promoters. The results presented 12	

here should provide new directions for the exploration through functional metagenomics of novel regulatory 13	

sequences in bacteria, which could expand the Synthetic Biology toolbox for novel biotechnological and biomedical 14	

applications. 15	

 16	

INTRODUCTION 17	

The study of prokaryotic transcriptional regulation is essential for understanding the molecular 18	

mechanisms underlying decision-making processes in microorganisms 1, comprising populational (e.g. colony 19	

structure, quorum sensing detection), ecological (e.g. nutrient acquisition, biomass degradation) and pathogenic 20	

behaviours (e.g. host recognition, biofilm formation). The activity of most bacterial promoters is usually dependent 21	

on the combined action of transcription factors and sigma factors in response to multiple environmental stimuli 2. 22	

For instance, in Escherichia coli, the compilation of decades of experimental data indicate that approximately 50% 23	

of its promoters are under the control of a single specific regulator, while all other genes are regulated by at least 24	

two transcription factors 3. Moreover, the recent development of experimental and large-scale sequencing 25	

techniques, together with powerful computational approaches have allowed both the discovery of insightful 26	
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information about bacterial transcriptional systems and the development of novel approaches for studying those 1	

systems in higher depth 4–7. However, despite technical innovations, most of the studies are still centred on the 2	

model organism E. coli, a single bacterial species among at least 30,000 other already sequenced 8, in an estimated 3	

total of 1 trillion species 9.  4	

With the advent of Metagenomics 10, the exploration of unculturable bacteria (approximately 99% of a 5	

bacterial community11 widely expanded genomic information, providing resourceful data about populational 6	

structures and genetic diversity in a myriad of environmental samples 12–14. Two main approaches are commonly 7	

adopted for those metagenomic studies 15: the sequence-based metagenomic approach, which relies on massive 8	

sequencing of metagenomic DNA and powerful bioinformatics tools for extracting information from the 9	

metagenomic sequences; and functional metagenomics 16,17, which directly explores the functionality of enzymes 10	

and other structural elements through a wide range of stress/substrate/product-based assays 18–21. In this context, 11	

although a large number of genes/ORFs has been discovered through the previously described approaches, the 12	

detection of novel bacterial regulatory elements using high-throughput technologies has been poorly explored, 13	

presenting so far a single well-defined method for the discovery of substrate-inducible regulatory sequences - 14	

SIGEX - 19 and a limited assay for exploration of constitutive promoters 22. This narrow range of methodologies is 15	

directly related to the biased functional search towards novel genes and to a lack of both experimental and 16	

computational tools for finding and validating promoter sequences in metagenomic libraries 23.  17	

Unravelling novel bacterial promoters is essential for understanding the regulatory diversity of 18	

microorganisms, addressing important questions, such as the abundance of both constitutive and inducible 19	

elements in a metagenomic library, the bottlenecks regarding host choices (i.e. the constrains limiting the diversity 20	

of exogenous regulatory sequences that can be recognized by different hosts) and the correlation between 21	

promoter strength, transcriptional noise and the functional role of the regulated gene/operon 23–26. Furthermore, 22	

prospecting and characterising novel regulatory sequences is crucial for expanding the current Synthetic Biology 23	

toolbox and generating novel biotechnological applications. For instance, there is a high demand for novel 24	

constitutive and inducible promoters responding to process-specific parameters imposed by a wide variety of 25	

processes, such as industrial applications, heterologous protein expression and biosensors generation 19,23,27–29.  26	
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In this context, the most common strategy for prospecting regulatory sequences is the usage of 1	

unidirectional promoter trap-vectors, which consist in transcriptional fusions between DNA fragments and a 2	

reporter gene. This method has been widely employed for assessing regulatory sequences in genomic DNA 30–33, 3	

however its application in metagenomic DNA fragments has remained poorly explored19. The main constraint 4	

regarding the use of unidirectional systems is that bacterial genomes present a large variation in the percentage 5	

of their leading-strand genes, ranging from ∼45% to ∼90% 34,35. Thus, a bi-directional promoter reporter system 6	

would be preferable, by increasing the probability of finding promoter sequences. In the present work, we have 7	

developed a novel strategy for in-depth prospection, characterisation, and quantification of accessible promoter 8	

elements from soil metagenomic samples in E. coli as a standard host.  9	

Although both constitutive and inducible promoters were potentially detectable by this method, we have 10	

focused exclusively on the study of the former, as a proof of concept, by avoiding substrate-based induction assays 11	

as previously reported 18–21. We have collected soil samples from two differentially biomass-enriched sites of a 12	

Secondary Atlantic Forest in South-eastern Brazil and generated metagenomic libraries in a bi-directional probe 13	

vector for primary screenings. We have characterised the expression behaviours of a large set of GFPlva 14	

expressing clones from both libraries and narrowed down our selection to 10 clones for an in-depth analysis 15	

regarding potential ORFs and endogenous promoters. By cross-validating in silico analyses and experimental data 16	

of predicted regulatory sequences, we have located and profiled the expression of 33 endogenous promoters 17	

within the selected clones (see Supplementary Table S2 online), providing resourceful information concerning the 18	

architecture and transcriptional dynamics of promoters from metagenomic fragments. Thus, in order to contribute 19	

to this set of accessible genetic features, we have used our gathered data to provide for the first time a direct 20	

estimation of the whole set of accessible constitutive promoters in a soil metagenomic library hosted in E. coli, 21	

which we have called the “metaconstitutome” of an environmental sample. 22	

RESULTS AND DISCUSSION  23	

Generating metagenomic libraries and screening for fluorescent clones 24	

 We have constructed and assessed two metagenomic libraries hosted in E. coli DH10B strain for the 25	

analysis of bacterial promoters in environmental samples (Figure 1). The libraries were generated from soil 26	
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microbial communities of two sites bearing differential tree litter composition (Anadenanthera spp. and Phytolacca 1	

