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Abstract

Motivation: A number of pseudotime methods have provided point es-
timates of the ordering of cells for scRNA-seq data. A still limited num-
ber of methods also model the uncertainty of the pseudotime estimate.
However, there is still a need for a method to sample from complicated
and multi-modal distributions of orders, and to estimate changes in the
amount of the uncertainty of the order during the course of a biological
development, as this can support the selection of suitable cells for the
clustering of genes or for network inference.
Results: In an application to a microarray data set our proposed method,
GPseudoRank, identifies two modes of the distribution, each of them cor-
responding to point estimates of orders obtained by a different established
method. In an application to scRNA-seq data we demonstrate the poten-
tial of GPseudoRank to identify phases of lower and higher pseudotime
uncertainty during a biological process. GPseudoRank also correctly iden-
tifies cells precocious in their antiviral response.
Availability and implementation: Our method is available on github:
https://github.com/magStra/GPseudoRank.
Contact: magdalena.strauss@mrc-bsu.cam.ac.uk
Supplementary information: Supplementary materials are available.

1 Introduction

Providing mRNA expression levels of genes for individual cells, scRNA-seq has
shown heterogeneity of gene expression across cells during various biological
developments. While part of this results from technical noise, part is generally
attributable to genuine cell heterogeneity. See, for instance, [5, 31]. Due to the
destruction of the cells as a result of the measurement process, scRNA-seq only
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provides a single measurement per cell [28], never time series data following the
development of the same single cell. However, individual cells progress through
changes at different time scales [30]. Thus it is possible to obtain a form of time
series data even from cross-sectional data by statistical means, an approach
referred to as pseudotime ordering.

Most approaches to pseudotemporal ordering are based on representing cells as
ng-dimensional vectors, where ng is a selected number of genes in a cell. Al-
gorithms exploit the neighborhood structure of these vectors to find a pseudotem-
poral ordering, a linear ordering of all or most cells so that cells which are close
in Rng are also close in the linear ordering.

Wanderlust [4] and SLICER [32, 33] are two examples of methods based on k
nearest neighbours graphs. SLICER additionally first applies LLE (local linear
embedding) [25] for dimensionality reduction. A number of methods are based
on diffusion maps [3, 11, 12, 26]. TSCAN [16, 15] is based on the construction
of a minimum spanning tree (MST) between centroids of clusters, with an inter-
mediate clustering step. Another well-known method using MST and clustering
is Monocle 2 [22], which applies graph structure learning [17].

The approaches mentioned above and a number of others provide singular
pseudotime orderings without modelling uncertainty. Campbell and Yau [7]
examined the stability of Monocle’s pseudotime estimation when applied to
random subsets of cells. They showed that the estimates can vary significantly.
Thus quantification of uncertainty in pseudotime is crucial to avoid overconfid-
ence. There are two existing methods for pseudotime estimation using MCMC
to sample from a posterior distribution [7, 24], and a few others using vari-
ational methods [1, 24, 34]. They use Gaussian processes (GPs, see Section 2.1)
to model the data. However, these methods sample from, or approximate, in the
case of variational inference, posterior distributions of continuous pseudotime
vectors in Rn, rather than sampling the ordering as a permutation.

We propose GPseudoRank, an algorithm sampling from a posterior distribution
of pseudo-orders instead of pseudotimes, avoiding the exploration of pseudo-
time assignments that all map to the same ordering. MCMC samplers (such as
NUTS [14]) suitable for use in continuous pseudotime spaces make local moves
that can have problems exploring bi-modal posteriors. GPseudoRank, by con-
trast, exploits a range of local and long-distance MCMC moves tailored to effi-
ciently traverse the space of permutations. It also provides continuous pseudo-
time estimates by deriving a pseudotime vector from a fixed ordering through
a deterministic transformation. This is based on the observation that most
continuous pseudotime vectors with high likelihood are concentrated around
pseudotime vectors derived from orderings through this transformation.
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2 Methods

