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Abstract1

Spatial cells of the hippocampal formation are embedded in networks of theta cells. The septal2

theta rhythm (6–10 Hz) organizes the spatial activity of place and grid cells in time, but it remains3

unclear how spatial reference points organize the temporal activity of theta cells in space. We4

study spatial theta cells in simulations and single-unit recordings from exploring rats to ask5

whether temporal phase codes may anchor spatial representations to the outside world. We6

theorize that an experience-independent mechanism for temporal coding may combine with7

burst synchronization to continuously calibrate self-motion to allocentric reference frames.8

Subcortical recordings revealed spatial theta cells with strong rate-phase correlations related to9

distinct theta phases. Simulations of bursting neurons and networks explained that relationship10

and, with competitive learning, demonstrated flexible spatial synchronization patterns when11

driven by low-dimensional spatial components from the recording data. Thus temporal coding12

synchrony may reconcile extrinsic and intrinsic neural codes.13
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Introduction14

Neural codes may map sensory or physical dimensions to intensity, like a rate code, or timing,15

like a phase code (cf. Brette, 2015). It remains unresolved how the apparent spatial metric16

revealed in grid cells (McNaughton et al., 2006; Moser & Moser, 2008) is computed in the brain17

as a rate-coding or a phase-coding process (Burak & Fiete, 2009; Zilli et al., 2009). Grid cells18

develop after place and border cells (Langston et al., 2010; Wills et al., 2010) and undergo19

experience-dependent distortion or control by geometric reference points in asymmetric or20

rotated environments (Krupic et al., 2015; Stensola et al., 2015; Savelli et al., 2017). These21

findings suggest the grid cell spatial metric is more local and malleable than universal and22

absolute. This characterization is at odds with the first-class grid responses formed by23

rate-coding continuous attractor models (Fuhs & Touretzky, 2006; Burak & Fiete, 2009) and the24

lack of a detailed mechanism for environmental resetting in phase-coding oscillatory25

interference models (N. Burgess, 2008; Hasselmo, 2008; Blair et al., 2008). Reconciling these26

gaps will elucidate the neural basis of spatial reference frames.27

How can environmental cues reset a neural code for space? Path integration is the idiothetic28

process, analogous to angular integration for head direction (Zhang, 1996; Knierim et al., 1998),29

that guides the neural code for position using egocentric motion signals. Interacting with30

external sensory cues is critical for path integration to remain calibrated within a fixed spatial31

reference frame (Gothard et al., 1996; Etienne et al., 2004), but the nature of the interaction32

depends on the neural code. A path-integrating rate code may require direct activation of33

sensory associations with the cells coding for position (Widloski & Fiete, 2014). A34
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path-integrating phase code may require temporal phase synchronization with a sensory35

feedback signal (Monaco et al., 2011; Blair et al., 2014). Phase-code models (N. Burgess, 2008;36

Hasselmo, 2008) have previously implemented resetting as instantly forcing oscillators to zero37

phase, similar to experimental stimulation- or task-evoked theta reset (Buzsáki et al., 1979;38

Williams & Givens, 2003). Rather than abrupt resets, the spatial calibration of grid cells may be39

predominantly mediated by boundaries (Hardcastle et al., 2015) in a way that reflects continuous40

gating between extrinsic and intrinsic information streams (Carpenter et al., 2015; Savelli et al.,41

2017). It is unclear how place-to-grid feedback may support this form of calibration in attractor42

network or phase synchronization models.43

Which pathway would place-to-grid feedback take? The hippocampal formation is itself a44

loop-like structure, but subregions CA1/CA3 also form bidirectional loops with subcortical45

structures that regulate the septo-hippocampal theta rhythm (6–10 Hz; Leranth et al., 1999;46

Ruan et al., 2017). Theta-rhythmic activity propagates through the circuits of the septum,47

mammillary bodies, and anterior thalamus via excitatory burst synchronization (Vertes et al.,48

2001; Tsanov et al., 2011; Welday et al., 2011). Bursting aids neurocomputation and signal49

transmission by overcoming synaptic failure, facilitating transmitter release, selecting resonant50

inputs, and/or evoking synaptic plasticity (Lisman, 1997; Izhikevich, 2007). In this paper, we51

study the hypothesis that theta bursting and spatial inputs create a spatial phase code that52

supports flexible learning of spatial synchronization patterns. We theorize that this spatial phase53

code is reflected in correlations between firing rate and phase. We recorded theta cells from a54

constellation of hippocampal and subcortical areas in freely exploring rats to look for spatial55

phase information and rate-phase correlations. We modeled intrinsic theta bursting in oscillatory56
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neuronal network models to demonstrate 1D and 2D phase-code synchronization to,57

respectively, artificial and path-integration-like phase codes. We discuss the results with respect58

to the hippocampo-entorhinal spatial metric, but the rate-to-phase calibration mechanism may59

subserve other brain systems.60

Results61

Our approach combines mechanistic models of burst synchronization with information theoretic62

and statistical modeling analyses of theta cell recordings. First, we present 1D simulations of63

spatial bursting cells that test how they entrain a nonspatial target neuron to a spatial phase64

code. Second, we present open-field recordings of theta cells in rats to quantify spatial phase65

coding and study a statistical model to isolate trajectory-based confounds of spatial activity.66

Third, we construct a 2D data-driven generative model of spatial inputs for competitive bursting67

network simulations that characterize dynamical constraints on environmental phase attractors.68

Spatial
‘phaser’
bursting
models
lock
to
distinct
theta
phases69

To model spatial theta cells, we defined a two-variable, nonlinear integrate-and-fire model of70

intrinsic bursting, meaning that the bursting derives from internal dynamics and not external71

fluctuations. This bursting model (Methods) is a variation on Izhikevich’s hippocampal72

low-threshold burster (Izhikevich, 2007, p.310), which can fire single spikes or bursts of varying73

intensity depending on input strength. Its dynamics implement burst termination with adaptive74

feedback analogous to the slow calcium- or voltage-gated activation of outward currents (IAHP75
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or IK(Ca)) observed in hippocampal and midbrain bursting neurons (Traub et al., 1991; Amini et76

al., 1999). For recording phase, spiking simulations (Methods) tracked a reference theta wave at77

fθ = 7.5 s−1, the typical burst rate of our theta-cell data below.78

Mehta et
al (2002) posited that combining inhibitory theta input with excitatory ramping input is a79

robust mechanism for creating a temporal code from a rate code: Lower excitation delays firing80

to the periodic inhibitory minimum (theta trough) and higher excitation advances firing until81

maximum inhibition (theta peak). This precession of activity conveys information about the82

rate-coded input in the theta phase of the output (Discussion).83

To test temporal coding in the theta-bursting model, we implemented the Mehta mechanism by84

combining theta inhibition with excitation from a ramping input function Framp (equation (4);85

Methods). With certain bursting (Table 2) and gain (Table 3) parameters, we call this a ‘phaser’86

cell. We demonstrate a phaser cell simulation (Figure 1A) in which Framp is a triangle wave87

(green). For low excitatory input, the phaser (Figure 1A, blue trace and spike raster) emits single88

spikes near theta peak (zero phase) every few theta cycles (gold highlights, Low1 and Low2). For89

high excitatory input, the phaser bursts with spike triplets near theta trough (−π/π phase) every90

other theta cycle (gold highlight, High). This cycle-skipping rhythmicity is consistent with91

observations in medial entorhinal cortex and the head direction system (Deshmukh et al., 2010;92

Brandon et al., 2013; Discussion). Expanded intervals (Figure 1B) reveal the range of burst93

modulation (blue traces) and the shift in timing to earlier phases (middle) relative to the reference94

theta wave (magenta). More frequent bursts at earlier theta phases suggest the negative95

correlation between rate and phase entailed by the Mehta mechanism (2002). To quantify this96

correlation, we sampled spiking for a longer triangle wave with a varying cycle period. Phase97
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distributions and the rate-phase correlation (n = 399 nonzero input bins out of 512; r = –0.809;98

Figure 1D) show clear precession from peak to trough (0 to −π) across average firing rate. Thus99

this ‘negative’ phaser forms a Mehta-like phase code of its input function that will most strongly100

entrain a post-synaptic target to the trough of the theta rhythm.101

How can a minimal bursting model entrain more than one phase? We propose a parsimonious102

mechanism allowing for simultaneous entrainment to theta peak: A theta cell with strong103

excitatory theta input whose activity is suppressed by a negative phaser. To avoid the additional104

degrees-of-freedom and parameter tuning for an interneuronal subnetwork, we modeled the105

lateral inhibition as feedforward inhibition with a slow 100-ms conductance (equation (5);106

Table 3). The ‘positive’ phaser (Figure 1A, orange trace and spike raster) bursts in-phase with107

theta when disinhibited by weak input to the negative phaser (highlights, Low1 and Low2;108

Figure 1B, top and bottom). The negative and positive phasers fire in complementary patterns as109

the input changes across the simulation (Figure 1A). The positive phaser appears to precess with110

stronger inputs (Figure 1C), but the suppressive inhibition means that its firing rate is increasing111

as the external input goes to zero. Thus the rate-phase correlation mediated by the input is112

positive (n = 351 nonzero input bins out of 512; r = 0.705; Figure 1E). This positive phaser113

procession is shallower than the negative phaser precession (Figure 1D) that is directly driven by114

the external input. Thus a simple connectivity pattern between theta cells may permit115

multiplexed entrainment to the peak and trough of the theta rhythm.116
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Figure 1 | Excitatory
input
to
theta-bursting
neuron
models
creates
rate-phase
correlations. A burst-
ing model (blue, ‘negative’) with combined external and theta input (green) suppresses another bursting
model (orange, ‘positive’). (A-C) A 20-s simulation. (A) A triangle-wave input (top) produced a range of
spiking (Low1, Low2) and bursting (High) in the negative cell (middle) and a complementary pattern in the
positive cell (bottom). (B) Expanded intervals show the reference theta wave (magenta). (C) A scatter plot
shows spike theta-phase across input levels. Stronger inputs caused earlier firing (phase precession) in the
negative cell and silenced the positive cell. Lines, circular-linear regressions. (D+E) A 1-hr simulation of 10-s
to 62-s triangle-wave cycles sampled average firing rates and phases. Rate-phase correlations (grayscale,
phase distributions conditioned on rate) revealed that input level comodulated rate and phase. For higher
firing rates, the negative cell strongly precessed to earlier phases (D) but the positive cell processed more
weakly to later phases (E). Red lines, circular-linear regressions.