dioica) within a Secondary Atlantic Forest zone at the University of Sao Paulo, Ribeirão Preto, Brazil. Both 2	

metagenomic DNA were cloned into the pMR1 bi-directional reporter vector, which has GFPlva and mCherry 3	

reporter genes in opposite directions 36. Each metagenomic library presented about 250 Mb of environmental DNA 4	

distributed into approximately 60.000 clones harbouring insert fragments size ranging from 1.5 Kb to 7 Kb, with an 5	

average size of 4.1 Kb (Table 1). We have chosen fragments of 1.5-7 Kb in order to validate our strategy on 6	

standard-sized functional metagenomic libraries based on plasmid vectors 18,19,37–39. In total, 1,100 fluorescent 7	

clones, resulting in a rate of approximately one fluorescent clone every one hundred fifty clones (USP1) or every 8	

ninety clones screened (USP3), were manually selected under blue light exposition. Then, these fluorescent clones 9	

were directly recovered from LB agar plates supplemented with chloramphenicol. The direct screening was 10	

preferred over the use of metagenomic clone pools from stocks as it reduces the chances of both biased clone 11	

enrichment (e.g. clones with higher growth rates, usually clones bearing small inserts or without insert) and dilution 12	

of positive clones with impaired growth (e.g. clones with high expression of GFP and/or other exogenous genes), 13	

avoiding thus clonal amplification.  14	

Evaluating the expression dynamics of fluorescent clones 15	

 In order to analyse the expression patterns of the isolated clones, we evaluated the intrinsic dynamics of 16	

GFPlva and mCherry by randomly selecting 20 clones expressing each reporter (as schematically represented in 17	

Figure 1). As represented in Figures 2A-B, we found that clones expressing mCherry were not suitable for standard 18	

microplate 8 hour assays, as the fluorescence intensity values differed dramatically between 8 and 24 hours after 19	

the beginning of the experiment. The slow kinetics of mCherry expression has already been reported as a 20	

consequence of a two-step oxidation process for protein maturation when compared to the one-step maturation 21	

process found in GFP reporters 40. On the other hand, the clones expressing GFPlva presented the enhanced 22	

intrinsic properties for microplate assays, supported by the observation of very similar fluorescence intensities 23	

between the two time points tested. Furthermore, the GFPlva has an LVA-degradation tag attached to its C-24	

terminal, which reduces GFP accumulation and increases protein turnover, generating a more precise fluorescence 25	

output on analysis of expression patterns 41. 26	
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 Thus, 260 clones expressing GFPlva (160 clones from the USP1 library and 100 from USP3) were 1	

selected for further analysis of expression patterns on microplate reader assays with biological and technical 2	

triplicates. The dynamic profiles for each clone were converted into heat maps and hierarchically clustered by a 3	

Euclidean Distance algorithm into a dendrogram, concisely representing the expression patterns of each 4	

metagenomic library.  In order to assess the diversity of promoter strengths among the generated metagenomics 5	

libraries, three previously characterized constitutive promoters (see Experimental Procedures for further 6	

information) positioned upstream a GFPlva reporter were used as standards for strong, medium and weak 7	

expression profiles (referred here as p100, p106 and p114, respectively). Considering both metagenomics libraries, 8	

we have found a total of 30 strong promoters showing a strength similar to the p100 control, 40 medium strength 9	

promoters similar to the p106 control, 60 weak promoters similar to the p114 control and a wide range of promoters 10	

with particular expression patterns which did not cluster with any of the previously mentioned positive controls 11	

(Figure 2C and Supplementary Fig. S1 online). Since the exploration of distinct expression behaviours is essential 12	

for expanding the current set of commercial promoters, the diversity of expression profiles highlighted in this study 13	

has supported the current framework as a promising strategy for finding novel promoters for downstream 14	

applications.  15	

Furthermore, concerning the hierarchical organization of the expression profiles, the dendrogram of the 16	

USP3 library (Figure 2C) suggests the presence of at least four well-defined expression clusters comprising: (i) 17	

high, (ii) medium, (iii) low and (iv) very low expression profiles. A very similar pattern was identified in the 18	

expression dendrogram independently generated for the USP1 metagenomic library (see Supplementary Fig. S1 19	

online), suggesting those clusters might be depicting broader trends of organizational expression patterns in 20	

nature. Independent studies on microbial communities from aquatic environments have described similar patterns 21	

by evaluating gene expression through metatranscriptomic analysis 42–45, indicating that our observations are not 22	

restricted to the assessed soil samples. However, further studies with a systematic application of the 23	

methodologies described here over a broader range of environmental samples would be required for evaluating 24	

these profiles.  25	

 26	

In silico analysis of DNA metagenomic fragments from selected clones 27	
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 From the 260 assessed samples, we have selected 10 clones displaying particular profiles (see 1	

Supplementary Fig. S2 online) depicting the diversity of expression behaviours found in both libraries. The inserts 2	

from selected clones were sequenced and analysed for both potential ORFs and RpoD-related promoter regions 3	

(-10 and -35 conserved regions). In the case of the identification of putative genes, twenty-nine ORFs with 4	

significant E-values (<0,001) were found (Table 2 and Supplementary Table S1 online) unevenly distributed 5	

between both DNA strands, in line with a lack of strong directional trends regarding bacterial genome organization 6	

46. The ORFs were also classified within a range of functional classes (delineated by MultiFun47 and potential 7	

bacterial phyla (see Supplementary Fig. S3 online). For this, we carried out the analysis of the microorganisms 8	

associated with the closest similar protein of the identified ORFs (Table 2). The most abundant ORFs were related 9	

to unknown functions (31%) and metabolism (31%), followed by stress adaptation cell processes (17%) (see 10	