2.1 Single-cell trajectories as stochastic processes

We assume we have preprocessed logarithmised gene expression data in the
form yg(c) of gene g, g = 1, . . . , ng, in cell c, c = 1, . . . , T (see section 2.6 for
preprocessing steps). We start with a vector of time points τ = (τ1, . . . , τT ) and
define an ordering of cells as a permutation o = (o1, . . . , oT ), oi ∈ {1, . . . , T},
oi 6= oj for i 6= j, where oi is the index of the cell assigned to time τi. We
model the gene expression trajectories yg = (yg(o1), . . . , yg(oT )) for each gene g
by Gaussian processes (GPs) [23], conditional on an ordering o of the cells. A
GP is a distribution over functions of time in terms of a mean function µ and
a covariance function Σ. For an input vector τ = (τ1, . . . , τT ) of time points,
µ(τ ) returns a vector of T mean values of function evaluations at these time
points and Σ(τ ) a T × T matrix of covariances of function evaluations at the
time points. The distribution of functions f ∼ GP (µ,Σ) is described by stating
that, for any vector of time points τ = (τ1, . . . , τT ), evaluations f(τi) follow a
multivariate normal (f(τ1), . . . , f(τT )) ∼ NT (µ(τ ),Σ(τ )). In this study we use
a squared exponential covariance function for Σ.

[Σ(τ , σ2
w, l, σ

2
ε )]i,j = σ2

w exp(− (τj − τi)2

2l2
) + δij σ

2
ε (1)

where σ2
w is a scale parameter, l a length scale and σ2

ε a term representing
measurement noise.

Given an ordering o, the expression data for gene g can be ordered accordingly:
yg(o) = (yg(o1), . . . , yg(oT )) and we model this trajectory as

yg(o) ∼ NT (µ(τ ),Σ(τ , σ2
w, l, σ

2
ε )) (2)

for each gene g = 1, . . . , ng, where τ = (τ1, . . . , τT ) are time points. In practice,
we assume a zero-mean GP, that is, µ = 0. To adjust the data for this assump-
tion we subtract the overall mean across all genes and cells from each entry in
the matrix of gene expression levels (see Sections 2.6.2 and 2.6.3).

2.2 Geodesic mapping

Pseudotime should not be confused with physical time in which cell development
unfolds. In order to identify the latent time points τ = (τ1, . . . , τT ), which we
assume to be unknown, together with the smoothness parameters of the GP, we
have to make additional assumptions. The overall scale can be fixed by assuming
τi ∈ [0, 1] and each cell could be assigned some rank time, equidistant time points
((i− 0.5)/T | i = 1, . . . , T ). Rank time is similar to the concept of master time
developed in [34]. However, rank time depends on the number of cells sampled
per capture time, which could be rather arbitrary, and does not allow for any
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local change in scale. We therefore suggest a different route to identify latent
time points. We assume the covariance structure, essentially the smoothness
of the process, is independent of time, that the GP is stationary. Pseudotime
can then be considered a latent variable measuring biological development rather
than physical time [1, 7, 24, 34]. For periods of slower development, for example,
pseudotime intervals will be shorter than physical time intervals and longer for
faster development. In order to account for such change in scale over time we
compute time points for any given ordering o as follows (recall oj is the index
of the cell in position j).

τ̃1(o) = 0, τ̃j+1(o) = τ̃j(o) + ‖y(oj),y(oj+1)‖2, j = 1, . . . , T − 1 (3)

where y(oj) = (y1(oj), . . . , yng (oj))
T and ‖.‖2 is the Euclidean norm in Rng .