Competitive
learning
synchronizes
a
1D spatial
phase
code117

Can these phaser cells create spatial synchronization patterns? We constructed a 1D spatial118

model from 64 spatial tuning functions, each representing a particular location similar to a place119

field. However, if these were the only spatial inputs, then the complementary firing patterns of120

negative and positive phasers (Figure 1A) would entail that positive phasers only have121

long-range, not local, spatial responses. To equalize the diversity of spatial responses between122
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negative and positive phasers, we added 64 ‘inverse’ spatial functions representing the123

long-range complements of the local tuning functions (Figure 2A, purples; Methods). Each of124

these spatial inputs drives one of 128 negative phasers (Figure 2A, blues) connected125

(equation (5)) to one of 128 positive phasers (oranges). Example (x = 0.5) joint space-phase126

distributions for the 4 phaser/tuning subtypes (Figure 2B) show the resulting spatiotemporal127

patterns available for synchronization (for the entire network, see Supplementary Figures 1–4).128

Figure 2 | A 1D spatial
network
creates
a
palette
of
space-phase
distributions. A set of 64 local tuning
functions for a 1D space on {0, 1} and their corresponding inverse (long-range) tuning functions drive
128 pairs of negative/positive model phasers. (A) The tuning functions (purples: upper/local, lower/inverse)
evenly cover the space and excite (filled circles) the negative phasers (blues). The negative phasers in turn
suppress (T-bars) their paired positive phasers (oranges). The subnetwork at 0.5 is highlighted. (B) A 1-hr
simulation sampled spike phase for a 1-min triangle-wave trajectory spanning the space. For the highlighted
phasers in (A), the resulting joint space-phase distributions of spike timing create distinct spatiotemporal
patterns around the theta trough (−π/π phase) and the falling phase ({0, π/2}).

Can this phaser activity entrain a 1D spatial phase code? We devised a binary phase-code129

target consisting of an anti-phase fixed point near x = 0 and an in-phase fixed point near x = 1130

(Figure 3A). This pattern associates the opposing ends of the space with opposing phases of the131

theta cycle. We computed the vector cosine similarity between the phasers’ joint space-phase132

distributions and the phase-code target as a basis for competitively selecting active synapses133

(Methods). This winners-take-all (WTA; Table 4) method competed local against long-range134

9
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(inverse) phasers within the negative/positive phaser subtypes. The resulting weights (Figure 3B)135

show the anti-phase fixed-point supported by negative/local phasers (left) and the in-phase136

fixed-point supported by positive/inverse phasers (right). To visualize the trained network, a137

weighted average of the phaser distributions (Figure 3C) revealed a qualitative match to the138

phase-code target in which the anti-phase mode (right) was more sharply defined than the139

in-phase mode (left). This pattern suggests spatial synchronization with phasers is possible.140

Figure 3 | Competitively
trained
phasers
synchronize
a
theta
cell
to
a
phase
code. We devised an
artificial spatial phase code and a nonspatial theta-cell model; competitive weights associating the 1D
phaser network (Figure 2A) to the phase code allowed phaser input to spatially synchronize the theta cell. (A)
The phase code target (black) has an anti-phase mode (left,−π/π) and an in-phase mode (right, zero phase).
The target bursting cell (inset) random-walks across theta phase (Supplementary Figure 5). (B) Competitive
20%-winners-take-all weights (Methods). (C) Weighted average of the joint space-phase distributions of
the phaser network. (D+E) Hour-long simulations of the target theta-cell burst timing on a 1-min triangle-
wave trajectory between 0 and 1. The theta cell was simulated without (D) and with (E) intrinsic phase noise.
Multiple theta cycles are shown (y-axis) for clarity.

To test phaser synchronization of downstream neuron, we created an intrinsic theta-bursting cell141

with simplified bursting dynamics (equation (6); Table 4; Methods) that emits doublets without142

cycle skipping. The intrinsic burst rate was approximately tuned to the reference theta frequency143

fθ. Without phaser input, this ‘target burster’ (Figure 3A, inset) randomly drifts across theta144

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/211458doi: bioRxiv preprint 

https://doi.org/10.1101/211458
http://creativecommons.org/licenses/by-nc-nd/4.0/


phase with a noise value (σ, Table 4) that randomizes its phase across a 30-s simulation145

(Supplementary Figure 5). To verify synchronization to the phase-code target, we simulated the146

phaser-target network with triangle-wave trajectories (1-min period, 1-hr duration). Plots of burst147

timing for simulations (Methods) without noise (Figure 3D) and with noise (Figure 3E) reveal148

stereotyped phase trajectories locked to both the in-phase and anti-phase fixed points (gray149

rectangles). The upper branch of the synchronization pattern, moving left toward x = 0,150

smoothly precesses to the earlier anti-phase fixed point; the lower branch, moving right toward151

x = 1, slowly processes to the fixed point until jumping discontinuously ahead of it (Figure 3D+E).152

The height of the burst-timing channels on either side, approximately a quarter cycle153

(Figure 3D+E), indicate the degree of phase misalignment tolerated in the target burster. While154

this tolerance shows the phaser synchronization does not act perfectly, it robustly prevents155

substantial drift from the phase-code target. This pattern holds across a range of noise levels156

and input gains (Supplementary Figure 6). Thus a spatial network of phaser cells can robustly157

synchronize a noisy theta-bursting neuron to an artificial spatial phase code.158

Theta
cell
recordings
reveal
spatial
phaser
patterns159

To study space-phase representations in biological theta cells, we recorded single-unit data160

from rats foraging an open 80-cm cylindrical arena with tetrodes in theta-rhythmic sites161

including septum, hippocampus, thalamus, midbrain, and other subcortical areas (Methods).162

Recording sessions were longer than typical spatial navigation experiments (n = 110; mean, 2.1163

hours; range, [0.76, 3.28]) to sufficiently sample phase differences across the environment. In all,164
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671 uniquely identified theta cells were recorded in 8 rats, resulting in 1,073 cell-session165

recordings for analysis.166

Some theta cells were clearly modulated by space. An example spatial theta cell from the lateral167

septum fired preferentially on the west/southwest half of the arena (Figure 4A) with a peak168

firing-rate around 12 spikes/s (Figure 4B) on an adaptively-scaled spatial map of average firing169

rate (‘ratemap’; Methods). To verify this as a theta cell, its temporal autocorrelation (Figure 4C)170

revealed a theta rhythmicity index of 0.392 and its phase distribution relative to the hippocampal171

local field potential (LFP) theta rhythm (Figure 4D) revealed a theta modulation index of 0.288172

(Methods) and a preference for anti-phase (−π/π) activity. However, the spatial map of average173

firing phase (‘phasemap’; Figure 4E) shows that the cell preferred in-phase firing (greens) in low174

firing-rate regions, and anti-phase (pinks) in high firing-rate regions. We computed ‘coherence175

maps’ by darkening phasemap pixels by phase variance (Methods). The coherence map176

(Figure 4F) shows that the spatial phase pattern holds in the arena center, but loses coherence177

along the west wall. Example intervals of spikes and LFP theta-phase show the transition from178

single spikes to bursts between periods of low and high firing rates (Figure 4G). Does this spatial179

theta cell carry correlations between rate and phase, as predicted by the Mehta mechanism?180

Indeed, the rate-phase correlation (Figure 4H) reveals a strong negative relationship181

(circular-linear regression: n = 3,190 pixels, r = –0.836; Methods) similar to our negative phaser182

model (Figure 1C, blue). Thus some theta cells may convert spatial inputs into spatial phase183

codes.184

Are rate-phase correlations characteristic of spatial phase codes in theta cells? We computed185

spatial phase information Iphase with critical value α = 0.02 (Methods). Theta cell recordings with186
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Figure 4 | An
example
theta
cell
has
spatial
rate-phase
correlations. Recordings from subcortical theta
cells were made in rats exploring an 80-cm cylinder for long durations. (A) Spikes (red dots) from a lateral
septal cell demonstrated spatial selectivity for one side of the arena (gray line, trajectory). (B) Adaptively
smoothed map (Methods) of average firing rate. (C) Spike autocorrelogram (for computing theta rhythmicity
index; Methods). (D) Distribution of spike phase relative to hippocampal theta (gray line, 10° moving average
for computing theta modulation index; Methods). (E) Map of average theta-phase of firing. (F) Average
phases from (E) composited with a saturation mask representing maximum-normalized phase coherence.
Inset, phase-coherence color wheel. (G) Sample 1-s traces of LFP theta rhythm and spikes for low/high
(top/bottom) periods of firing. (H) Conditional phase distributions along rate (grayscale), based on average
rate (B) and phase (E) pixels, with circular-linear regression lines (red). Multiple theta cycles shown for clarity.