Supplementary Table S1 online), while the most abundant phyla related to the recovered ORFs were 11	

Proteobacteria (35%), followed by Bacteroidetes (22%) and Chloroflexi (14%) (see Supplementary Fig. S3 online). 12	

The relative abundance of the guanine-cytosine content of each insert was also assessed (Table 2), resulting in a 13	

median of 54%, varying from 43% to 61%, indicating their diverse phylogenetic affiliation. These results are in 14	

agreement with previous G-C content diversity analyses of soil samples which ranged from 50% to 61% 48–50.  Even 15	

with a limited sample size when compared to NGS-based metagenomic studies, the abundance of gene functions 16	

and bacterial groups predicted in this work was similar to the ones found in previous studies in soil microbial 17	

communities 51–53. Considering the above, these results suggest that different bacterial groups could be the sources 18	

of accessible promoters in E. coli, that is, regulatory sequences recognizable by the molecular transcriptional 19	

machinery of E. coli that allowed the expression of the reporter genes.  20	

The in silico promoter prediction has also provided relevant information concerning the potential number 21	

of regulatory regions on each selected fragment. The BPROM software 54 has been extensively employed in other 22	

promoter prediction studies and is based on the analysis of the -35 and -10 consensus sequence of RpoD 23	

promoters. The main sigma subunit, sigma-70 encoded by rpoD, plays a major role in transcription of growth-24	

related genes, the so-called housekeeping genes 55–57. From the in silico analysis, a total of 140 promoters were 25	

predicted among the 10 selected clones, suggesting an average of 5 RpoD-related promoters/Kb. This led us 26	

reasoning that most of the expression profiles previously described (Figure 2C and Supplementary Figure S1 27	
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online) were representing the dynamics of the merged promoters present in the metagenomic fragment. 1	

Considering that, we delineate a strategy to experimentally assess the number and location of accessible 2	

promoters from our selected clones, contrasting experimental results with in silico data.  3	

Experimental identification, characterisation, and cross-validation of promoter regions  4	

 In order to explore the potential set of accessible promoter regions from our metagenomic libraries, we 5	

developed a small DNA insert library generation approach (Figure 1). Firstly, the plasmids from the previously 10 6	

selected clones (original clones) were pooled together for insert amplification in a single PCR reaction. The 7	

resulting amplicons were fragmented by Sau3AI digestion and DNA fragments ranging from 0.2 Kb to 0.5 Kb were 8	

selected for subsequent cloning into the pMR1 vector. The generation of this sub-fragment library allowed the 9	

screening for both red and green fluorescent colonies as they would represent the accessible set of promoters 10	

among the metagenomic DNA fragments studied. It is important to highlight that as the cloning process was not 11	

directed, small fragments bearing promoter regions had a 50% chance of getting cloned in any direction, thus 12	

clones expressing mCherry were also isolated for subsequent sequencing. A total of 100 clones coming from the 13	

small DNA insert library (80 expressing GFPlva and 20 expressing mCherry) were sequenced and then align 14	

against the original metagenomic fragments. As a result, we have identified at least 33 promoter regions within the 15	

initial set of the selected metagenomic clones (Figure 3, Supplementary Fig. S4 and Supplementary Table S2 16	

online). These findings showed that the in silico prediction of 140 RpoD-related promoters was overestimated in 17	

comparison with the experimental results. The above can be explained since prediction algorithms usually 18	

misrepresent nature by underestimating or overestimating results due to a lack of information regarding diversity 19	

and variability of natural cis-regulatory sequences 58–60. 20	

Additionally, the current experimental approach allowed us not only to identify novel promoter regions but 21	

also to determine promoter directionality. The evaluation of promoter localization within the 10 selected clones 22	

revealed that from the 33 experimentally selected small fragments, 7 (21%) were considered intragenic promoters 23	

while the remaining 79% (26 promoters) were considered primary promoters, defined as the furthest upstream 24	

promoter in a gene/operon 61. This small-scale analysis slightly diverges from architectural features found in E. coli 25	

K-12 genome in which the promoter dataset was dominated by primary promoters (66.3%), with a lower number 26	

of secondary promoters (19.6%), defined as intergenic and downstream of primary promoters 61, internal promoters 27	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 30, 2017. ; https://doi.org/10.1101/211367doi: bioRxiv preprint 

https://doi.org/10.1101/211367
http://creativecommons.org/licenses/by-nc-nd/4.0/


9	
	

that are intragenic (9.8%), and antisense (4.2%) promoters 61,62. This observation might reflect the diversity of 1	

genomic architectures in metagenomic libraries and highlight the current underestimation of bacterial intragenic 2	

promoters, which doubled the number in comparison to E. coli.   3	

Based on the alignment results, we selected a defined set of small fragment clones related to each original 4	

sequence for dynamic expression profiling on a microplate reader. The results showed that for each set of small-5	

fragments belonging to a DNA metagenomic clone, there was at least one with an expression pattern 6	

corresponding to the original clone previously observed (Figure 3 and Supplementary Fig. S4). Similarly, we 7	

identified other clones bearing small-inserts with individual profiles different to the primarily observed, representing 8	

alternative promoter regions in the original sequence that were not mapped in the initial approach (Figure 3). The 9	

diversity of the promoter expression profiles found in a single original metagenomic clone has a multifactorial 10	

nature, ruled by different processes.  Firstly, it should be considered the inherent relationship between the 11	

regulatory dynamics and the functional role of the regulated gene 26. Secondly, the transcriptional bias imposed by 12	

the E. coli molecular machinery, which would recognize orthologous sequences, but not necessarily reproduce the 13	

original behaviours found in natural hosts 23,39,63,64. Finally, another point to be considered is that the increase in 14	

expression levels can be the result of the artificial juxtaposition of the promoter to the fluorescent reporter ribosome 15	

