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Abstract

The majority of variants identified by genome-wide association studies (GWAS) reside in the
noncoding genome, where they affect regulatory elements including transcriptional enhancers.
We propose INFERNO (INFERring the molecular mechanisms of NOncoding genetic variants), a
novel method which integrates hundreds of diverse functional genomics data sources with
GWAS summary statistics to identify putatively causal noncoding variants underlying
association signals. INFERNO comprehensively infers the relevant tissue contexts, target genes,
and downstream biological processes affected by causal variants. We apply INFERNO to
schizophrenia GWAS data, recapitulating known schizophrenia-associated genes including
CACNA1C and discovering novel signals related to transmembrane cellular processes.
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Background

Genome-wide association studies (GWAS) have successfully identified over 50,000 genetic
variants associated with more than 2,300 human diseases and phenotypes [1, 2], but the
interpretation of these associations remains limited. First, each GWAS-identified variant tags
linkage disequilibrium (LD) blocks of potentially functional variants that are inherited together,
and the causal variant underlying the association signal may not be a genotyped variant [3].
Second, 90% or more of GWAS variants are in the noncoding genome and do not directly affect
coding sequences of messenger RNAs (mRNA) [4]; rather, they may affect regulatory elements
that modulate mRNA transcription levels such as enhancers [5]. Enhancers are context-specific

and annotations are incomplete, so information must be integrated across tissue contexts and
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data sources to identify variants affecting enhancer function [6]. Finally, to translate GWAS
findings into a deeper understanding of pathology leading to the development of novel
therapeutics, it is crucial to identify not only the genes targeted by affected enhancers but also
the tissue or cellular context in which their expression is altered that underlies disease risk.
Recent large-scale efforts focused on identifying active regulatory regions within the noncoding
genome [7-9], but the field lacks a comprehensive method for identifying not only causal
noncoding variants and the regulatory elements they disrupt but also the relevant tissue
context, target genes, and downstream biological processes affected by these variants.
Researchers have developed several tools for investigating noncoding genetic signals such as
RegulomeDB, GWAVA, CADD, and GenoSkyline [10-13]. These methods are unified by their
approach of generating scoring functions across the genome to identify causal variants,
regulatory loci, and in some cases, the relevant tissue contexts. However, while using these
types of integrative scoring functions to summarize noncoding genetic function enables the
ranking and identification of individual variants, these tools do not identify both the specific
affected regulatory elements and the affected target genes. Another tool is HaploReg [14],
which expands GWAS tag variants into haplotype blocks and overlaps them with chromatin
state annotations and eQTL results to identify specific regulatory loci and target genes.
However, it offers no way to integrate the enhancer and eQTL overlap results to characterize
the affected tissue contexts, and performs direct eQTL overlap, which is biased by LD structure
and may yield both false positives and negatives.

In this paper, we introduce the INFERNO method (INFERring the molecular mechanisms of

NOncoding genetic variants), which integrates hundreds of diverse functional genomics data
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sources across tissues and cell lines with GWAS summary statistics to identify sets of putatively
causal noncoding variants underlying an association signal and comprehensively characterize
the downstream regulatory effects of these variants. INFERNO includes a tissue classification
scheme that is used to integrate information across diverse functional genomics data sources.
This enables the identification of variants with concordant support from multiple data sources
in a specific tissue context in a hypothesis-free manner. INFERNO also introduces a novel
statistical model for quantifying the enrichment of enhancer overlaps in specific tissue
categories for any GWAS data.

To identify the tissue-specific affected target genes, INFERNO integrates expression
guantitative trait loci (eQTL), variants whose alleles are correlated with changes in the
expression level of a target gene, from the GTEx consortium [15] with GWAS summary statistics
by applying a Bayesian co-localization model [16]. This allows the method to avoid the biases of
directly overlapping GWAS variants with eQTL measurements and identify eQTL signals that are
strongly co-localized with association signals. Furthermore, it enables the identification of
functional variants that underlie co-localized signals and also overlap functional regulatory
elements in the matching tissue category. Many eQTL signals affect long noncoding RNAs
(IncRNAs) which in turn can regulate protein-coding gene expression, so INFERNO identifies
IncRNA target genes and downstream biological processes using GTEx RNA sequencing data
[15].