Then we set τ (o) = τ̃ (o)/max(τ̃ (o)) to obtain pseudotimes τ (o) in the interval
[0, 1]. For cells next to each other in the order o, this mapping puts them closer
in pseudotime if they are similar in their expression profiles and further apart
if they are less so. That is, the j-th time point τj is the geodesic distance of
cell oj from the first cell o1, where we approximate the geodesic distance as the
sum of the Euclidean distances between the cells ranked next to each other,
similar to the dimensionality reduction method Isomap [29]. Geodesic distances
have previously been used for pseudotime estimation, see for instance [22, 32].
The importance of allowing pseudotime to deviate from rank time for sampling
from the correct posterior distribution is illustrated in more detail in Section 3.2
below and Section 2 of the supplementary materials.

2.3 Gaussian process priors

The correct ordering o of cells is distinguished by comparatively low measure-
ment noise σ2

ε in (1), since most of the variation is captured by the trajectory
whose variability is determined by the scale parameter σ2

w. Therefore inform-
ative priors for the noise parameters are necessary to ensure the model concen-
trates probability mass around the correct order and to avoid that a sampling
or estimation algorithm gets trapped in local modes. Furthermore, since total
variability is a sum of measurement noise and signal variability, we sample only
σ2
w and set σ2

ε = V −σ2
w, where V is the sample variance taken across the entire

ng × T matrix of gene expression levels of T cells for ng genes. The priors are
as follows:

log(σw) ∼ N (log(
√

0.9 · V ), 0.01)

log(l) ∼ N (log(
1

2
), v)

o ∼ uniform(permutations of {1, . . . , T})
yg(o) | σ2

w, l ∼ NT (0,Σ(τ (o), σ2
w, l, V − σ2

w))

We set v = 0.1 for the microarray data set considered in [35] (see Section 2.6.2)
and v = 0.01 for the scRNA-seq data set [27] (see Section 2.6.3).
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2.4 MCMC sampling

Markov Chain Monte Carlo (MCMC) methods [10] have been widely used to
sample from continuous posterior densities in Bayesian statistics. They con-
struct Markov Chains with the posterior distribution as their equilibrium. After
convergence, each sample from the MCMC is taken as a sample from the pos-
terior distribution. Our proposed method uses the Metropolis-Hastings al-
gorithm [13, 18] for the sampling. For each given state of the Markov Chain,
a new state is proposed using a proposal distribution, and accepted if an ac-
ceptance ratio is less than a uniform random number. While the construction
of proposal distributions is often straightforward in the continuous case, we de-
veloped novel proposal moves to sample from discrete distributions of orders
(see Section 2.5). For the sampling of the GP parameters we use Gaussian
proposal distributions, adapting their standard deviation during burn-in aiming
at acceptance rates between 0.45 and 0.5.

2.5 Sampling orderings

In the following we propose a Metropolis-Hastings algorithm for the sampling
of the orderings. Preliminary experience with a variety of combinatorial moves
to sample permutations led to the following set of five core moves, each with
probability pj , j = 1, . . . , 5:

1. Move 1, iterated swapping of neighbouring cells: draw the number
r1 of swaps to be applied uniformly from 1, . . . , n0 and draw r1 swap
positions P1, . . . , Pr1 from 1, . . . , T − 1 with replacement. Then iterate for
j = 1, . . . , r1: swap cell at position Pj with its neighbor at position Pj +1.

2. Move 2, swapping of cells with short L1-distances: select two posi-
tions i and j according to probability pij ∝ exp(−d(ci, cj)

2/γ1), where d
refers to the L1 distances of cells ci and cj (as ng-dimensional vectors) in
these positions. Move ci to position j and cj to position i.

3. Move 3, reversing segments between cells with short L1-distances:
obtain two positions i and j as in move 2 and reverse the ordering of all
cells in between, including cells at i and j.

4. Move 4, short random permutations: draw a number r2 of short
permutations uniformly from 1, . . . , n3. For each j = 1, . . . , r2, draw a
number r3,j uniformly from 3, . . . ,max(n3a, 3)) and a cell position kj uni-
formly from 1, . . . , T − r3,j . Randomly permute the cells at positions
kj , . . . , kj + r3,j .