binding site, as a consequence of the cloning process. 16	

Regarding in silico cross-validation, from the 33 experimentally validated promoters, 23 RpoD-related 17	

promoters (70%) were supported by the algorithmic analysis as they were aligned to their respective original 18	

sequences (Figure 3). On the other hand, the remaining 10 sequences (30%) were considered as promoters 19	

exclusively identified by experimental approaches. We hypothesized that these sequences could be either 20	

recognized by other sigma factors than sigma70 or presented unusual consensus sequences for -10 and -35 boxes 21	

which has bypassed the algorithmic analysis. However, experimental validation in E. coli strains lacking diverse 22	

sigma factors genes should be necessary for a more accurate conclusion.  23	

Finally, sequences of the above experimentally validated promoters were characterised accordingly to 24	

previous studies reported in the literature. For this, we adopted an in silico classification proposed by Shimada et 25	

al 65 (2014), in which constitutive promoters present a high-level conservation of the consensus sequence for the 26	

major sigma factor RpoD, that is, the elements TTGACA (-35) and TATAAT (-10) separated by approximately 17 27	
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bp (Figure 4A and B). Constitutive promoters are defined as promoters active in vivo in all circumstances, and, on 1	

the other hand, inducible promoters are switched ON and OFF by transcription factors depending on the in vivo 2	

conditions 65. The Logo pattern 66 generated from the alignment of the 33 identified metagenomic promoters (Figure 3	

4C) indicated that positions -35 and -34 (-35 box) and positions -8, -7 and -3 (-10 box) were highly conserved. 4	

Although this logo pattern was distant from the proposed for the RpoD-dependent constitutive promoters identified 5	

in vitro (Figure 4A 65), was very similar to previously described consensus 67 from experimentally validated promoter 6	

sets from RegulonDB 3 and EcoCyc 68 databases (Figure 4B). To conclude, the results presented here has allowed 7	

us to identify a consensus for exogenous promoter recognition in E. coli, which can be an important resource for 8	

defining host-dependent restrictions in functional metagenomics.  9	

Estimating the accessibility of promoters in random metagenomic libraries 10	

 In the present work we provide, for the first time in literature, a quantitative estimation regarding the 11	

accessibility of natural promoters in random metagenomic libraries, supported by the integration of both in silico 12	

and experimental results. We have estimated the existence of at least 553,300 promoters virtually recognized by 13	

E. coli in a standard functional soil metagenomic library, from which approximately 4,961 promoters (~1%) were 14	

readily accessible by our methodologies (see Experimental Procedures for calculations details). For the sake of 15	

comparison, we have estimated an average rate of 1.1 promoters/Kb potentially recognizable by E. coli host in our 16	

metagenomic fragments, which seems reasonable when compared to the rate of reported promoters in the well-17	

studied genome of E. coli K-12, ranging from 0.5 to 2.7 promoters/Kb, depending on both chosen datasets and in 18	

silico prediction parameters 61,62,65,69. We have also assessed the genomic features from 24 bacterial species 19	

catalogued on the DOOR2 database (Database of prOkaryotic OpeRons) 70 for a broader promoter rate estimation, 20	

resulting in 2 promoters/Kb, which is also in concordance to our estimation and to others reported in literature 21	

61,62,65,69. It should be mentioned that the average promoter rate from the present study (1.1 promoters/Kb) is 22	

probably an underestimation of the whole set available as it is restricted to clones expressing GFP under specific 23	

experimental conditions. Consequently, modifications of laboratory conditions during the screenings (such as 24	

growth-phase, temperature, exposure to different chemicals and substrates, to cite some) would probably reveal 25	

novel promoter elements 71.  26	
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A seminal study in functional metagenomics provided by Gabor et al 63(2004) estimated on a theoretical 1	

basis, using 32 prokaryotic genomes, that 40% of the enzymatic activities present in a soil metagenomic library 2	

could be readily accessed using E. coli as a host in an independent gene expression mode (in which both the 3	

promoter and the ribosome binding sites (RBS) are provided by the metagenomics insert). Moreover, it was 4	

predicted that Firmicutes, instead of Proteobacteria, would present the largest fraction of independently expressible 5	

genes (73%). Contrastingly, recent empirical studies on E. coli and other hosts have shown that functional 6	

expression faces a myriad of challenges that were not taken into account in previous mathematical models, such 7	

as codon usage, improper promoter and RBS recognition 72 , missing initiation factors, protein misfolding, missing 8	

co-factors, breakdown of product; improper secretion of product, toxicity of product or intermediates and formation 9	

of inclusion bodies 24,25. Since it is impossible to predict the effect of the previously described difficulties in unknown 10	

metagenomic fragments, the actual fraction of genes that can be successfully expressed in E. coli is probably 11	

significantly lower than the proposed by Gabor and collaborators63 (2004). In this context, our work supports the 12	

previous arguments 24,25 highlighting the large gap between theoretical predictions and experimental data as we 13	

have shown only a small portion of the whole set of promoters is accessible for E. coli in metagenomics libraries 14	

(~1%). Thus, we stress the importance of feeding mathematical models with empirical data in a continuous iterative 15	

process for improving its predictive power.  16	

CONCLUSIONS  17	

In summary, we have developed a novel methodology for prospecting, characterising and estimating the 18	

accessibility of promoter sequences in metagenomic samples by combining experimental and in silico approaches. 19	

The expression profiling of fluorescent clones was used for the first time as a direct approach to analyse the 20	

regulatory dynamics of an environmental sample, bearing great potential for revealing insightful trends regarding 21	

the transcriptional diversity of microbial communities. It has already been computationally demonstrated by 22	

Fernandez et al. (2014)73 that the microbial metaregulome – the whole set of regulons of an environmental sample 23	