To demonstrate the utility of INFERNO, we applied the method to a large schizophrenia GWAS
dataset [17]. INFERNO identified significant enhancer enrichments in immune-related tissue

categories, uncovered functionally supported variants underlying eQTL signals targeting known
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schizophrenia genes including CACNA1C and novel candidates related to transmembrane
cellular signaling. We also identified affected IncRNAs in the brain and immune system and
characterized the tissue-specific downstream effects of these IncRNAs at the level of biological
pathways, identifying tissue-specific effects on several processes including MAPK signaling,
splicing, and Herpes simplex infection. INFERNO is available as an open source software
package, and users can analyze top GWAS variants using the web server at

http://inferno.lisanwanglab.org/.

Results

Overview of INFERNO pipeline

INFERNO consists of four analysis stages (Figure 1): 1. Define exhaustive sets of all potentially
causal variants underlying each top GWAS signal. 2. Characterize these variants by overlapping
them with various functional genomics data sources including epigenomic states, enhancer
annotations, and overlap with messenger RNA (mRNA) and repeat elements. 3. Use GWAS and
eQTL data for Bayesian co-localization analysis to identify tissue-specific effects on target
genes. 4. Integrate information from the previous steps using a tissue categorization framework
to identify functional variants with concordant annotation support, the tissue contexts of
enhancer-gene interactions, target genes with strong functional support, and the downstream
biological processes affected by disruption of target genes and long noncoding RNAs.

Defining comprehensive sets of potentially causal variants from GWAS findings

Given a user-defined list of top variants and summary statistics from a given GWAS study,
INFERNO defines comprehensive sets of putatively causal variants underlying each top

association signal (Methods). First, INFERNO uses GWAS summary statistics to identify all
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significant or almost significant variants near each tagging variant. This set is pruned by linkage
disequilibrium (LD) structure using PLINK [18], where representative subsets of variants within
each LD block are chosen such that subjecting them to LD expansion recaptures the other
variants in the LD block. This analysis uses LD block data in a user-defined population
(European, African, or Asian) from the 1,000 Genomes Project [19]. These LD block-tagging
variants are re-expanded into full LD blocks, and these expanded sets are used for all further
analysis to maximize the chance of finding the truly causal genetic variants underlying each
association signal. This expansion approach provides a comprehensive set of putatively causal
variants by taking full GWAS summary statistics as well as LD structure into account. If full
summary statistics are not available, INFERNO can directly expand the top tag GWAS variants

into LD blocks.
Annotation of expanded variant sets with transcriptional regulatory elements

To identify noncoding genetic variants, INFERNO quantifies the proportion of variants
overlapping messenger RNA (mRNA) promoters, exons (i.e. coding variants), introns, 5’
untranslated region (UTR) exons and introns, 3’ UTR exons and introns, and RepeatMasker
genomic repeats [20] including LINE and SINE elements. Any variant outside all of these regions

is classified as intergenic.

Next, each variant is overlapped with two complementary enhancer data sources. The first are
sites of enhancer RNA (eRNA) transcription, which reflects enhancer activity [21], as assayed by
cap analysis of gene expression (CAGE-seq) data generated by the FANTOMS5 consortium across
112 tissue and cell type groupings [7]. The second is enhancer states defined by ChromHMM

[22] using combinatorial epigenomic states measured by chromatin immunoprecipitation and
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sequencing (ChIP-seq) of 5 histone modifications, which mark active enhancers in a
stereotypical pattern [23, 24], across 127 tissues and cell types generated by the Roadmap
Epigenomics Project [8] and by the Encyclopedia of DNA Elements (ENCODE) project [9, 25]. In
the Roadmap analysis, variants are overlapped with a total of 15 ChromHMM states including 3
types of enhancer states, sites of genic transcription, repressed regions, and active promoters,
another type of transcriptional regulatory element that may harbor causal variants underlying

an association signal.

In addition to overlapping variants with functional genomics annotations across tissues,
INFERNO includes a sequence-based analysis to find variants affecting transcription factor
binding sites (TFBSs) identified by the HOMER tool [26] (see Methods). INFERNO uses positional
weight matrices (PWMs) to compute the difference in the log-odds binding probability of each
affected TFBS between the reference and alternate alleles of the overlapping genetic variant
(APWM score) in order to identify genetic variants that either increase or decrease TFBS

strength.