5. Move 5, reversing the entire ordering.

The rationale for moves 2 and 3 is that two cells which are positioned apart
in the ordering should only be exchanged (move 2) or the segment between
them reversed (move 3) if these cells have similar expression profiles and the
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smoothness of the trajectory remains intact after the move. For move 1 we use
a default setting of n0 = bT/4c for the simulation studies. For move 4 we set
n3 = bT/20c, and n3a = bT/12c. The distributions for choosing moves 2 and 3
may be tempered, that is taken to the power of a factor 0 < α < 1, to lower
acceptance rates if required.

For the simulation studies we apply all possible combinations of moves 1 to
4 with equal probabilities and move 5 with a probability of 0.002. For the
microarray data we apply only move 3, as (as will be shown below) it is the
best sampling strategy for multi-modal distributions. For the scRNA-seq data
set, we use moves 1 to 4 with probability 0.2495, and move 5 with probability
0.002. For the microarray data set we use γ = 1000 in move 3 and an additional
tempering factor a = 0.1. For the scRNA-seq data set we set γ = 4000, without
any tempering factor for moves 2 or 3.

As our posterior distribution is a symmetric function of the order, each order and
its reverse will be sampled with equal probability from the posterior distribution.
We remove this symmetry in further analysis by reversing orders which are
negatively correlated with the capture times.

2.6 Data sets

2.6.1 Simulated data

The efficacy of the individual moves and of combinations of different moves for
different types of data is first assessed on simulated data. We simulate ng = 50
genes for T = 90 cells. For each simulation study we generate 16 data sets. On
each of these data sets we run MCMC chains using all the possible combina-
tions of the four proposed moves (with equal probability for combinations of
more than one move). Since in the simulations we are mostly interested in the
assessment of ordering moves and not any parameter estimation, we fix them
to their true values and fix time points to rank time.

Simulation 1: three capture times, low noise. Each of the 16 data sets
is generated as follows. First 90 temporal input points are drawn uniformly
from [0, 1]. Then for each of the 50 genes in each of the simulated data sets, a
parameter set for a GP underlying the trajectory of the simulated gene is drawn
from

log(σw) ∼ N (0, 0.1)

log(l) ∼ N (log(0.4), 0.1)

log(σε) ∼ N (log(1/
√

2), 0.1).

The data are assumed to be obtained at three capture times with 30 cells each.

Simulation 2: two capture times, low noise. The setup is similar to
simulation 1, but with two capture times, where 30 cells are assigned to the first
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capture time, and the remaining 60 to the second.

Simulation 3: three capture times, high noise. The setup is similar to
simulation 1, but log(σε) ∼ N (0, 0.1).

2.6.2 Microarray data

Windram et al. [35] studied the response of Arabidopsis thaliana to infection
by the fungal pathogen Botrytis cinerea, generating microarray time series data
over 48 hours, with measurements at intervals of 2 hours. As in Reid and Wern-
isch [24], we assume 4 capture times with 6 cells each. We compare the result
to estimates produced by two established pseudotime methods, TSCAN [16, 15]
and SLICER [32, 33], using the standard settings for the latter algorithms. For
SLICER setting the number of edges of the nearest neighbours graph in the low
dimensional space to 4 and 5 resulted in orders closest to the true one. For all
analyses, we use the 150 genes mentioned in the paper by Windram et al. [35].

2.6.3 Single cell RNA-seq data

Shalek et al. [27] examined the response of primary mouse bone-marrow-derived
dendritic cells in three different conditions using single-cell RNA-seq. We ap-
ply GPseudoRank to the lipopolysaccharide stimulated (LPS) condition. Shalek
et al. [27] identified four modules of genes. As in Reid and Wernisch [24], we use
a total of 74 genes from the four modules with the highest temporal variance
relative to their noise levels [24]. The number of cells is 307, with 49 unstimu-
lated cells, 75 captured after 1h, 65 after 2h, 60 after 4h, and 58 after 6h. We
use an adjustment for cell size developed by Anders and Huber [2], also used
in Reid and Wernisch [24].