– is shaped by the physicochemical conditions of the environment as an adaptive process. Thus, future studies 24	

systematically applying our methodology to a range of environmental samples will greatly contribute to 25	

understanding this relationship between regulatory diversity and environmental adaptation in bacteria. At the same 26	
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time, it can also be further applied to the design of efficient microbial communities for therapeutic or ecological 1	

needs 73–76.  2	

Through the generation of a small-DNA insert library approach combined to in silico promoter prediction 3	

we were able to provide both (i) a consensus of recognizable exogenous regulatory sequences in an E. coli host 4	

and (ii) an estimation of the accessible promoter sequences in a plasmid-based functional metagenomic library, 5	

which was close to 1% of the whole set of available promoters. These are resourceful data for building a concise 6	

framework regarding the accessibility of genetic features from metagenomic libraries and how it can be influenced  7	

by the choice of different microbial hosts 23,63,64 or by the tinkering of the host’s transcription systems 72,77,78.  8	

Although this work provided seminal information regarding promoter accessibility in metagenomics 9	

libraries, further high-throughput studies optimizing the proposed methods (e.g. application of automated screening 10	

methods; exploration of the whole set of fluorescent clones in a metagenomics library by Next-Generation-11	

Sequencing) will be essential for expanding our current estimation into a more holistic landscape. Finally, we 12	

highlight that besides providing novel approaches for studying the regulatory diversity underlying environmental 13	

microbial communities, this work should be extremely useful for expanding the current Synthetic Biology toolbox 14	

through the discovery and characterisation of novel regulatory features. 15	

 16	

EXPERIMENTAL PROCEDURES   17	

Bacterial strains, primers, plasmids and general growth conditions 18	

E. coli DH10B (Invitrogen) cells were used for cloning and experimental procedures. E. coli strains were routinely 19	

grown at 37ºC in Luria-Broth medium or M9 minimal medium 79 (6.4 g/L Na2HPO4·7H2O, 1.5 g/L KH2PO4, 0.25 20	

g/L NaCl, and 0.5 g/L NH4Cl) supplemented with 2 mM MgSO4, 0.1 mM casamino acid, and 1% glycerol as the 21	

sole carbon source. When required, chloramphenicol (Cm) (34 µg/mL) was added to the medium to ensure plasmid 22	

retention. When cells were grown in minimal medium, antibiotics were used at half concentrations. Transformed 23	

bacteria were recovered on LB (Luria–Bertani) liquid medium for 1 hour at 37°C and 180 r.p.m, followed by plating 24	

on LB-agar plates at 37°C for at least 18 hours. All constructions were cloned into the pMR1 bi-directional-reporter 25	

vector 36, which carries mCherry and GFPlva, a short-lived variant of GFP.  26	
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Metagenomic libraries construction and screening for fluorescent clones  1	

The metagenomic libraries used in this work were generated in our laboratory from two soil samples of a Secondary 2	

Atlantic Forest at the University of Sao Paulo, Ribeirão Preto, Brazil. Each sample was differentially enriched 3	

regarding tree species abundance on plant-litter composition: (i) enriched in leaves from Phytolacca dioica and (ii) 4	

from Anadenanthera spp. DNA was extracted from soil samples using the UltraClean™ Soil DNA isolation Kit (Mo 5	

Bio Laboratories, Solana Beach, CA, USA). For the construction of the libraries, metagenomic DNA was partially 6	

digested using Sau3AI, and fragments from 1.5 kb to 7 kb were extracted from an agarose gel for ligation into the 7	

dephosphorylated and BamHI-digested pMR1 vector. Ligation mixtures were transformed by electroporation into 8	

E. coli DH10B cells. To amplify the libraries, they were grown on LB agar plates containing Cm and incubated for 9	

18 h at 37°C. Both green and red clones were manually isolated from LB-agar plates exposed to blue light 10	

wavelength (at approximately 470 nm) by a transilluminator (Safe Imager™ 2.0 Blue Light Transilluminator). Ten 11	

fluorescent and twenty non-fluorescent clones were randomly picked from each library and had their plasmids 12	

extracted, following digestion with EcoRI and SmaI enzymes for checking presence/absence of inserts and their 13	

sizes. Cells from the same library were collected and pooled together in LB supplemented with 10% (wt/vol) 14	

glycerol for storing at -80°C. The plasmids from the 10 selected clones were isolated from individual clones and 15	

transformed into new E. coli DH10B cells to reconfirm expression patterns.  16	

Nucleic acid techniques  17	

DNA preparation, digestion with restriction enzymes, analysis by agarose gel electrophoresis, isolation of DNA 18	

fragments, ligations, and transformations were done by standard procedures (Ausubel et al., 1994). Plasmid DNA 19	

was sequenced on both strands by primer walking using the ABI PRISM Dye Terminator Cycle Sequencing Ready 20	

Reaction kit (PerkinElmer) and an ABI PRISM 377 sequencer (Perkin-Elmer) according to the manufacturer’s 21	

instructions. 22	

GFP fluorescence assay and data processing  23	

To measure promoter activity, freshly plated single colonies were grown overnight in M9 medium supplemented 24	

with required antibiotics. Samples were diluted 1:20 (v/v) in M9 medium for a final volume of 200uL in 96-well 25	

microplates. Cell growth and GFP fluorescence were quantified using a Victor X3 plate reader (PerkinElmer, 26	
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Waltham, MA, USA). Promoter activities were expressed as the emission of fluorescence at 535 nm upon excitation 1	

with 485 nm light and then normalised with the optical density at each point (reported as fluorescence/OD600) 2	

after background correction. Background signal was evaluated with non-inoculated M9 medium and used as a 3	

blank for adjusting the baseline of measurements. E. coli DH10B harbouring the pMR1 empty plasmid was used 4	

as a negative control. Three different positive controls were used, consisting in E. coli DH10B harbouring pMR1 5	

plasmid with one of the following synthetic constitutive promoters from the iGEM BBa_J23104 Anderson’s 6	

catalogue (http://parts.igem.org/Promoters/Catalog/Anderson) 80 upstream a GFPlva reporter: J23100, J23106 and 7	