Tissue categorization of annotations and integrative analysis

Combining information across complementary sources of functional genomics data enables the
comparison of evidence from independent experiments to improve sensitivity and robustness.
However, it is not possible to directly compare results across the three consortia analyzed by
INFERNO (FANTOMS5, Roadmap, and GTEx) because each assayed different tissue types and cell
lines at different levels of biological complexity. To integrate evidence from these disparate
data sources, we designed a tissue classification scheme that grouped individual samples from

each data source into one of 32 tissue categories (Supplementary Tables 1-3, Supplementary
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Figure 1). Datasets from both the GTEx and FANTOMD5 consortia were grouped into high-level

categories using the UBERON and CL ontologies for tissues and cell types, respectively [27, 28].
This integrative categorization provides a high-level view of the affected tissue contexts across
consortia, allowing for easy identification of the tissue contexts harboring noncoding elements

affected by variants within each GWAS tag region.
Background sampling for enrichment of enhancer overlaps

Due to the widespread regulatory activity in the noncoding genome [9], selecting a large set of
genetic variants in an LD block and overlapping them with hundreds of functional
measurements may yield many overlaps simply by chance. To quantify the significance of
enhancer overlap enrichment, INFERNO includes a statistical sampling approach to define
empirical p-values for the enrichment of overlaps for each pair of annotations a and tissue
category t within individual GWAS tag regions as well as across all tag regions (e.g. a =

FANTOMS5 enhancers, t = brain, see Methods).
eQTL co-localization analysis

Current noncoding genetic variation annotation methods can identify functional variants and
affected regulatory elements, and in some cases provide a hypothesis-free characterization of
the relevant tissue context [29], but do not fully characterize the affected target genes. These
methods either assume that the nearest gene is the affected transcript or directly overlap
variants with eQTLs, including HaploReg, which directly overlaps variants with eQTL signals
from 14 sources. However, the closest gene is typically not the target of transcriptional

regulatory elements [5], and direct overlap of variants with eQTL signals is biased by genomic
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LD structures, where an eQTL association signal may be spread across a haplotype block so that

the measured variant is not the causal regulatory variant.

When summary statistics are not available, INFERNO performs direct overlap with eQTL signals
across 44 tissues from the Genotype-Tissue Expression (GTEx) project [15]. However, if
summary statistics are available, INFERNO performs co-localization analysis using the COLOC
method to control for bias from LD structures [16]. This model uses a Bayesian statistical model
to calculate posterior probabilities for different causality relationships between GWAS and
tissue-specific eQTL signals. The most relevant hypothesis from the COLOC output for INFERNO
is Hs, that there is a shared causal variant underlying both the eQTL signal and the GWAS
disease signal. INFERNO performs co-localization analysis comparing all GWAS signals within
500kb of each tag variant with eQTL signals across all 44 GTEx tissues (Methods). Strongly co-
localized signals are defined as those with P(H;) = 0.5. COLOC also reports the probability of
any individual variant being the shared causal variant, measured by the Approximate Bayes
Factor (ABF). For further analysis of putatively causal variants, INFERNO defines sets of variants
accounting for at least half of the cumulative ABF distribution at each strongly co-localized
signal. This allows for the sensitive detection of truly co-localized signals to identify causal

variants, the target genes they affect, and the tissue context of the regulation.

Integrative analysis of co-localized eQTLs with annotations

To integrate the results between the enhancer and eQTL analyses, INFERNO uses the tissue
categorizations of the FANTOMS5, Roadmap, and GTEx datasets to stratify variants in the ABF-

expanded sets underlying a co-localized signal by whether they affect a TFBS, overlap a
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FANTOMS or Roadmap enhancer, and whether the enhancer came from the same tissue
category as the eQTL signal. Variants in the ABF-expanded sets underlying a strongly co-
localized eQTL signal overlapping enhancers from a concordant tissue class are prioritized if
they also overlap a TFBS and/or have a high individual ABF value (Methods). This enables the
identification of a small number of causal genetic signals and affected target genes supported
by a variety of diverse functional genomics data sources all implicating the same tissue
category. This integration of diverse data types spanning epigenomic marks, enhancer activity,
transcription factor motifs, and eQTL signals provides a useful tool to identify causal variants,
affected target genes, and relevant tissue contexts in an unbiased fashion. Furthermore, if users
have an a priori assumption about which tissue categories might be relevant for their trait of
interest, INFERNO can further prioritize variants affecting regulatory mechanisms from those
specific categories. INFERNO provides several tables summarizing the annotation support for
each co-localized signal as well as lists of gene symbols for usage in pathway analysis tools