statistically significant Iphase (n = 233) have peak firing rate (median, 7.35 spikes/s), estimated187

burst frequency (7.66 ± 0.44 s−1), and theta rhythmicity index (median, 0.365) values188

comparable to those of nonspatial cells (Supplementary Figure 7). Spatial recordings189

demonstrated a wide range of Iphase values (median, 0.36 bits; range, [0.012, 3.67];190

Supplementary Figure 8A). How does spatial phase information relate to rate-phase191

correlations? Based on circular-linear regressions for each cell (like Figure 4H, red lines), we192

estimated the total phase shift for each recording (Methods). Total phase shifts for nonspatial193

recordings (Figure 5A, contours) were distributed around zero regardless of Iphase, whereas total194

phase shifts for spatial recordings (blue circles) were strongly negative or positive even for low195

Iphase values. Both rate-phase correlation coefficients and total phase shifts were more broadly196
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distributed for spatial cells than nonspatial cells (Supplementary Figure 8). Thus spatial theta197

cells may carry spatial phase information via negative and positive rate-phase correlations.198

Figure 5 |Biological
phasers
split
into
theta-segregated
negative/positive
subtypes. (A) To find phaser-
like recordings, we compared spatial phase information with the total phase shift estimated from rate-
phase correlations of all theta cells. Background contours show the distribution of 840 nonspatial theta
cell recordings. Circles show 233 spatial recordings; circle size increases with correlation strength. (B+C)
Phaser criteria (Results) selected 101 spatial recordings. Multiple theta cycles shown for clarity. (B) Rate-
normalized rate-phase regression lines for negative (blue) and positive (orange) biological phaser recordings.
(C) Preferred theta phases for negative/positive phasers are shown as histograms (positive composited
over negative) and kernel-density estimates (lines, π/4 bandwidth Gaussian). On average, negative/positive
phasers prefer anti-phase/in-phase firing.

What do these spatial phase-coding theta cells look like? Let’s define criteria for ‘biological199

phaser’ cells: peak firing rate ≥3.5 spikes/s, significant Iphase ≥ 0.1 bits, significant rate-phase200

correlation |r| > 0.2, and absolute phase shift ≥π/4. These criteria select 101/233 spatial201

recordings from 5/8 rats (Supplementary Figure 9). Like the model phasers, biological phasers202

had functional subtypes based on whether they fired earlier (negative, n = 65) or later (positive, n203

= 36) at higher firing rates. To evaluate their temporal organization, the rate-phase regression204

lines for each cell (Figure 5B) show that negative (blue) and positive (orange) phasers started205

firing during the rising phase of theta ({−π, 0}) and then, with increasing firing rate, precessed or206

processed on opposing paths to the falling phase ({0, π}). This rate-modulated phase pattern207
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spans the theta cycle, but on average the negative phasers preferred trough firing and the208

positive phasers preferred peak firing (Figure 5C) as predicted by the model phasers (Figure 1C).209

Phaser cells constituted 13.2% of recordings from the septum (Table 1) where they were found210

predominantly in the dorsal/intermediate aspects of lateral septum (Supplementary Figure 10).211

For negative phaser cells (Figure 6A-E), ratemaps (top row) revealed diverse spatial212

representations including place-like fields (A+B), broad gradient-like fields (C+D, showing213

remarkably similar responses from different rats), and boundary responses along the arena wall214

(E). High firing rates (Figure 6A-E, top row) generally corresponded to pre-trough timing (middle215

row, blues/pinks). Many conditional phase distributions (Figure 6A-E, bottom row, grayscale)216

show that precession halted once the cell precessed past theta trough; note that this217

nonlinearity means that some regression lines (Figure 5B) overestimate phase shifts. Positive218

phaser cells (Figure 6F-J) likewise revealed diverse spatial modulation, but the responses were219

more subtle, involving higher baseline firing rates (F-I, top row) and heterogeneous compositions220

of boundary-like and place-like selectivity. Positive phasemaps (Figure 6F+H-J, middle row)221

showed shifts from pre-theta-peak (greens) to post-theta-peak (blues) that were evident in222

shallow rate-phase regressions centered on zero phase (bottom row); recording 52 (G) was an223

oddball with procession centered on theta trough. To quantify spatial differences between224

negative and positive phasers, the widely-used Skaggs information measure (1993; Methods)225

corroborated that negative phaser spikes carried more spatial content (negative: n = 47 unique226

cells; 0.381 ± 0.06 bits/spike, mean ± s.e.m.; positive: n = 24, 0.111 ± 0.048; post
hoc227

log-transformed Welch’s t = –3.92, p = 0.0002). This difference is consistent with our model228

(Figure 2A) where only the negative phasers are driven directly by spatial inputs. Thus biological229
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phaser cells, prominently in lateral septum, represent diverse spatiotemporal relationships230

consistent with the phaser model.231

Figure 6 | Example
phaser
recordings
reveal
diversity
of
spatial
phase
codes. For 5 example recordings
of negative (A-E) and positive (F-J) biological phasers, we show the ratemap (top), phase-coherence map
(middle), and conditional phase distributions with rate-phase regression lines (bottom, like Figure 4H). Note
that peak firing rates (A-J, top, colorbar axes) are consistent with the restricted range of biological phaser
firing rates (Supplementary Figure 9). Negative phasers generally showed stronger spatial modulation and
rate-phase correlations than positive phasers (Results).
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Table 1 Counts of theta cell recordings by brain area and phaser subtype.

Area Negative Positive Nonphaser
Septum 40 (7.4%) 32 (5.9%) 471 (86.7%)

Hippocampus 4 (23.5%) 1 (5.9%) 12 (70.6%)
Thalamus 0 (0%) 0 (0%) 55 (100%)
Midbrain 13 (3.9%) 1 (0.3%) 320 (95.8%)

Other 8 (6.5%) 2 (1.6%) 114 (91.9%)

Do biological phaser recordings reflect exclusively spatial inputs? To quantify contributions from232

trajectory-based factors, we computed spike information and modulation indexes for direction233

and speed (Methods). As a spatial baseline, regressing Skaggs information onto spatial phase234

information Iphase yielded slope 0.831 (Supplementary Figure 11A), indicating that spike phase235

contributes ∼20.4% to the information rate beyond spike position alone. In contrast, regressing236

the spike information content for direction or speed onto Iphase yielded 0.103 and 0.036,237

respectively (Supplementary Figure 11B+C), indicating minimal coding overlap between Iphase238

and direction or speed. However, modulation indexes based on deflection of firing rates across239

direction (n = 101 phaser recordings; median, 0.379) and speed (0.318) suggested dependence240

of phaser cell activity on the trajectory (Supplementary Figure 11D+E). Thus phaser firing rate,241

but not phase, may reflect spatial-behavioral confounds which must be resolved.242

Statistical
model
of
spatial
drive
isolates
inhomogeneous
directionality243

The main behavioral confound is trajectory-biased sampling of cells whose directionality may244

vary by location. Spurious spatial activity may result from directionally biased visits to a245

particular location by the animal for which the recorded cell happened to have a similar246

directional preference. The problem is exacerbated by inhomogeneously directional cells that247

may exhibit a range of directional preferences across the environment. For example, a cell248
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responding to anti-clockwise movement during running may produce a boundary-like response249

along the wall if the animal only runs anti-clockwise along the wall. To evaluate this confound,250

we studied a Poisson-distributed generalized linear model (GLM) of spatial and trajectory251

variables. GLMs have been shown to learn independent spatial and directional contributions to252

firing that avoid trajectory-based biases (Acharya et al., 2016). We fit the GLM independently to253

every cell recording for each element of a 3 × 3 spatial grid spanning the arena (Methods) to254

capture inhomogeneous changes in spatial or directional selectivity. The model is trained to255

predict spike counts across 300-ms intervals i256

Ŷi = β̂0 + β̂LLi + β̂QQi + β̂WWi + β̂SSi + β̂DDi (1)

where L and Q are linear and quadratic spatial variables, W is a sigmoidal wall-proximity signal,257

S is linear speed, and D is movement direction. L, Q, and W are purely spatial whereas S and D258

capture the animal’s velocity vector, so we call this the LQW-SD model. The spatial predictors259

are more reliable over the training intervals than the velocity predictors. To address this260

asymmetry, we trained LQW-SD on standardized predictors as a ridge regression with261

ℓ2-regularization (Hastie et al., 2009). To maximally expose inhomogeneous directionality, we262

chose the regularization penalty that optimized the trade-off between maximizing the directional263

component of the model and minimizing the spike prediction error (Supplementary Figure 12;264

Methods). To quantify inhomogeneity, we computed a directional coherence index (DCI) on {0, 1}265

measuring alignment of the 9 βD vectors across the grid; to quantify directionality, we computed266

a directional strength index (DSI) on {0, 1} measuring the magnitude of βD relative to the other267

predictors (Methods). DCI for phasers (n = 69 unique cells; median, 0.315) showed higher268

coherence than nonphasers (n = 631; 0.213; post
hoc Mann-Whitney U = 15,567, p = 0.0001).269