J23114 (referred here as p100, p106 and p114, respectively). Unless otherwise indicated, measurements were 8	

taken at 30 min intervals over 8 h. All experiments were performed with both technical and biological replicates, 9	

being biological triplicates evaluated as independent measurements on different dates. Raw data were processed 10	

and plots were constructed using Microsoft Excel. All data was normalised by background values and transformed 11	

to a log2 scale for better data visualisation. Heatmap dendrograms with expression profiles were generated by 12	

using MeV2 (http://mev.tm4.org/) software.  13	

Small-DNA inserts libraries generation and screening 14	

In order to experimentally find and validate the promoter regions from each of the ten selected metagenomic 15	

clones, an experimental technique was developed based on the previously described methodology of 16	

metagenomic library construction. All selected clones had their plasmids extracted and pooled together in an 17	

equimolar ratio. The pooled sample was amplified through a single PCR reaction using high-fidelity polymerase 18	

enzyme (Phusion) and previously described primers flanking the MCS region (Multiple Cloning Site) of the pMR1 19	

vector, into which the metagenomic inserts were cloned. The resulting amplicons were firstly submitted to an 20	

analytical digestion followed by electrophoretic analysis for finding the optimal concentration of Sau3AI enzyme for 21	

obtaining fragments size ranging from 0.1Kb to 0.5Kb. Then, the purified pooled samples were fragmented by 22	

Sau3AI in preparative digestion and thereafter punctured from a 1% agarose gel in the region between 0.1 Kb and 23	

0.5 Kb. These small DNA fragments, in turn, were ligated to pMR1 vector. Aliquots of electrocompetent E. coli 24	

DH10B cells were transformed with ligated DNA. A total of 100 fluorescent clones (80 expressing GFP and 20 25	

expressing mCherry) were isolated under blue light excitation screening and had their plasmids extracted for 26	
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sequencing reactions. Fluorescent clones were stored at -80°C in LB medium supplemented with required 1	

antibiotics and 10% glycerol (v/v). 2	

In silico analysis of ORFs and promoter regions 3	

The inserts of selected clones were sequenced on both strands as previously described. Sequences were manually 4	

assembled for the generation of 10 contigs. Putative ORFs were identified and analysed using the online ORF 5	

Finder platform, available at the NCBI website (http://www.ncbi.nlm.nih.gov/gorf/gorf. html). Comparisons of 6	

nucleotide and transcribed amino acid sequences were performed against public databases (NCBI) using BlastN, 7	

BlastX and BlastP (BLAST, basic local alignment search tool) at the NCBI on-line server. For translation to protein 8	

sequences, the bacterial code was selected, allowing ATG, GTG, and TTG as alternative start codons. All the 9	

predicted ORFs longer than 270 bp were translated and used as queries in BlastP. Sequences with significant 10	

matches were further analysed with psiBlast, and their putative function was annotated based on their similarities 11	

to sequences in the COG (Clusters of Orthologous Groups) and Pfam (Protein Families) databases. Predicted 12	

general cellular functions were annotated only for known ORFs based on the MultiFam classification (Serres et al, 13	

2006). All sequences with an E-value higher than 0.001 in the BlastP searches and longer than 300 bp were 14	

considered to be unknown. Transmembrane helices were predicted with TMprep (http://www.ch. 15	

embnet.org/software/TMPRED_form.html) and signal peptides with Signal P3.0 server (http://www.cbs. 16	

dtu.dk/services/SignalP/). A complete table can be found at Supplementary Table S1 online. Promoter prediction 17	

was based on the analysis of the ten contigs by using both BPROM 18	

(http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb) and bTSSfinder 19	

(http://www.cbrc.kaust.edu.sa/btssfinder/) web-based platforms. Both methods searched for rpoD-related 20	

sequences and we have only considered as valid predictions the ones matched on both approaches. Those filtered 21	

sequences were used to cross-validate 23 out of 33 experimentally defined regulatory regions by comparing the 22	

positions between predicted and experimental sequences in metagenomic fragments. The positions of the 33 small 23	

DNA fragments were obtained by a multiple alignment of the original contigs (queries) against those selected 24	

sequences, which has also allowed the validation of the promoter’s directionality – forward or reverse - by observing 25	

the matched strands (Plus/Plus or Plus/Minus). The consensus Logo sequence was based on the alignment of the 26	

33 experimentally validated promoters, using the WebLogo platform (http://weblogo.berkeley.edu/logo.cgi). 27	
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Calculations for promoter/Kb rates from databases and for promoter accessibility estimation 1	

Data from predicted sequences of promoter sites, TSS (Transcriptional Start Site) and TUs (Transcription Unit) 2	

reported in different studies and databases regarding E. coli and other bacteria 3,61,65,70 were used as proxies for 3	

the total number of predicted promoters. Those values were divided by their respective genome sizes (or average 4	

genome sizes when calculating an average rate of multiple species at once) in order to provide promoter/Kb rates 5	

(i.e. 8,000 predicted promoters, TSS or TUs on a genome of 4.6 Mb would result in a rate of 1.7 promoters/Kb).The 6	

promoter accessibility estimation followed the same rationale and was based on the combination of the data from 7	

both metagenomics libraries presented in Table 1 and the rate of experimentally discovered promoters per Kb (33 8	

promoters found in 30 Kb of metagenomic DNA, resulting in a rate of 1.1 promoters/Kb). Firstly, we have merged 9	

data from both metagenomic libraries and calculated the predicted number of promoters in a metagenomics library 10	

with an effective size of 503 Mb (combined effective sizes of USP1 and USP3) – the “effective size” takes into 11	

account only the percentage of clones with an insert -. Thus, we have multiplied the effective library size by the 12	