2.7 Convergence assessment

For thorough convergence assessment, we run 12 different chains for each of
the real data sets, and 5 for each of the simulation set-ups. For the simulated
and the microarray data sets we run 100,000 iterations per MCMC chain and
apply a thinning factor of 10. For the scRNA-seq data we use the same thinning
factor, but 500,000 iterations. In order to assess convergence and not to bias the
sampler towards specific orderings, all chains are seeded with random starting
orders and with random GP parameters sampled from the prior distribution.
However, we do restrict starting orders to permutations of cells within, but not
across capture times.

To check convergence, we use the Gelman-Rubin R̂-statistic [8], corrected for
sampling variability [6], implemented in the R-package coda [21]. The R̂-statistic
estimates the factor by which the pooled variance across all the chains is larger
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than the within-sample variance. For convergent chains, R̂ approaches 1 as
the number of samples tends to infinity. According to [6], convergence may be
assumed to have been reached if R̂ < 1.2. We apply the stricter recommendation
of R̂ < 1.1 [9]. We compute the R̂ statistics for the following two quantities:
first, the log-likelihood, and second the L1-distances of the sampled cell positions
from a fixed reference set of cell positions, for which we use the true order, if
known, and 1, . . . , T , where T is the number of cells, in case of scRNA-seq data.
We compute the R̂ statistics a number of times during sampling, each time
discarding the first 50% [9]. We compare the speed of convergence for different
combinations of proposal moves in the simulation studies. See Section 1 in the
supplementary materials for details.

3 Results

3.1 Simulation studies

This section summarises the insights gained from the simulation studies. For
details on thassessment criteria and results, see Section 1 in the supplementary
materials.

Simulation 1. Any combination of moves leads to good convergence, and
although there are differences in the speed and level of convergence, any com-
bination of moves is recommended.

Simulation 2. There are only two capture times, hence there is more variety
in the starting orders for each chain. The performance of the combinations of
moves is different from simulation 1. Move 3 performs better than any other
single move.

Move 3 generally traverses the space of permutations faster by reversing whole
segments of an ordering and it is the only move for which all R̂-statistics go
below 1.1 within the first 10,000 thinned samples. The combination of moves
ranked first according to the criteria described in Section 1 of the supplementary
materials is the combination 1,2,3,4 of all the moves.

Simulation 3. All moves and combinations thereof perform well in this situ-
ation, though move 3, while still achieving reasonable levels of convergence, is
now the comparatively less well performing single move. The combination of all
four moves performs well.

3.2 Validation on microarray data

The experimental data set has been acquired at equidistant time points every
2 hours. However, to adjust for differences in the speed of biological develop-
ment during the process, we apply GPseudoRank with irregular pseudotimes
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Figure 1: Convergence analysis for GPseudoRank. Gelman-Rubin stat-
istics for the log-likelihood and for the L1-distances of the sampled permutations
of cell positions from the reference permutation (Shalek data).

(as explained above in Section 2.2). In fact, adjusting for the speed of biological
development is needed, and an approximation with simple equidistant input
points for the GP changes the posterior distribution significantly, as shown in
Section 2 of the supplementary materials. Because of the bi-modality of the
L1-distances from the true cell positions (Figure 2), the Gelman-Rubin statistic
for this distance is less useful and we show the statistic for the log-likelihood
instead (Figure 1).

Figure 1 suggests a very fast convergence. However, if multi-modality is sus-
pected, which might not show in the log likelihood trace, sampling beyond
convergence for the log likelihood is recommended. Further plots illustrating
convergence can be found in Section 1 of the supplementary materials.
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Figure 2: Histogram of L1-distances from the reference permutation
of cell positions. Distribution sampled with GPseudoRank, point estimates
with TSCAN and SLICER.
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Figure 3: Comparing bi-modal posterior by GPseudoRank to point
estimates by TSCAN and SLICER: Windram data. For GPSeudoRank,
the matrix illustrates the posterior probabilities of the positions of the cells: the
true cell position is along the x-axis, the posterior density is plotted along the
y-axis. For TSCAN and SLICER, we plotted along the y-axis the estimated
position.