DSI for phasers (median, 0.0187) and nonphasers (0.0133) found similarly low directionality (U =270
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18,258, p = 0.0277) but nonphasers were more widely distributed (range, [0, 0.199]) than phasers271

([0.002, 0.094]; Supplementary Figure 13). Biological phaser cells thus exclude both coherent272

(high DCI, high DSI) and inhomogeneous (low DCI, high DSI) directionality.273

What does LQW-SD reveal about spatial predictors? Like DSI for directionality, we computed the274

relative strength of each model variable (equation (7); Methods). Box plots (Figure 7A) show the275

distribution of variable weights for phasers (green; n = 69 unique cells) and nonphasers (gray;276

n = 631). Both cell types had similar central tendencies with nonphasers exhibiting wider ranges277

of variable strengths. Spatial factors overwhelm the wall and trajectory variables, such that L278

and Q constitute approximately 30% and 60% of the model weight, respectively. Wall/boundary279

cells are (by observation) a small number within the dataset, but are the S and D factors really so280

low? We standardized predictors for training, but the trajectory-based signals may be highly281

non-normal. In that case, the importance of a model variable should be measured instead by its282

effective range of contribution to predictions. For each variable X, we computed its contribution283

max
i

∣∣ β̂XXi

∣∣ (2)

across time intervals i and sum-normalized the variables (Methods). The contribution profile284

(Figure 7B) was also dominated by L and Q, but W , S, and D contributions were enhanced285

relative to the strength profile (Figure 7A). Wall and direction variables constituted approximately286

8% each of the total contribution and nonphasers revealed a wide range of speed contributions287

(Figure 7B, S, gray) consistent with extensive speed modulation in space-related brain areas288

(Fuhrmann et al., 2015; Kropff et al., 2015). Sorted matrixes of cell-level data confirmed this289

pattern and showed an inverse relationship between spatial and speed contributions290
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(Supplementary Figure 14). Thus LQW-SD revealed that spatial factors trade off with speed291

modulation in theta cells and that phasers were overwhelmingly spatial, not directional.292

Figure 7 | Phaser
GLM predictions
are
driven
by
spatial
predictors. The GLM weights (A) and contri-
butions (B) from the spatial (LQW ) and trajectory-based (SD) variables for nonphasers (n = 631 unique
cells) and phasers (n = 69) are shown in 95% box-and-whisker plots with outliers (×). For phasers, the
second-order spatial predictors (L and Q) are dominant.

Is LQW-SD accurate enough to reproduce spatial activity? The foregoing analysis is predicated293

on the model’s ability to explain firing patterns. We used LQW-SD spike predictions across the294

training grid to reconstruct ratemaps (Methods). Quantifying accuracy as the vector cosine295

similarity between observed and predicted ratemaps, we found phasers (n = 69 unique cells;296

median, 0.994) and nonphasers (n = 631; 0.927) to have highly accurate reconstructions (post297

hoc Mann-Whitney U = 16,153, p = 0.0004). Observed and LQW-SD-predicted ratemaps are298

shown in Figure 8A-E for the example phasers in Figure 6A-E with overlaid arrows representing299

the modeled directionality (βD) of each grid section. To verify that LQW-SD also captured strong300

directional (high DSI) cells accurately, examples of coherent (high DCI) and inhomogeneous (low301

DCI) directionality are shown in Supplementary Figure 15. Thus LQW-SD provided a high-fidelity302

account of theta cell firing, including spatial and directional theta cells.303
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Figure 8 | Phaser
GLM reconstruction
and
transformation
 into
generative
spatial
 inputs. (A-E) We
show the observed ratemaps (top) and 3 × 3 LQW-SD-predicted ratemaps (bottom) for the phaser exam-
ples in Figure 6A-E. Reconstructions were built from spike-count predictions in each grid section (Methods).
White lines, model grid boundaries; arrows/dots, normalized GLM directional (D) weights; Strength = DSI;
Coherence = DCI. (F-J) The steps to form the generative spatial input model are illustrated (Methods).
Phasers (F; examples from C and E) are trained in the 1 × 1 LQW model (G), whose linear predictor (H)
is normalized to {0, 1} with a sigmoid nonlinearity (I). To generate novel samples (J) from the normalized
spatial functions, we added 20% Gaussian noise to the LQW parameters and randomly center-rotated the
coordinate frame.

Competitive
phase
attractors
for
flexible
spatial
synchronization304

Can phaser cells synchronize a downstream target to path-integration-like spatial phase codes?305

We combined our model phasers (equation (3); Table 2; Table 3) with input from a reduced306

LQW-SD model (equation (1)). The LQW model was trained on the full trajectory (that is, a 1 × 1307

grid) without trajectory variables S or D. The result is a seamless spatial model of biological308

phaser cell input309

FLQW(x(t)) = β̂0 + β̂LL(x(t)) + β̂QQ(x(t)) + β̂WW (x(t))
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based on trajectory position over time x(t). LQW training was optimized to wall signals310

(Supplementary Figure 12) to ensure the minority of boundary-like responses were captured. In311

our phaser model, spatial functions drive the negative phasers (Figure 2A). To create a312

generative spatial input model, we selected negative phaser recordings (such as Figure 8F+G)313

and computed the linear predictors (H), which we normalized to spatial functions on the range314

{0, 1} (I). We generated novel samples F ∗
LQW by randomly choosing a spatial function, fuzzing its315

parameters, and center-rotating the function by a random angle (Figure 8J; Methods). The316

ramping input (equation (4); Methods) to a model negative phaser thus follows317

Iramp(t) = geF
∗
LQW(x(t))

with other parameters unchanged. We simulated 1,000 F ∗
LQW samples driving 1,000 model318

negative phasers connected (equation (5)) to 1,000 model positive phasers. The simulated319

phasers (see Supplementary Figures 16+17 for examples) showed a distribution of place-like,320

gradient-like, and boundary-like responses like the biological phasers but with rate-phase321

correlations from the model (Figure 1C). Thus model phasers derived from theta cell recordings322

can help simulate realistic spatial phase synchronization.323

Do data-driven model phasers support multiplexed spatial synchronization? We first simulated324

the target burster neuron (equation (6); Table 4) on a 1-hr trajectory (Figure 4A, gray line) without325

any phaser input. The burst phasemap for this random walk (Figure 9A; peak coherence, 0.486)326

shows the modulation expected from averaging finite data on a fixed trajectory. We devised327

spatial phase codes that span both the environment and the theta cycle (Figure 9B) representing328

path integration along the 45° diagonal. With 2,000 possible phaser inputs, we increased WTA329

competition to yield 3.5% sparsity (Table 4). The competitively weighted average of joint330
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space-phase distributions (Figure 9C) shows the total phaser input, which reveals a blue band331

(π/2 phase, top), due to positive phasers, alternating with a pink band (π, bottom), due to332

negative phasers. The spatial position of these bands (Figure 9C) tracked the corresponding333

phase strips in the desired phase codes, indicating that phaser diversity and competitive learning334

were sufficient to control the input distribution of burst phase across space. Does this phaser335

input entrain the target burster? With phaser input, the target burster phasemaps (Figure 9D;336

peak coherence, 0.994, top; 0.973, bottom) reveal highly coherent regions of synchronization to337

the positive (top) and negative (bottom) phasers that were sharply separated by a narrow band338

of phase incoherence (darkened area; Supplementary Movie 1). The two synchronization regions339

were expanded and shifted along the 45° diagonal relative to the input. Both effects are340

analogous to features of the 1D phase trajectories in Figure 3D+E: The expansion relates to the341

continuation (horizontally) of burst phase as position moved away from the fixed points; the shift342

relates to the phasic delay (vertically) between the fixed points and the onset of synchronized343

target bursting. Can a spectrum of spatial phase codes be learned simultaneously? We344

simulated 64 target bursters trained on phase codes with varying preferred directions. The same345

population of model phasers maintained control of the synchronization regions across preferred346

directions and spatial offsets (Supplementary Movies 2+3). Thus realistic phasers support347

functionally flexible but dynamically constrained synchronization to spatial phase codes.348

Discussion349

We presented network and statistical models that outlined a novel mechanism for anchoring350

spatial representations in continuous regions of neural synchrony. Simulating the bursting351
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Figure 9 | Phaser
synchronization
of
 reference
points
 for
path
 integration. We simulated the noisy
target burster and 1,000 negative and positive 2D phasers trained on path-integration-like phase codes.
(A) Phase-coherence map of burst timing of the target burster without phaser input. Inset, phase-coherence
color wheel. (B) For training, two spatial phase codes integrate along the 45° diagonal with different spatial
offsets. (C) Phase-coherence maps of competitively-weighted phaser input. (D) Phase-coherence maps of
burst timing of the target burster with phaser input. The broad blue/green (top) and pink (bottom) regions
represent synchronization by the positive and negative phasers, respectively.

phaser model in 1D, we demonstrated that a simple connectivity motif between theta cells leads352

to negative and positive rate-phase correlations that can synchronize an artificial step-like phase353

code to distinct theta phases. We recorded theta cells from hippocampal and subcortical areas354

in exploring rats and found spatial responses, comprising strong negative (phase precessing)355

and weaker positive (phase processing) rate-phase correlations, with similar rate and timing356

dynamics as model phasers. A space-trajectory GLM trained on spike counts showed that357

trajectory dependence and potential behavioral biases were dominated by pure spatial factors in358

these cells. Finally, spatial GLM components founded a generative model of environmental359

inputs to simulate populations of 2D phasers. Sparse competitive weights produced a spectrum360

of synchronization regions for path-integration-like phase codes across preferred directions and361

spatial offsets.362
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Relationship
to
hippocampal
place-field
theta-phase
precession363