23previously obtained promoter rate (1.1 promoters/Kb), resulting in a total estimated set of 553,300 promoter 13	

sequences. Secondly, we have calculated the predicted set of accessible promoters by multiplying the number of 14	

fluorescent clones (1,100 clones, considering both libraries) by the average insert size (4.1 Kb) and by the rate of 15	

observed promoters per Kb (1.1 promoters/Kb), resulting in 4,961 potentially accessible promoters. Lastly, we have 16	

calculated the proportion of accessible promoters among the total number of predicted promoters, which 17	

represents approximately ~1% of the whole available set. 18	

 19	

Data Availability  20	

The nucleotide sequences obtained for the plasmid inserts have been deposited in the GenBank database under 21	

the Accession numbers (KY939589-KY939597), which are also shown in Table 2. 22	

 23	
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Tables and figures 15	

 16	

Table 1. Features of the generated metagenomic libraries. 17	

Metagenomic Library  USP 1  USP 3  
Total number of clones 100,000 90,000 
Percentage of clones with insert  60% 70% 
Number of clones with insert 60,000 63,000 
Total number and rate* of fluorescent clones 400 (1:150) 700 (1:90) 
Total number and rate* of green clones 270 (1:220) 400 (1:157) 
Total number and rate* of red clones 130 (1:460) 300 (1:210) 
Average insert size 4,5 kb  3,7 kb  
Library Size 270 Mb  233 Mb  
Estimated number of genomes**  60 52 

 18	
* Rate represented by the number of fluorescent clones divided by the total number of clones with inserts. 19	
** Assuming 4.5 Mb per genome 81. 20	
 21	
 22	
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Table 2. Description of the ORFs contained in plasmids from the selected clones (pCAW1 to pCAW10) and their 1	
sequence similarities. 2	
 3	

Clone_Sample 
[insert bp] 

% G + 
C 

GenBank 
accession 
No. 

ORFa Strand Length 
(aab) 

Closest similar proteinc  
(Length in aa) 

Organism Identity 
(% ) 

Putative function 

pCAW1 (2367bp) 55% KY939589 
1 Minus 131 

hypothetical protein 
(416) 

 Bacteriodetes 
bacterium  68% Alginate lyase 

2 Plus 271 
hypothetical protein  
(261) Acidobacteria bacterium 73% 

17-B-hydroxysteroid 
dehydrogenase  

3a Plus 295 beta-glucosidase (777) Caulobacter sp. OV484 66% beta-glucosidase  
                    
pCAW2 (2069bp) 52% KY939590 

1 Plus 304 Unkonwnc 
 Hyphomicrobium sp. 
NDB2Meth4 33% Unknown 

  
2 Plus 249 Unkonwn Hungatella hathewayi 33% Unknown 

                    
pCAW3 (4404bp) 53% KY939591 

1 Minus 318 
IS4 family transposase 
(320) Escherichia coli 96% IS4 family transposase  

2 Minus 1011 

DNA-directed RNA 
polymerase subunit beta' 
(1430)  

 Sphingobacteriales 
bacterium 44-61 83% RNA polymerase - Beta Subunit 

3 Plus 120 
Uncharacterised protein 
(135)  Bordetella pertussis 47% Unknown 

4 Plus 151 
Uncharacterised protein 
(130) Bordetella pertussis 37% Unknown 

5 Plus 94 
Uncharacterised protein 
(64) Bordetella pertussis 82% Unknown 

6 Plus 96 
Uncharacterised protein 
(86) Vibrio cholerae 48% Unknown 

7 Plus 173 predicted protein (585) 
Ruminococcus sp. 
CAG:403 26% Unknown 

                    
pCAW4 (4002bp) 61% KY939592 

1 Minus 245 
nosine monophosphate 
cyclohydrolase (246) Ktedonobacter racemifer 63% IMP cyclohydrolase 

2 Minus 214 
phosphodiesterase  
(498) 

candidate division NC10 
bacterium 40% phosphodiesterase  

3 Minus 402 
hypothetical protein 
A2Y08_02680 (625) 

 Planctomycetes 
bacterium GWA2_40_7 43% Unknown 

4a Plus 142 
gentisate 1,2-
dioxygenase  (349) Pseudomonas sp. 21C1 60% gentisate 1,2-dioxygenase  

    
                

pCAW5 (2724bp)  54% KY939593 

1a Plus 642 
pyruvate:ferredoxin 
oxidoreductase (1565) 

uncultured bacterium 
HF770_11D24] / 
Acidobacterium 80% 

pyruvate:ferredoxin 
oxidoreductase  

                    
pCAW6 (2125bp) 57% KY939594 

1 Plus 159 
hypothetical protein 
BGO39_33875 (215) 

Chloroflexi bacterium 
54-19 65% MerR family 

2 Plus 336 
hypothetical protein 
BGO39_33870 (347) 

Chloroflexi bacterium 
54-19 78% 

PrsW  intramembrane 
metalloprotease 

3a Plus 163 
hypothetical protein 
BGO39_33865 (173) 

Chloroflexi bacterium 
54-19 75% chromate transporter 

                    
pCAW7 (2558bp) 46% KY939595 

1a Minus 391 
hypothetical protein 
A2X07_06330 (480) 