(Methods).
Correlation-based IncRNA target identification

Finding a GTEx eQTL target gene supported by concordant enhancer support may be only the
first step to understanding the affected regulatory mechanism underlying a genetic association
signal, because the GTEx eQTL data also includes long noncoding RNA (IncRNA) signals, which
can act as transcriptional regulatory elements for other genes [30]. Although tools for IncRNA
target prediction exist, IncRNA targeting mechanisms are not fully characterized, so INFERNO
takes an unbiased approach to finding their targets. RNA sequencing-based expression vectors

of all genes in the genome including IncRNAs across all samples and tissues from GTEx are
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correlated with the expression vector of a IncRNA of interest. Then, genes with correlation
values meeting user-specified threshold on Spearman and Pearson correlations (Methods) are
considered to be putative INcRNA target genes, in line with previous approaches to IncRNA
target identification [31]. This analysis is done automatically within INFERNO after the co-
localization analysis is complete, and lists of IncRNA targets are provided for users to perform
pathway analysis to characterize the affected biological processes downstream of the IncRNA
signal, including lists of targets split by the GTEx tissue and tissue category of the IncRNA signal.
Application to schizophrenia GWAS

To demonstrate INFERNO’s utility, we analyzed a GWAS dataset for schizophrenia from the
Psychiatric Genomics Consortium with 108 LD-independent signals (n = 36,989 cases, 113,075
controls, [17]). P-value expansion of variants within an order of significance magnitude of the
top variants yielded 3,778 unique variants, which were LD pruned down to 268 independent
variants. LD re-expansion with a threshold of R* >= 0.7 in the European population of 1,000
genomes then yielded 8,371 unique variants (Figure 2a). Genomic partition analysis of these
variants supported their noncoding function, as only 79 (0.8%) of these variants were located in
messenger RNA (mRNA) exons, with the majority in mRNA introns (3,050), repeat elements
(2,819), or outside of any annotations (2,087) (Figure 2b). Overlapping these variants with
enhancer annotations found widespread enhancer signals in the Roadmap data, with 4,127
(49%) variants overlapping a ChromHMM enhancer state in at least one tissue (Figure 2c). The
FANTOMS overlaps were limited due to the more conservative nature of the eRNA
measurements, with 196 (2.3%) variants overlapping a FANTOMS5 enhancer in at least one

tissue. Finally, overlap with HOMER TFBSs found that 3,821 (45%) unique variants overlapped
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TFBSs for 233 unique transcription factors for a total of 10,798 variant—TFBS overlaps. The
majority (8,976) of these overlaps lowered the predicted binding strength (Figure 2d).

We observed no significant enrichments of enhancer overlaps in any tissue category when
considering all the tag regions together. However, four individual tag regions (rs2239063
(12p13.33), rs2693698 (14g32.2), rs6704641 (2933.1), and rs4330281 (3p24.3)) harbored
significant enrichments of enhancers in categories related to immunity (blood, adipose cells,
tonsils, immune organ) and stem cells (including iPSC and placenta) (Supplementary Figure 2).
The enrichment in the immune system is of particular interest given the strong epidemiologic
and molecular genetic evidence of immune dysfunction in schizophrenia [32, 33].

Next, 99,354 co-localization tests (COLOC) were performed across the 108 tag regions,
identifying 969 unique tissue-target gene eQTL signals across all 44 GTEx tissues and 300 unique
genes (including 57 IncRNAs from 34 tissues) that were strongly co-localized with schizophrenia
GWAS signals (Supplementary Table 4, Supplementary Figure 3). To characterize the
downstream biological processes affected by these variants, we performed pathway analysis on
the 300 co-localized target genes using the WebGestalt tool [34, 35], but this did not yield any
significant enrichments.