As illustrated by Figure 2, the distribution of the L1-distances of the sampled
permutations of cell positions from the correct order is bi-modal. The estimates
provided by SLICER [32, 33] and TSCAN [16, 15] fall in different modes illus-
trating the importance of sampling from the distribution of the orderings rather
than just obtaining a single estimate. The DeLorean MCMC sampler, sampling
continuous pseudotimes, is also unable to capture the multi-modality of the pos-
terior [24, Figure 1]. Figure 3 illustrates that the posterior distribution sampled
by GPseudoRank covers the two point estimates obtained from TSCAN and
from SLICER. For GPseudoRank, it contains the samples from one randomly
selected MCMC chain. For the corresponding plots of each of the 12 chains for
convergence analysis, see Section 2 in the supplementary materials.
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Figure 4: Uncertainty of pseudotime as a function of mean pseudotime.
For each cell, the mean pseudotime is plotted along the x-axis, and the respective
standard deviation along the y-axis. Cells are coloured by capture time.

3.3 Pseudotemporal uncertainty varies during response to
infection

For the scRNA-seq data from Shalek et al. [27], collected at five different capture
times, the true cell ordering is unknown. To check convergence of orders the R̂-
statistic is computed both on the log-likelihood and on the L1-distances of the
permutation of cell positions to an arbitrary reference permutation (Figure 1).

Figure 1 shows that a threshold for the R̂-statistic of 1.1 has been reached
after 10,000 thinned samples. We therefore discard a burn-in of 5,000 thinned
samples at the beginning of each chain, as recommended by Gelman and Shirley
[9]. Indeed, by the 1.1 threshold for the R̂ statistic 10,000 thinned samples would
have been sufficient for convergence.

Figure 2 demonstrates again the value of providing a posterior distribution for
orders, rather than a single estimate: TSCAN and SLICER give different results.
The TSCAN result is compatible with the sampled distribution, however, the
SLICER result seems to be an outlier. Knowledge of the uncertainty can prevent
over-confidence in the results.

Figure 4 illustrates the uncertainty of the pseudotime over the mean pseudotime.
To ensure that the inverted U-shape in the amount of uncertainties of the first
two capture times at 0h and 1h is not a sampling artifact, cells from these
capture times were mixed together for initialising the sampler (that is, capture
time information was discarded). On the other hand, despite being separated
during initialisation of the sampler, cells from capture times 4h and 6h are
completely merged, again indicating that the sample has reached convergence.

Overall uncertainty in the ordering of cells is markedly lower around capture
time 2h, when the reaction to the infection has set in, but is not yet complete.
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Figure 5: Posterior distribution of cell positions of the precocious cells.
For each posterior position of the cells we plot the frequency at which this
position occurs among all samples. One random MCMC chain was used. Both
of the precocious cells have a high probability of being located within capture
time 2h, with S51 likely to be ahead of S52.

The slight U-shape in the amount of uncertainty for capture times 0h, 1h, and
4h/6h seems to be an experimental batch effect of capturing multiple heterogen-
eous cells at different time points. Within a batch (or merged batches 4h and
6h) cells which are either lagging behind or slightly ahead in their development
are assigned a more specific pseudotime with lower uncertainty behind or ahead
of the bulk of cells whose pseudotimes are more interchangeable with higher
uncertainty.