Flavobacteria bacterium 
GWF1_32_7 45% 

Por secretion system sorting 
domain 

2 Minus 250 
hypothetical protein 
(586) 

Chitinophagaceae 
bacterium PMP191F 65% Polysaccharide Lyase 

                   
pCAW8 (4480bp) 57% KY939596 

1 Plus 508 
hypothetical protein 
AUH20_02325 (597)  Rokubacteria bacterium 76% 5-oxoprolinase / Hydantoinase_B  

2 Minus 348 Oxidoreductase (336)  Rokubacteria bacterium 61% Flavin-utilizing monoxygenases 

3 Plus 314 
hypothetical protein 
ETSY1_46935 (279) 

Candidatus 
Entotheonella sp. TSY1 76% Cellulose biosynthesis BcsQ  

                   
pCAW9 (2573bp) 43% KY939597 

1a Minus 81 
hypothetical protein  
(129) Janthinobacterium 50% Unknown 

2 Minus 303 
Formylglycine-
generating enzyme (379) Mucilaginibacter sp. 65% Formylglycine-generating enzyme 

3 Minus 457 
acetylglucosamine-6-
sulfatase (504) 

Flavihumibacter 
solisilvae 67% acetylglucosamine-6-sulfatase  

                   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 30, 2017. ; https://doi.org/10.1101/211367doi: bioRxiv preprint 

https://doi.org/10.1101/211367
http://creativecommons.org/licenses/by-nc-nd/4.0/


23	
	

pCAW10 (2076bp) 56% Submitted - 
Waiting for 
accession no. 1 Plus 204 

hypothetical protein 
(195) Luminiphilus syltensis 50% Unknown 

aTruncated proteins. 1	
baa, amino acids. 2	

cSequences with an E-value higher than 0.001 in Blastp searches were considered to be unknown proteins. 3	

 4	

 5	

 6	

 7	

 8	

 9	

Figures 10	

 11	

Figure 1. Schematic representation of the workflow for finding, characterising and cross-validating novel 12	
bacterial cis-regulatory elements in environmental samples. From left to right: firstly, we have generated 13	
metagenomic libraries from soil samples in E. coli DH10B. The DNA fragments were cloned into a bi-directional 14	
reporter trap-vector (bearing mCherry and GFPlva fluorescent reporters), pMR1, which allowed for the screening 15	
of promoters in both DNA strands. Secondly, we have manually screened all visible fluorescent clones from our 16	
metagenomic libraries and analysed the expression patterns of all green fluorescent clones on a microplate reader 17	
during 8 hours. Lastly, we have selected ten clones based on their GFPlva expression patterns for an in-depth 18	
analysis combining experimental (small DNA insert library generation) and in silico promoter prediction. This 19	
integrated strategy has allowed us to identify, validate and estimate the accessibility of novel promoter regions 20	
from metagenomic libraries. 21	
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 1	

Figure 2. Evaluating the expression dynamics of fluorescent clones. A) LB-agar plate under blue light 2	
excitation comprising a subset of metagenomic isolated clones expressing GFPlva (top) and mCherry (bottom) 3	
fluorescent reporters. A few clones were observed to express both reporters. All isolated clones were initially 4	
considered to hold at least one endogenous promoter. B-C) Indirect assessment of maturation times from both 5	
fluorescent reporters GFPlva (B) and mCherry (C) after 8 hours (light bars) and 24 hours (dark bars) of the 6	
beginning of the experiment. Maturation times are substantially lower for mCherry than for GFPlva, which excluded 7	
the former from further analyses. Positive controls for GFP and mCherry are represented by p100 and pRED, 8	
respectively. Fluorescence data has been normalised by OD600 values for each sample following normalisation by 9	
values from the negative control (empty-pMR1). Data was transformed to log2 scale to allow better visualisation of 10	
fluorescence variation. D) Hierarchical representation of a metaconstitutome (i.e. all expression profiles from a 11	
single metagenomic library. Fluorescence time-lapse dynamics were measured during 8 hours for each clone and 12	
represented as heat maps. Promoter activities (calculated as GFP/OD600) were normalised by the negative control 13	
(E. coli DH10B harbouring empty pMR1) and transformed to log2 scale in order to facilitate the visualisation of 14	
subtle activities. Data are representative of three independent experiments.  15	
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 1	

Figure 3. Schematic representation of six metagenomic inserts (contigs) showing predicted ORFs and 2	
experimentally validated/characterised promoters. Each contig is identified on the far left of each subfigure. 3	
Promoters are indicated by elbow-shaped arrows and name according to their relative position in the contig. 4	
Promoter directionality, regarding the leading and lagging strands, is represented by green and red colours, 5	
respectively. Asterisks over specific promoters indicate regulatory regions which were cross-validated by matching 6	
in silico predictions. Dark arrows represent predicted ORFs, according to their relative positions in each contig (see 7	
Table 2 for more information). All genetic features respect their original relative sizes, following the 1 Kb scale 8	
depicted at the bottom of this figure. Beneath each metagenomic insert, there is a heat map cluster representing 9	
the whole set of promoter activities measured during 8-hours fluorescence assays. The first line of each cluster 10	
shows the original expression profile initially measured for each metagenomic insert. All other lines represent 11	
expression activities from de novo experimentally validated promoters within each contig (small DNA fragments). 12	
The second line of each cluster represents the endogenous promoter showing the most similar activity with respect 13	
to the original expression profile for each contig. All expression profiles are properly identified at the most rightmost 14	
side of each line, following their respective contig/promoter name. For the supplementary set of analysed contigs, 15	
see Supplementary Figure S4 online. 16	
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 1	

Figure 4. Consensus of RpoD-related metagenomic promoters. A) Known consensus sequences of the RpoD-2	
dependent promoter determined in vitro, TTGAAC (-35) and TATAAT (-10) separated by 17 plus/minus 2 bp in E. 3	
coli 65. B) Known consensus sequences of 582 promoters experimentally validated in E. coli 3,65,68. C) The 4	
sequences of the 33 promoters experimentally validated in this study were aligned and subjected to Logo analysis 5	
66. The consensus from the metagenomic set (C) is very similar to the one from the experimentally validated set 6	
from E. coli (B). 7	
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