Cross-reference of the significantly enriched tag regions with the COLOC results found that the
rs2239063 region harbored co-localized eQTLs for CACNAIC in cerebellum and cerebellar
hemisphere of brain (Supplementary Table 4). Variants in the ABF-expanded sets underlying
these signals had concordant enhancer support from Roadmap enhancers in several data
sources including thymus, hippocampus, and fetal brain as well as TFBS disruptions for the RFX5

and RFX1 transcription factors. These are two members out of 5 in the mammalian regulatory
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factor X (RFX) family of TFs, which play a key role in regulation of the immune response [36].
The brain microglial immune response plays a role in schizophrenia etiology and CACNA1C is a
known schizophrenia-related gene [37, 38], supporting the utility and reproducibility of
INFERNO results.

As an alternative approach for prioritizing the strongest results in the COLOC analysis, we
identified 5 regions harboring co-localized eQTL and GWAS signals supported by variants with
individually high ABFs as well as enhancer overlaps from the same tissue category: rs4766428
(12924.11), rs4648845 (1p36.32), rs12826178/rs324017 (overlapping regions in 12q13.3),
rs56205728 (15q15.1), and rs4702 (15¢26.1) (Figure 3a, Supplementary Table 4).

In the 12924 region around rs4766428, rs4766428 itself was prioritized as having high ABF
underlying 12 distinct eQTL signals including for C12orf76 and VPS29 in the brain category and
TCTN1 in the nerve tissue category (Figure 3b). Note that this variant lies in an intron of ATP2A2
but does not target that gene. These three genes are all involved in transmembrane cellular
processes: C120rf76 is an unannotated transcript associated with the ‘ion channel activity’ GO
pathway [39], VPS29 is part of a group of vacuolar sorting proteins [40], and TCTN1 encodes a
family of secreted transmembrane proteins involved in ciliopathies and several cancer types
[41]. This variant also disrupts binding sites for ERRA, PPARg, and RXR (APWM =-1.95, -1.84, -
2.06, respectively). ERRA, also known as estrogen related receptor alpha, is an orphan nuclear
receptor with no known ligand that is known to play a central role in regulating energy
homeostasis and metabolism [42], which is disrupted in schizophrenia [43]. PPARg is a member
of the peroxisome proliferator-activated receptor subfamily of transcription factors which are

involved in adipocyte differentiation [44] in addition to having anti-inflammatory properties
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[45]. Furthermore, these factors form heterodimers with retinoid X receptors (RXR), and the
retinoid pathway has been suggested as a potential causal factor for schizophrenia [46, 47]. Of
particular relevance is the ChromHMM enhancer overlap in brain dorsolateral prefrontal cortex
(highlighted with red box in Figure 3b), the most relevant brain region in schizophrenia [48].

In the 1p36 region around rs4648845, a single variant, rs4592207, was found to underlie a
pancreatic eQTL signal for the INcRNA RP4-758J18.10 with high ABF. This variant also overlaps
an RFX5 binding site as well as one for STAT3, a member of the important signal transducer and
activator of transcription (STAT) family of proteins. This protein family is associated with many
human diseases, and drugs to inhibit STAT3 phosphorylation are in clinical trials for the
treatment of schizophrenia as well as several other diseases including Alzheimer’s disease,
several cancer types, and type 2 diabetes [49].

In the 12913 region around rs12826178, this analysis prioritized rs12826178 itself with high ABF
underlying a blood eQTL signal for TSPAN31, another transmembrane protein also known as
SAS that is amplified in human sarcomas [50]. This variant overlapped Roadmap enhancers
from 9 tissues including several immune cells in the blood category but did not overlap any
TFBSs. The variant rs12826178 was also prioritized in the nearby region around rs324017 for
the same eQTL signal, but was not part of the LD expanded set in that region.