Phaser timing follows from the notion that stronger input, perhaps representing a sensory value,364

reduces latency to the next spike. The addition of an oscillating input forms peaks and valleys in365

time that control when spiking starts (for weak sensory drive above the threshold for silence) and366

how early the next spike can occur (for strong sensory drive below the threshold for nonstop367

firing). Mehta et
al (2002) outlined this mechanism as a conceptual model for how information368

about position within a place field is encoded in the theta-phase precession of place cell firing369

(O’Keefe & Recce, 1993). In that theory, the sensory input comprises synaptic drive from the370

place cell network. That network input forms an asymmetric ramp-like input after learning and371

exploration (Mehta et al., 1997, 2000), allowing place cells to monotonically precess across any372

traversal of the place field (Schmidt et al., 2009). The additional plasticity, neuronal, and network373

effects supporting place-field phase precession may contribute to diverse functions including374

place field formation, spatial precision, and sequence learning for navigation and memory375

(O’Keefe & Recce, 1993; Skaggs et al., 1996; Jensen & Lisman, 1996; Wallenstein & Hasselmo,376

1997; Levy et al., 2005; Dragoi & Buzsáki, 2006; Feng et al., 2015). The phaser model, however,377

is driven by a layer of sensory inputs represented as functions of space, without learning or378

network inputs. The phaser precesses/processes as the spatial input increases/decreases,379

creating an experience-independent temporal code that maps phase directly to an isocontour of380

its input function. This relative mechanistic and functional simplicity makes phasers381

parametrically robust and potentially prevalent in brain areas with oscillations and382

spatial/sensory inputs. This robustness allowed our models to be broadly tuned with few383
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parameters (Table 2; Table 3; Methods). Thus a simple mechanism may enable failsafe384

implementations of an important neurocomputation.385

Competitive
burst
synchronization
as
spatial
phase
reset386

Conversion between rate and phase codes may be an important neurocomputation for387

spatial/sensory feedback. The Mehta mechanism can yield highly correlated rate and phase,388

which raised the question whether temporal codes carry information distinct from firing rate. In389

place-field phase precession, there is evidence that phase and rate distinctly encode distance390

and speed (Huxter et al., 2003), which inspired the oscillatory interference theory whereby path391

integration is computed with a phase code (O’Keefe & Burgess, 2005; N. Burgess, 2008;392

Hasselmo, 2008). This theory described neural oscillators (VCOs) that integrate393

speed-modulated direction inputs with changes in phase, allowing conversion via neural394

synchrony into the firing-rate representations of grid and place cells (Blair et al., 2008, 2014).395

VCOs were originally conceived as dendritic oscillations, which allowed for simple reset396

mechanisms (N. Burgess, 2008; Hasselmo, 2008) but disallowed the necessary independence of397

multiple oscillators (Remme et al., 2010). While some theta cells in rats demonstrate the398

directional tuning of burst frequency necessary for VCOs (Welday et al., 2011), other species399

such as fruit bats have grid cells without continuous theta oscillations (Yartsev et al., 2011).400

Additionally, the critical theoretical problem for VCO codes is accumulating errors in self-motion401

inputs, including head-direction inputs that may not align with the animal’s movement direction,402

and noise from biophysical variance in the oscillators. These errors lead to random drift of the403

spatial code within its reference frame or teleportation of the code to a different environment.404
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Proposed stabilizing mechanisms include network synchronization, ring attractors, oscillator405

redundancy, and/or coupling with continuous attractors in the grid cell network (Zilli & Hasselmo,406

2010; Hasselmo & Brandon, 2012; Bush & Burgess, 2014; C. P. Burgess & Burgess, 2014; Blair407

et al., 2014). Those models did not examine intrinsic neuronal bursting, as we do here, but it may408

also help stabilize phase-coding neurons by regulating burst frequency via resonance (Lisman,409

1997; Izhikevich, 2007) and reducing the impact of intra-burst spike-count or spike-interval410

variance on the phase code.411

Stabilization alone does not address how environmental cues reset or calibrate the phase code412

within an absolute spatial reference frame. Simple phase models of hippocampal remapping413

demonstrated that regular calibration from sensory cues eliminates phase drift over long414

timescales (Monaco et al., 2011). The phaser mechanism that we study here is a rate-to-phase415

conversion that may provide the synchronous feedback signal needed for that calibration.416

Phasers take direct spatial inputs that modulate rate and phase together such that rate controls417

feedback gain (to downstream targets) and burst phase indicates the input-mapped phase418

target. This mechanism does not require continuous theta oscillations: Transient bouts of theta419

would propagate brief synchronizing bursts. The intrinsic bursting dynamics (equation (3);420

Izhikevich, 2007) reproduced some characteristics of parahippocampal theta cells such as421

skipping or alternating theta cycles (Deshmukh et al., 2010; Brandon et al., 2013). With422

competitive weights, phasers were able to collectively synchronize a noisy theta-bursting neuron423

to both 1D (Figure 3) and 2D (Figure 9) spatial phase codes. These simulations demonstrated424

that weak clock signals (that is, phasers with intra-burst spike variance and cycle skipping) can425

collectively counteract accumulated phase errors in a neuronal oscillator (cf. Rossant et al.,426
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2011). The role of bursts in facilitating interareal transmission and synaptic plasticity (Lisman,427

1997; Csicsvari et al., 1998) suggests bursting could be critical to an experience-dependent428

feedback loop. Thus the calibration of the spatial metric may depend on burst429

phase-synchronization intermediating rate-based representations.430

A conversation
between
calibration
and
integration431

Our phaser simulations present two hypothetical populations (negative, positive) with a minimal432

connectivity scheme (Figure 2A). This modeling choice restricted the granularity of phase433

fixed-points that could be synchronized: More complex connectivity patterns may increase the434

diversity of preferred phases available for spatial synchronization. In the model,435

negative/positive phasers demonstrated a pattern of strong/weak rate-phase correlations and436

trough/peak theta preference (Figure 1C). Extracellular recording precluded subthreshold437

evidence for the mechanism, but the dynamics of identified biological phaser cells corroborated438

this model phaser pattern (Figure 5). The GLM model of biological phaser firing further439

corroborated phasers’ nondirectionality or directional isotropy, which is a general requirement440

for stable path integration systems (Issa & Zhang, 2012). Thus biological phasers might support441

broadly, not finely, tuned spatial phase attractors (cf. Supplementary Movie 1).442

How can broadly-tuned calibration support finely-tuned integration? One possibility is that443

calibration is selectively activated after learning. Learning requires synchrony with phasers, but444

the burst frequency of VCOs increases with movement along the preferred direction (N. Burgess,445

2008; Welday et al., 2011). The subset of VCOs with preferred directions orthogonal to the446

animal’s movement direction will phase synchronize with the shared theta rhythm and,447

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/211458doi: bioRxiv preprint 

https://doi.org/10.1101/211458
http://creativecommons.org/licenses/by-nc-nd/4.0/


correspondingly, the phaser population. Thus the orthogonal subset will optimize competitive448

learning for phasers over repeated theta cycles in the same location; this subset evolves as the449

animal explores the environment. Calibration in the familiar environment likewise requires450

synchrony with phasers, but it must be interdigitated with path integration (Monaco et al., 2011)451

perhaps mediated by discrete attentive behaviors during pauses in locomotion such as head452

scanning (Monaco et al., 2014). Without this interplay, the spatial precision of the phase code453

would be bounded by the broad tuning of the phase attractor. Ring attractor organization of454

VCOs (Blair et al., 2014; C. P. Burgess & Burgess, 2014) could have particular benefits during455

initial learning and online calibration: Respectively, to ensure the existence of an orthogonal456

subset for any movement direction, and to propagate the calibrated phase throughout the path457

integrator network via intrinsic connectivity. Selective switching between calibration and458

integration could be driven by accumulating error or mismatch signals, possibly mediated by459

grid cells (Blair et al., 2014; Rennó-Costa & Tort, 2017). Further studies should characterize how460

this phase code “conversation” might support the brain’s spatial metric.461

Hippocampo-septo-entorhinal
feedback
loop
for
the
spatial
metric462

Biological phasers were found in hippocampus and lateral septum, but not thalamic sites.463

Lateral septum, with the bulk of the recording data (Table 1), is interconnected with hippocampal464

CA1/CA3 and pacemaker networks of the medial septum (Jakab & Leranth, 1995). These cells465

are well-placed to combine theta oscillations and spatial inputs (Takamura et al., 2006), as466

required for the phaser mechanism, and to participate in subcortical theta-rhythmic feedback467

and regulatory circuits (Leranth et al., 1999; Luo et al., 2011; Sartor & Aston-Jones, 2012; Ruan468
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et al., 2017). The spatial representations of biological phasers included small place-like fields,469

broad linear gradients, and border/border-place responses. This spatial variance could be driven470

by diverse inputs and connectivity patterns including single or multiple place cells, object-place471

cells (Deshmukh & Knierim, 2011; Tsao et al., 2013), or border cells (Lever et al., 2009; Savelli et472

al., 2008; Solstad et al., 2008). While our data-driven simulations of 2D phasers showed473

constrained spatial tuning (as discussed above), training with VCO-like phase codes flexibly474

produced border-aligned regions of phase synchronization across preferred directions (for475

example, Figure 9D, top, pink). If path integration is calibrated by a phaser mechanism, then476

these learned regions could contribute to the role of border visits in correcting (or distorting) the477

spatial metric carried by grid cells (Hardcastle et al., 2015; Stensola et al., 2015). Thus robust478

temporal neurocomputations may help anchor neural spatial maps to the outside world.479
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Materials
and
methods480