GPseudoRank identifies two precocious cells, pointed out in the original analysis
by [27], ahead in terms of their response to the stimulus, see Figure 5. Shalek
et al. identified a set of genes particularly associated with antiviral response.
Ahmed et al. and Reid and Wernisch also used this score to demonstrate that
their methods identify two cells at capture time 1h precocious in their antiviral
response. Figure 6 shows the average expression of a set of genes associated with
antiviral response for each cell. As expected, this antiviral score increases over
pseudotime, confirming that the pseudotime assignment captures a biological
phenomenon. In contrast to Figure 6, both DeLorean [24] and GrandPrix [1]
show considerable edge effects in comparable plots [24, Fig. 4], [1, Fig. 2]. Such
edge effects are not biologically motivated and presumably algorithmic artifacts
which GPseudoRank is able to avoid by restricting pseudotimes to a finite in-
terval and by using a geodesic mapping.
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Figure 6: Core antiviral score as a function of mean pseudotime

4 Discussion

GPseudoRank is a new type of Gaussian process latent variable model for
pseudotemporal ordering. It samples orderings instead of pseudotimes, with
combinatorial proposal moves designed to allow the Metropolis-Hastings sampler
to make large changes to permutations and still achieve a high acceptance rate.
Figure 2 clearly illustrates the advantage of sampling from a posterior distri-
bution of cell orderings over deriving a single estimate. Although for this data
set the true ordering is known, our sampler shows that orders near a second
distinct mode are still likely. In fact one such alternative order is returned by a
popular algorithm. For data with unknown order, knowledge of the possibility
of alternative modes is preferable to the return of just one arbitrary solution.

For the microarray data set we used move 3 only, which reverses whole seg-
ments of a permutation, because of its particular suitability for capturing multi-
modality. We therefore recommend to run two MCMC chains of GPseudoRank
in parallel: one with move 3 only, which performs best in case of multi-modality,
and a second one with all moves, for faster convergence for less complicated dis-
tributions of orders with higher noise levels, as our simulation studies show.

The application to an scRNA-seq data set illustrates another advantage of
sampling from the posterior of orderings: the amount of uncertainty about the
position of a cell can vary with time. In this case, the uncertainty is lowest in
the middle of the process, where the heterogeneity of cells with regard to their
progress through the response to the infection is highest. This identifies parts
of the process with increased change and higher biological variability compared
to technical noise.

The uncertainty of the orders is relevant to any further analysis that models
scRNA-seq data in terms of time-series data. This applies, for instance, to any

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 8, 2018. ; https://doi.org/10.1101/211417doi: bioRxiv preprint 

https://doi.org/10.1101/211417
http://creativecommons.org/licenses/by/4.0/


type of network inference where the order of the input time series is relevant,
including GP models [20] and vector-autoregressive ones [19]. Alternatively,
identifying the regions of the process where the uncertainty of a cell’s position
is low can support the selection of suitable cells for the clustering of genes, for
example.

Variational inference, which avoids sampling altogether, is considered a compu-
tationally efficient if only approximate Bayesian inference alternative to MCMC
sampling. However, it turns out that MCMC sampling from discrete permuta-
tions in GPseudoRank is efficient enough that its run time is comparable to
that of a variational approach: 100,000 iterations for the Windram data take
7min 20s on a single Intel Xeon X5 2.0GHz CPU, compared to about 3 minutes
for each initialisation of the variational sampler in DeLorean on one core of an
AMD 6174 2.2 Ghz CPU. Similarly, for the scRNA-seq data set, sampling the
100,000 samples shown to be sufficient for convergence takes about 40 minutes,
compared to 20 minutes for each initialisation of the variational sampler in
DeLorean.

Overall, GPseudoRank offers new insights into biological phenomena and ex-
perimental artifacts. It quantifies the amount and variability of uncertainty in
single-cell ordering (Figure 4). Assessing the degree of uncertainty enables spot-
ting experimental batch effects created by sampling from a continuous spectrum
of developmental stages at only a few capture times. Our approach is also able
to identify precocious cells (Figure 5). By combining a geodesic pseudotime
mapping with sampling permutations, GPseudoRank also avoids edge effects
present in other GP methods for pseudotime ordering (Figure 6).
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