In the 15915 region around rs56205728, the variant itself was found to underlie 4 eQTL signals
with high ABF, including BUB1B in brain cerebellar hemisphere and cerebellum and PAK6 and
PLCB2 in skeletal muscle. This variant overlaps Roadmap enhancers from 28 data sources
including astrocytes and several immune cell lines. BUB1B is a mitotic checkpoint

serine/threonine kinase, and is differentially overexpressed in both schizophrenia and bipolar
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disorder brains [51]. PAK6 is another serine/threonine kinase that is a member of the p21-
activated kinase (PAK) family. PAK inhibitors ameliorate dendritic spine deterioration associated
with schizophrenia [52], and disruption of this gene in mice leads to learning and locomotion
deficits [53]. PLCB2 is a phosphodiesterase that is involved in innate immunity [54].

Finally, in the 15926 region around rs4702, rs4702 is the prioritized variant underlying four
eQTL signals, for FES in subcutaneous adipose and pancreas, SLCO3A1 in transformed
fibroblasts, and FURIN in esophagus mucosa. This variant overlaps enhancers from 46 Roadmap
datasets, and although the tissues do not seem to be directly relevant to schizophrenia, there is
experimental evidence that FURIN is involved in neurodevelopmental processes that may be
affected in schizophrenia [55].

Using the top 108 LD-independent signals as input, HaploReg detected almost none of the top
results identified by INFERNO. In the rs2239063 region, no eQTLs for CACNA1C were detected.
In the rs4766428 region, HaploReg did not identify any brain signals for VPS29 and did not
identify any eQTL signals at all for C12orf76 and TCTN1. In the rs4648845 region, the variant we
prioritized, rs4592207, is not part of the LD-expanded block analyzed by HaploReg. In the
rs1286178 region, HaploReg did not detect any eQTL signal for rs1286178. In the rs56205728
region, HaploReg did not identify the brain signals for BUB1B or the PAKG6 signal, although it did
detect a PLCB2 eQTL, albeit in lymphocytes and lung rather than the skeletal muscle signal
INFERNO prioritized. Finally, in the rs4702 region, HaploReg detected the FES signals in
pancreas but not subcutaneous adipose, detected the FURIN signal in esophagus mucosa, and

missed the SLCO3A1 fibroblast signal, although it identified additional FES signals in fibroblasts
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and thyroid that INFERNO did not identify as strongly co-localized signals (P(H4) = 0.08 and 0.40,
respectively).

Next, we performed correlation-based target identification for the IncRNAs targeted by co-
localized eQTL signals, which identified 6,005 unique genes targeted by 46 unique IncRNAs from
33 tissues and 15 tissue classes (Supplementary Figure 4). We first performed pathway analysis
on all 6,005 genes targeted by these IncRNAs. This found significant enrichments in several
schizophrenia-related pathways (Supplementary Table 5) including RNA splicing [56],
phosphatidylinositol signaling [57], Th1 and Th2 cell differentiation [58], T cell receptor
signaling [59], and RNA transport [60].

To refine our understanding of the downstream effects of these IncRNAs, we split the lists of
target genes by which tissue category the IncRNA eQTL signal came from and performed
pathway analysis separately in each category (Figure 4). This identified tissue-specific pathway
effects in pathways known to be related to schizophrenia such as the MAPK signaling pathway
(KEGG pathway ID hsa04010) [61] in the blood category as well as pathways that were enriched
across several contexts, notably implicating the spliceosome (hsa03040) [56], which was
enriched in 10 categories including blood and brain. Another intriguing signal was the
enrichment of the Herpes simplex infection (hsa05168) pathway in 8 categories, also including
blood and brain. Maternal Herpes simplex virus (HSV) infection may lead to increased risk of
schizophrenia in their offspring [62] and HSV exposure may exacerbate cognitive function
impairment in schizophrenic patients [63]. Thus, the IncRNA target identification performed by
INFERNO can identify biologically relevant genes and pathways downstream of IncRNA

perturbations by genetic variants.
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Web server and tool availability

We provide a web server for INFERNO analyses that accepts the top variants from any given
GWAS and performs the annotation overlap analysis including directly overlapping variants with
GTEx eQTL data [64]. To run the computationally intensive enhancer sampling, eQTL co-
localization, and IncRNA correlation analyses, INFERNO is also available as an open source
pipeline [65].