Bursting
models. We define a quadratic integrate-and-fire model (Izhikevich, 2003) of481

intrinsic bursting with a fast variable for the spiking limit cycle (V ) and a slow adaptive variable482

for terminating bursts (u). The dynamics follow483

τ V̇ = Φ(V )− u+ I(t) (3)

τ u̇ = a(bV − u)

where I(t) is a cell-specific time-varying input, Φ(V ) = 0.04V 2 + 5V + 140 is a quadratic484

nonlinearity for spike initiation, a and b control adaptive feedback, and τ sets a shared485

time-scale for spiking and bursting (in addition to the time constants implicit in Φ(V ) and a).486

Whenever V > Vt, a spike is recorded, V is reset to c, and u is incremented by d. Bursting487

parameters are listed in Table 2. While V is approximately millivolt scale, we treat this system as488

a qualitative, not biophysical, model for which the parameters are in arbitrary units.489

For negative phasers, we set the time-varying input (equation (3)) to the combination490

I(t) = Iθ(t) + Iramp(t)

of sinusoidal theta inhibition (for inhibitory gain gθ < 0)491

Iθ(t) = gθ [0.5 (cos(2πfθt) + 1)]

and direct ramping excitation (for excitatory gain ge)492

Iramp(t) = geFramp(t) (4)

where the ramping input function Framp(t) has range {0, 1}.493
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The positive phasers have theta gain gθ > 0 and follow equation (3) with negative-phaser input494

I(t) = Ineg = −ginh
(
V − Einh

)
(5)

where ginh is a slow inhibitory conductance495

τinh ġinh = −ginh

that is incremented by dinh with every pre-synaptic spike (Table 3).496

The target bursters have a shorter time-constant (↓τ ) and lower burst excitability (↑d; Table 2). In497

place of equation (3), the fast variable follows498

τ
dV

dt
= Φ(V )− u+ Isyn(t) + Iconst + σξ

τ√
dt

(6)

where normalized white noise ξ is controlled by gain σ, and Isyn(t) is total synaptic drive from the499

phaser network500

Isyn(t) =
∑

k∈{neg,pos}

gk

128∑
j=1

W j
k δ(t− tjk)


where gneg/gpos are subtype-specific feedback gains (Table 4), Wneg/Wpos are the phaser weight501

vectors (for example, Figure 3B), and tneg/tpos are most-recent-spike vectors. Constant input502

current was tuned (Iconst, Table 4) so that the intrinsic burst rate, without noise or synaptic input,503

was close to reference theta frequency (7.519 s−1 compared to fθ = 7.5 s−1).504
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Table 2 Izhikevich parameters for theta-bursting neuron models.

Model a b c d Vt τ

Phaser model 0.02 0.2 –50.0 4.0 30.0 7.0 ms
Target burster model 0.02 0.2 –50.0 5.0 30.0 3.0 ms

Table 3 Input and conductance parameters for the phaser models.

Subtype ge gθ dinh Einh τinh

Negative 21.0 –5.0 – – –
Positive – 25.0 3.0 –80.0 (mV) 100 ms

Table 4 Parameters for the intrinsic theta-bursting neuron used as a synchronization target. WTA values
show the percent and number of competitive synapses selected in each model.

Target
model Iconst gneg gpos σ WTA
Target burster (1D) 12.65 1.0 2.0 0.3 20% (50/256)
Target burster (2D) 12.65 10.0 5.0 0.3 3.5% (70/2,000)
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Spiking
simulations. Spiking neuron and network models were implemented in the505

equation-based Brian simulator (Goodman & Brette, 2008). Simulations were integrated in 1-ms506

timesteps. Phaser layers and the target burster without noise were evolved with Runge-Kutta507

4th-order integration; the target burster with noise used the forward Euler method. Burst timing508

in simulations was determined as spike times following interspike intervals ≥25 ms.509

For 1D spatial simulations, local tuning functions were Gaussian functions with bandwidth 1/64510

normalized to {0, 1} and centered at 64 evenly-spaced positions from 0 to 1. Each long-range511

tuning function was 1 minus a local tuning function. The gain of phaser input onto the target512

burster (Table 4) was manually tuned for visually matched ‘middle of the road’ synchronization at513

both fixed points.514

For 2D spatial simulations, phase-code target gratings had spatial period 80 cm so that one515

cycle covered the environment. Phaser gain onto the target burster (Table 4) was manually tuned516

to roughly equalize the size of negative and positive synchronization modes across different517

reference phases.518

Competitive
learning. Based on 1-hr training simulations, we generated joint space-phase519

distributions from phaser spikes: 15 × 36 (x, ϕ) bins for 1D simulations; 15 × 15 × 36 (x, y, ϕ)520

bins for 2D simulations. The phase-code target was either directly specified as a binary array for521

1D simulations or binned from a spatial grating function for 2D simulations. We computed the522

vector cosine similarity between the phaser distributions and the target as the basis for the523

phaser synaptic weights. To determine competitive weights, we chose the WTA% negative and524
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WTA% positive phasers (Table 4) with the highest similarities and normalized those similarities to525

{0, 1} via [(similarity − min) / (max − min)]. Unselected weights were set to 0. Weighted-average526

phaser inputs (Figure 3C; Figure 9C) were computed as the product-sum of the weight vector527

with an array of all space-phase distributions.528

Subjects
and
surgery. Male Long-Evans rats (350–400 g) were individually housed and529

kept at 85% of ad
libitum weight. They were trained over 5 d to forage for food pellets in an530

enclosed environment. Under deep isoflurane anesthesia, rats were chronically implanted with531

tetrode arrays targeting (across rats) the septum, dorsal hippocampus, anterior thalamus,532

midbrain, and/or other subcortical areas. Each rat was implanted with 16 tetrodes (64 electrode533

channels) that were grouped into four independently drivable bundles of four tetrodes each. All534

experiments were conducted in accordance with the U.S. National Institute of Health Guide for535

the Care and Use of Laboratory Animals (NIH Publications No. 80–23), and were approved in536

advance by the animal subjects review committee at the University of California, Los Angeles.537

Theta
cell
recordings. Data collection methods including conduct of recording sessions,538

video tracking analysis, and single-unit acquisition have been described previously (Welday et539

al., 2011). The phase of the septohippocampal theta oscillation was quantified from the LFP540

signal on a reference electrode in the hippocampal fissure. In one subject (rat 11), a strong theta541

cell was used as phase reference instead of the LFP signal and was not otherwise included in542

data analysis. All data for analysis was filtered for linear movement speeds >5 cm/s.543
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Adaptive
spatial
maps. To handle large variance in spatial data density from long544

recordings, we computed spatial maps with adaptive scaling kernels. We used a KD-tree545

algorithm to generate a nearest-neighbor model of the data points for the map. For every pixel546

to evaluate, we found the enclosing radius of the nearest 4% of data points. If the radius was547

<8% or >30% of the arena diameter, then it was fixed at 8% or 30%, respectively. A Gaussian548

kernel set weights for each data point in this evaluation radius. For ratemaps, we computed549

weighted averages of trajectory data and spike data to create occupancy and spike density550

maps; dividing the spike density by the occupancy map produced the ratemap. For phasemaps,551

we computed weighted mean resultant vectors from which we retrieved the phase average and552

variance; the phase average was used for phase-only maps and the variance was normalized553

into a coherence mask for the phase-coherence maps.554

Theta-rhythmic
analysis. The rhythmicity index and burst-frequency estimates were555

derived from spike-timing autocorrelations. We adaptively smoothed 128-bin 0.5-s correlograms556

to find stable estimates of the first trough and first (non-central) peak of the correlograms.557

Rhythmicity was calculated as the ratio [(peak − trough) / peak]. Burst-frequency was558

calculated as the average of the first-peak mode estimate and an estimate based on a559

weighted-average of the first-to-second-trough correlations.560

The theta modulation index was computed from a 10° binned phase histogram on {−π, π}. We561

circularly convolved the histogram with a 10° bandwidth Gaussian kernel for smoothing. Theta562

modulation was calculated as the ratio [(max − min) / max] of the smoothed histogram.563
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Rate-phase
regressions. We implemented the method of Kempter et
al (2012) for564

computing circular-linear regressions with stable estimates of the correlation coefficient and565

p-value. Unreported p-values were arbitrarily close to 0. This method was used for all rate-phase566

regression lines and correlation values. To compute total phase shift, we multiplied the567

rate-phase regression slope by the width of the range of firing rates in the ratemap.568

Information-theoretic
measures. We computed spatial phase information Iphase as the569

mutual information between phase (ϕ) and position (x)570

I(ϕ;x) =
∑
x

∑
ϕ

p(ϕ, x) log2

(
p(ϕ, x)

p(ϕ) p(x)