Discussion

INFERNO provides a sensitive hypothesis generation method for identifying functional genetic
variants underlying genetic association signals and characterizing their tissue-specific effects on
regulatory elements, target genes, and downstream biological processes. The schizophrenia
analysis demonstrated that INFERNO picks up many signals that converge to common tissue
contexts and pathways when sufficient genetic loci are available. However, while the diversity
of functional genomic data and tissue contexts analyzed by INFERNO allows it to identify
functional variants, regulatory elements, and target genes underlying GWAS association signals,
this broad range of data sources also means that our algorithm may pick up more general
regulatory mechanisms not directly related to the phenotype of interest, and these
“hitchhikers” could obfuscate the truly causal processes. This is likely to be a characteristic of
complex traits in general. Another factor that affects the specificity of INFERNO results is the
currently limited availability of functional genomics annotation data, which are measured in
normal tissues that do not reflect the disease state for a given GWAS signal and may not be
exact matches for the relevant tissue context for a given trait. Thus, INFERNO is best used as a

powerful tool to prioritize biological processes and tissue contexts in an unbiased and
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systematic fashion for functional follow-up studies to prove the causality of the prioritized
signals and their relevance to the phenotype of interest.

INFERNO improves on existing noncoding annotation methods for GWAS signals, the most
comparable of which is HaploReg [14]. HaploReg expands GWAS variants by LD structure only,
missing many of the candidate variants INFERNO identifies using summary statistic-based
expansion, and reports direct annotation overlaps with Roadmap but not FANTOMS5 enhancer
annotations. Additionally, it lacks a tissue classification framework to integrate information
across disparate annotation sources. HaploReg provides an enhancer enrichment score by
calculating the background frequencies of enhancer overlap in each cell type for all unique
GWAS loci and all 1,000 Genomes common variants and comparing these frequencies to those
for a query list of variants using a binomial test. This approach ignores LD structure and does
not match variants by any characteristics. INFERNO provides a more sensitive statistical method
for quantifying the tissue-specific significance of annotation overlaps in a GWAS signal
accounting for LD structure and other genomic characteristics. Furthermore, INFERNO allows
for the calculation of enrichments both within and across tag regions, and the tissue
classification approach enables the scoring of enrichments supported by disparate data
sources. INFERNO also performs a more sensitive eQTL analysis by applying a Bayesian model to
identify truly co-localized signals between GWAS and eQTL data, and additionally performs
target identification for IncRNA targets identified by this algorithm.

Application of INFERNO to schizophrenia GWAS data identified significant overlaps of
enhancers in immune- and brain-related tissue categories and eQTL signals from the same

categories targeting known schizophrenia genes. This analysis identified putatively functional
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variants in 6 tag regions and also identified tissue-specific IncRNA signals targeting several
biological processes known to be related to schizophrenia including the MAPK signaling
pathway, spliceosome, and Herpes simplex infection.

INFERNO is limited by currently available functional genomics datasets, and will continue to
increase in power as functional datasets are generated in more tissue and cell types and as
genomics technology continues to be refined and improved. Another movement in the field is
to consider structural variation and copy number variants in addition to the single nucleotide
variants that INFERNO currently analyzes, and as more of these data are generated INFERNO

will be updated to allow for the analysis of these signals in the noncoding genome.

Conclusion

In this manuscript, we present the INFERNO (INFERring the molecular mechanisms of
NOncoding genetic variants) tool for characterizing functional variants underlying GWAS
association signals as well as the regulatory mechanisms, tissue contexts, target genes, and
biological processes they affect. This tool integrates information across hundreds of functional
genomics datasets to provide a data-driven, hypothesis-free approach for detailed
characterization and identification of noncoding genetic variants underlying genetic association
signals to provide biologically interpretable results. This characterization of the relevant tissue
contexts and biological pathways underlying disease risk can improve the mechanistic
understanding of disease risk as well as identify candidate therapeutic targets for future
pharmacological interventions.

INFERNO provides the most comprehensive and unbiased tool to identify causal noncoding

variants disrupting enhancers and the downstream effects of these disruptions including the
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relevant tissue context and affected target genes and pathways. We provide a web server

(http://inferno.lisanwanglab.org) that takes in top GWAS variants, expands them into LD blocks,

and annotates them with functional genomics data and direct eQTL overlap. We also provide
open source code [65] for the full pipeline that runs on full GWAS summary statistics and
performs p-value as well as LD expansion, sampling for functional enrichment, GTEx eQTL co-
localization, and IncRNA target identification in addition to the annotation overlaps provided by

the web server.