)

based on joint space-phase distributions of spikes binned into 15 × 15 × 36 (x, y, ϕ) arrays. This571

measure yields information in units of bits. We permuted spike phases 1,000 times to calculate572

p-values.573

We computed spike information measures based on Skaggs’ (1993) formulation574

IK =
1

F

∑
k∈K

p(k) f(k) log2

(
f(k)

F

)

where K is position, direction, or speed of the trajectory; p is the occupancy density; f is a575

firing-rate function; and F is the mean firing rate. Position was binned into 15 × 15 arrays on576

{0, 80} cm along the x and y axes; direction into 36 bins on {0, 2π}; and speed into 18 bins on577

{5, 50} cm/s excluding bins with <3 s occupancy. These measures yield information rates in578

units of bits/spike. We randomly shifted-and-wrapped spike trains with 20 s minimum offsets579

and reinterpolated trajectory data 1,000 times to calculate p-values.580
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Movement
modulation. The direction modulation index was computed as the ratio [(max581

− min) / max] of a smoothed firing-rate function of movement direction. Average firing rates in582

36 direction bins on {0, 2π} were circularly convolved with a 10° bandwidth Gaussian kernel. The583

speed modulation index was computed as the ratio [(max − min) / max] of a firing-rate function584

of speed. Average firing rates were calculated for 14 bins on {5, 40} cm/s excluding bins with <8585

s occupancy.586

GLM training. Ridge regression models were trained on 9 scalar predictors representing587

the vector components of the 5 model variables: L = (x, y), Q = (x2, y2, xy), W (scalar), S (scalar),588

and D = (ux, uy). The wall predictor W was a sigmoid proximity signal [1/(1 + exp(−k(r − w0)))]589

for radius r from arena center, k = 0.5, and w0 = 30 cm. S was linear trajectory speed. D was the590

unit vector along the movement direction. Training samples were 300-ms bins and predictors591

were interpolated at the midpoint of each bin. Each predictor was standardized by subtracting592

its sample mean and dividing by its sample standard deviation. The response variable was the593

log spike-count Y for each bin, which makes this a Poisson-distributed GLM. The trajectory was594

divided into equal-sized 2 × 2 or 3 × 3 grids based on data limits. For each grid section, the595

GLM was trained on all samples inside the section based on the interpolated (x, y) position.596

Estimated model intercepts and coefficients for each recording and grid section were stored for597

analysis (or for the reduced LQW generative model). To regularize the model, tuning parameter α598

determined the ℓ2-norm penalty for least-squares optimization599

β̂ = arg min
β

[
nt∑
i=1

(
Yi − Ŷi

)2
+ α∥β∥22

]
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where nt was the number of training samples. We maximized model directionality (or, similarly,600

the boundary response W for the LQW generative model) by choosing601

α̂ = arg max
α

 1

nr

nr∑
k=1

e∥βD,k∥2 · nt,k∑
j∈{LQWSD} e

∥βj,k∥2
∑

i

(
Ki,k − K̂i,k

)2


which maximizes (over nr = 1,073 theta-cell recordings) the softmax directional coefficients602

while minimizing mean squared error (MSE) of spike-count (K = exp(Y )) predictions603

(Supplementary Figure 12). The value α = 1.2496 from the 2 × 2 model was used for analysis604

because of higher likelihood, lower MSE, lower penalty, and complete wall contact across grid605

sections compared to the 3 × 3 model.606

GLM analysis. The relative strengths of GLM variables were computed as normalized607

vector norms608

Strength(X) =

∑g
i=1∥βi

X∥22∑
j∈{LQWSD}

∑g
i=1∥βi

j∥22
(7)

for variable X ∈ {L,Q,W,S,D} across g grid sections. Thus DSI was computed as Strength(D)609

and DCI was computed as 1 minus the normalized circular standard deviation of the βD vector610

angles across the grid. We computed variable contributions similarly to equation (7) but with611

maximum linear predictors (equation (2)) instead of coefficient vector norms. The sum across612

variables for both relative strength and contribution was normalized within recordings and then613

averaged by unique cell (Figure 7). Grid matrix plots (Supplementary Figure 14A+C) show these614

values without the grid summations (equation (7)).615
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To reconstruct ratemaps, we used the midpoints of grid-specific training samples to predict616

spike counts from the model for each grid section. We collated the counts and sample positions617

across grid sections to reconstitute a complete dataset for generating the ratemap.618

To create the LQW generative model, we used a COBYLA search to find the arena-bounded619

minimum and maximum of the linear predictor for each recording. We normalized the LQW620

parameters to {0, 1} and applied a clipping sigmoid [1/(1 + exp(−10 (f − 0.5)))] to smoothly621

enforce the range of the resulting spatial function. To sample the generative model, we randomly622

selected a negative phaser’s spatial function, added 20% Gaussian noise to its LQW623

parameters, and rotated the function about the center by a random angle.624

Software Modeling and analysis was performed using a custom python package that625

depends on the open source ecosystem: numpy, scipy, matplotlib, seaborn, pandas, scikit-learn,626

pytables, Brian2, and other libraries. The source code and a complete specification of the627

python environment is available at https://doi.org/10.6084/m9.figshare.5552467.628
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Supplementary
Figures | Spatial Theta Cells in Competitive Burst
Synchronization Networks: Reference Frames from Phase Codes

Joseph D. Monaco, Hugh T. Blair, Kechen Zhang

Supplementary
Figure 1 | Spatiotemporal
activity
of
1D spatial
network: Negative
phasers. This grid
shows, from left-to-right and top-to-bottom, the joint space-phase distributions for all negative phaser cells
driven by a local tuning function in the network (Figure 2A) from x = 0 to x = 1. The middle plot corresponds
to the top left of Figure 2B.
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Supplementary
Figure 2 | Spatiotemporal
activity
of
1D spatial
network: Negative/Inverse
phasers.
This grid shows, from left-to-right and top-to-bottom, the joint space-phase distributions for all negative
phaser cells driven by an inverse (long-range) tuning function in the network (Figure 2A) from x = 0 to x = 1.
The middle plot corresponds to the bottom left of Figure 2B.
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Supplementary
Figure 3 | Spatiotemporal
activity
of
1D spatial
network: Positive
phasers. This grid
shows, from left-to-right and top-to-bottom, the joint space-phase distributions for all positive phaser cells
suppressed by a local negative phaser in the network (Figure 2A) from x = 0 to x = 1. The middle plot
corresponds to the top right of Figure 2B.
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Supplementary
Figure 4 | Spatiotemporal
activity
of
1D spatial
network: Positive/Inverse
phasers.
This grid shows, from left-to-right and top-to-bottom, the joint space-phase distributions for all positive
phaser cells suppressed by an inverse (long-range) negative phaser in the network (Figure 2A) from x = 0
to x = 1. The middle plot corresponds to the bottom right of Figure 2B.
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Supplementary
Figure 5 | Theta-bursting
neuron
with
phase
noise: drift
and
pulse
synchronization.
An intrinsic bursting model (equation (6); Izhikevich, 2007) was tuned with constant input (Table 4) to fire
doublet bursts (A) close to the reference theta frequency, 7.5 Hz. The difference between the reference and
the actual burst rate, 7.519 bursts/s, means that the cell’s theta phase (B) slowly drifts (precesses) over
time (gray line). To test whether this cell can be phase-synchronized by periodic stimulation, we simulated
an instantaneous pulse (V ← V + 15mV) every other theta cycle at zero phase. The pulse-synchronized
theta cell (B, orange line) monotonically processes toward zero phase and then (around t = 5 s) discontinu-
ously jumps past zero phase before slowly precessing to just before zero phase. This dynamic, of jumping
forward and precessing back, repeats (around t = 9 s) and continues stereotypically. This sawtooth pattern
encapsulates the theta-synchronization dynamics of this cell. For our phaser synchronization simulations,
we added phase noise to this ‘target burster’ cell (equation (6)) to show that the synchronization can over-
come intrinsic noise. We chose a noise level (Table 4) that preserved the cell’s theta bursting (C, same
as Figure 3A, inset) but largely randomized its burst theta-phase over the 30-s simulation (D, gray circles,
36 trials). With phase noise, the pulse stimulation reproduced the sawtooth pattern of synchronization (D,
orange line).
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Supplementary
Figure 6 | 1D phaser
synchronization
across
noise
and
gain
 levels. Here we show
additional 1-hr simulations of the 1D spatial synchronization network shown in Figure 3. (A) With the gain
from the phasers fixed (Table 4), simulations with 0.0σ, 0.1σ, 0.3σ, and 0.5σ noise levels demonstrate that the
phase-code fixed points remain functional at various noise levels. (B) With the noise level fixed at 0.3σ, the
effect of zero phaser gain (top left) can be compared to weaker (top right) and stronger (bottom right) levels
of phaser gain. Weak phaser gain (top right) still synchronizes the target burster, but the phase trajectories
are extended due to the slower development of phase locking on approaches toward x = 0 and x = 1.
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Supplementary
Figure 7 | Spatial
theta
cells
are
rhythmically
normal. For comparison, we show distribu-
tions for theta cell recordings split into groups with non-significant (n.s.; ‘nonspatial’; n = 840) or significant
(p < 0.02; ‘spatial’; n = 233) spatial phase information (Methods). Gaussian kernel-density estimates (using
Scott’s bandwidth rule) of splits are normalized by group size and show medians (long-dash lines) and
quartiles (short-dash lines). Scatter points are additionally shown for the spatial data. Peak firing rate (A)
and autocorrelogram-based estimates of theta-burst frequency (B; Methods) are similarly distributed for
nonspatial and spatial recordings. Theta indexes for modulation and rhythmicity (C; Methods) show that
spatial recordings are distributed slightly higher, but this is likely due to the lower modes evident for non-
spatial recordings which may consist of borderline or non-theta cells. Thus spatial theta cells have similar
firing rate and oscillatory characteristics to theta cells in our dataset.
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Supplementary
Figure 8 | Spatial
theta
cells
have
broadly
distributed
rate-phase
correlations. Sim-
ilar to Supplementary Figure 7, we show distributions of theta cell recordings split into groups with non-
significant (n.s.; ‘nonspatial’; n = 840) or significant (p < 0.02; ‘spatial’; n = 233) spatial phase information
(Methods). (A) Iphase for spatial cells has median 0.36 bits/spike (long-dash line) with a positively skewed
distribution and wide range. (B-D) Circular-linear regressions of average phase onto average rate based on
spatial map pixels. Nonspatial recordings were distributed around zero. Estimates for correlation coefficient
(B) and total phase shift (D; Methods) show broader distributions for spatial than nonspatial cells: Compare
quartiles (short-dash lines) and fatter tails reflecting excess negative/positive correlations. Total phase shift
(D) is computed as a rate-normalized slope (C).
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Supplementary
Figure 9 | Biological
phaser
cells
have
a
restricted
range
of
firing
rates. The phaser
criteria (Results) selected 101/233 recordings from 5/8 rats. Similar to the split distributions in Supplemen-
tary Figure 7, we show distributions comparing spatial theta cell recordings not selected (‘nonphaser’; n
= 233) or selected (‘phaser’; n = 101) as biological phaser cells. Peak firing rates (A) for phasers had the
same median but a qualitatively restricted range compared to nonphasers (but note that a minimum firing
rate of 3.5 spikes/s is one of the phaser criteria and the y-axis truncates, for clarity, nonphaser data that
is shown in Supplementary Figure 7A). Theta rhythmicity (B) was similarly distributed for nonphaser and
phaser recordings.

Supplementary
Figure 10 | Anatomical
distribution
of
biological
phaser
cell
recordings. (A) Recording
counts for brain areas indicating negative and positive biological phasers. Hipp. = hippocampus; Thal. =
thalamus; Other includes nucleus accumbens, caudate nucleus, putamen, and CgSHi (TKTK). (B) Record-
ing counts for sites proximal to or within the septum. AVVL = TKTK; (ant)DG = (anterior) dentate gyrus;
Hfiss = hippocampal fissure; IG = TKTK; LS(D/I) = lateral septum (dorsal/intermediate); Ld = TKTK; SHi =
TKTK; UNK = unknown; gcc = TKTK. Note: TKTK indicates
definitions
that
will
be
updated
in
the
next
manuscript
revision.
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Supplementary
Figure 11 | Trajectory
modulation
reveals
bias
in
biological
phaser
recordings. The
phaser model is based on spatial inputs mediating the correlation between rate and phase. However, bio-
logical phasers are recorded in a constrained environment in animals with constrained behaviors, and the
hippocampal theta rhythm is strongly speed-modulated (Fuhrmann et al., 2015). (A-C) To evaluate whether
the phasers depend on trajectory-based factors, we compare spatial phase information with spike infor-
mation content (Methods) for position (A, Skaggs measure), direction (B), and speed (C). Most phasers
carry strong position information (A), but a minority carry relatively low direction (B) or speed (C) informa-
tion. (D+E) Histograms of firing-rate modulation indexes for direction (D) and speed (E) for negative/positive
phasers (positive composited over negative). Phaser firing rates were substantially modulated by direction
and speed. Gray line, kernel-density estimate (0.05 bandwidth Gaussian) of nonphaser recordings (arbitrary
scale for comparison).
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Supplementary
Figure 12 | Ridge
regularization
and
shrinkage
curves
for
training
GLM models. We
trained a series of GLMs to predict spike counts in 300-ms intervals based on spatial (LQW ) and/or
trajectory-based (SD) variables (Methods). For the model analysis (Results), the model was trained and
tested on a 3 × 3 spatial grid (C); however, the penalty parameter used for training was derived by optimiz-
ing the 2 × 2 model (B). Both values were similar, but the 2 × 2 value (B, bottom) was used because the
directional likelihood was strongly peaked and the model better captured wall responses (the center grid
of the 3 × 3 model was isolated from the walls). The GLM that we used to generate spatial inputs for 2D
phaser simulations was only trained on the spatial variables (A, 1 × 1). (top) Absolute model weights for
each variable. (second row) Softmax normalization of absolute model weights. (third row) Mean squared
error (MSE) of spike-count predictions. (last row) Model likelihood is the the softmax W (A) or D (B+C)
curve divided by the spike MSE (Methods). The maximum likelihood α parameter (red circle) is chosen as
the ℓ2-regularization penalty.
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Supplementary
Figure 13 | Directional
strength
and
coherence
indexes
based
on
GLM weights. The
magnitude and direction of the 9 directional vectors from the 3 × 3 GLM were used to compute DSI and
DCI, respectively (Methods). Both phasers (A) and nonphasers (B) had a wide range of DCI (y-axis), but
phasers (A) were restricted to overall low DSI (x-axis). The GLM revealed moderately directional responses
among nonphasers (B) but only low directionality among phasers (A).
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Supplementary
Figure 14 | Phaser
GLMweights
and
contributions
for
every
cell
and
grid
section. Full
3× 3 GLM weights (A+B) and contributions (C+D) for each unique phaser cell (averaged across recordings)
are shown in pseudocolor matrix plots. For visualization, cells are presented in the same order in every
grid section and grid average, according to the expected value of the cell’s grid-averaged model weights
to the left (toward L, more spatial) or right (toward D, more trajectory-based). To reveal model structure,
each variable row in a grid section is sum-normalized and the corresponding grid plots (A+B, C+D) share
colorscales.
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Supplementary
Figure 15 | GLM reconstructions
of
highly
directional
cells. To show that the LQW-
SD 3 × 3 model can accurately reconstruct ratemaps of directional cells, we show examples of coherent
(A) and noncoherent (B) directionality. (A) The high peak firing rates and crescent-like spatial modulation
indicate that these may be head-direction cells or cells with head-direction inputs. The model’s directional
predictors (arrows) are consistently large and well-aligned across grid sections. (B) Recordings with low
coherence showed minimal spatial modulation but included directional patterns such as center-facing (left)
and clockwise (middle) or anti-clockwise (right) directionality.
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Supplementary
Figure 16 | Example
negative
phasers
in
2D synchronization
simulations. Ratemap/
phasemap pairs are shown for 50/1,000 negative phasers in the 2D simulations (Figure 9). The rate and
phase response of each phaser is driven by a randomly sampled spatial function from the LQW generative
model (Figure 8F-J). In the phasemaps, note that the phasers precess from pre-theta-peak (greens; see
phase-coherence color wheel at bottom) to theta-trough (pinks) for low- to high-firing regions. Missing
phasemap pixels reflect lack of nearby spikes for spatial averaging.
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Supplementary
Figure 17 | Example
positive
phasers
in
2D synchronization
simulations. Ratemap/
phasemap pairs are shown for 50/1,000 positive phasers in the 2D simulations (Figure 9). The rate and
phase response of each phaser is driven by suppression from a negative phaser with an LQW-generated
spatial input (Supplementary Figure 16). In the phasemaps, note that the phasers process from theta-peak
(greens) to halfway through the falling phase (blue/green; π/2 phase). As for the 1D model (Figure 1) and
biological phasers (Figure 6), the positive procession is shallower than the negative precession. Missing
phasemap pixels reflect lack of nearby spikes for spatial averaging.
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Supplementary
Movies | Spatial Theta Cells in Competitive Burst
Synchronization Networks: Reference Frames from Phase Codes

Supplementary
Movie 1 | Spatial
phaser
synchronization
across
reference
phase. The spatial phase
codes in Figure 9B differ by reference phase, which determines the spatial offsets of the pattern. Here we
show a movie in which the frames iterate through 10-min phaser-target simulations of different reference
phases. The desired phase code moves smoothly along the 45° diagonal for a complete cycle so the
movie can be looped. The broad negative/positive (pink/blue) synchronization regions compete to cover
the environment as the phase code travels.

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/211458doi: bioRxiv preprint 

https://doi.org/10.1101/211458
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary
Movie 2 | Spatial
phaser
synchronization
across
preferred
direction: Phase
code
1.
The spatial phase codes in Figure 9B have a 45° preferred direction, which determines the orientation of
the pattern. Here we show a movie in which the frames iterate through 10-min phaser-target simulations of
different preferred directions. The desired phase code rotates smoothly for a complete cycle so the movie
can be looped. With this reference phase (0.0, at the center of the arena), the negative phasers synchronize
a boundary region (oranges/pinks) along the preferred direction as the phase code rotates.
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Supplementary
Movie 3 | Spatial
phaser
synchronization
across
preferred
direction: Phase
code
2.
The spatial phase codes in Figure 9B have a 45° preferred direction, which determines the orientation of
the pattern. Here we show a movie in which the frames iterate through 10-min phaser-target simulations of
different preferred directions. The desired phase code rotates smoothly for a complete cycle so the movie
can be looped. With this reference phase (π, at the center of the arena), the positive phasers synchronize
a boundary region (blue/green) along the preferred direction as the phase code rotates.
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