Methods
P-value and LD expansion of IGAP variants

Given GWAS summary statistics and a set of user-defined top variants, INFERNO first computes
the sets of all variants i/ within 500 kb of each tagging variant such that p; < m * p, where p; is
the p-value assigned to variant j, p; is the p-value of the tagging variant, and m is the user-
defined multiplicative constant, 10 by default for one order of magnitude. These sets are
pruned by linkage disequilibrium using PLINK v1.90b2i 64-bit [18] with the parameters --vcf for
the input file and ‘--indep-pairwise 500kb 1 0.7’ (within 500,000bp and meeting a correlation
threshold of R?>= 0.7). LD structure information is calculated using the phase 3 version 1 (May
11, 2011) of the 1,000 Genomes Project [19]. For the schizophrenia analyses in this manuscript,
data from the European (EUR) population was used, but 1,000 Genomes also provides LD
structure information for Africa (AFR), Asia (ASN), and the Americas (AMR) and INFERNO allows
users to choose their population of interest. Then, variants are re-expanded by LD structure
using the parameters --vcf for the file containing neighboring variants and ‘--allow-no-sex, --r2

with-freqs dprime --ld-snp RSID --ld-window 99999 --ld-window-kb AREA --ld-window-r2 R2’,
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where RSID is the tag variant of interest, AREA is the LD block size threshold parameter, and R2

is the parameter defining the threshold on R
Genomic partition analysis

Variants were categorized into different functional categories using the UCSC knownGene and
RepeatMasker annotations for the hgl9 genome build. Only chr1-22, X and Y are used in
INFERNO. The 5’ UTR exons and introns, 3’ UTR exons and introns, and exons and introns were
extracted from the knownGene annotation for each protein-coding gene, and all overlapping
exons were merged together. Promoter annotations were defined as 1,000bp upstream of the
first exon in the transcript, either coding or in the UTR. Variants were then assigned to
mutually exclusive genomic element annotations using the hierarchy: 5 UTR exon > 5" UTR
intron > 3" UTR exon > 3’ UTR intron > promoter > mRNA exon > mRNA intron > repeat. A

variant not overlapping with any class of elements above was classified as intergenic.
Functional annotation data download and pre-processing

FANTOMDS enhancer facet-level expression BED files, Roadmap ChromHMM BED files for the 5
core Roadmap marks (H3K4me3, H3K4me1l, H3K36me3, H3K27me3, H3K9me3), HOMER TFBS
annotations, and GTEx eQTL and RNAseq data were downloaded from their respective servers
and further processed using the bedtools suite of tools [66] and custom awk and Python scripts.
A detailed description of the data sources and pre-processing steps is available at

http://inferno.lisanwanglab.org/README.html and the full processed annotation data is

available in the ‘Availability of Data and Materials’ section.

INFERNO pipeline implementation
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The INFERNO pipeline is implemented using Python v2.7.9, R v3.2.3, and bash, and is available

at https://bitbucket.org/alexamlie/inferno. The pipeline allows user-defined parameters for the

1,000 Genomes population to use, the order of magnitude cutoff for p-value expansion, the LD
and distance thresholds to use for LD expansion, the size of the window around FANTOMS5 loci,
and whether or not to calculate APWM scores. It is also flexible and can run any or all of the
analysis steps including p-value and LD expansion, genomic partition analysis, overlap with
FANTOMDS, direct overlap with GTEx eQTLs, overlap and calculation of APWM scores with
HOMER-defined TFBSs, annotation with ChromHMM states across all 127 Roadmap tissues and
cell types, statistical analysis of enhancer enrichment, eQTL co-localization, and IncRNA target

identification.
Dataset classification into tissue categories

Building off the existing categorization of Roadmap samples and informed by the UBERON and
CL ontologies [27, 28] used in the FANTOMS facet-level classification and in GTEx, the different
tissues and cell types from each data source were grouped into 32 major classes used for this

analysis, and some of the data sources were further grouped into 58 secondary and 15 tertiary

sub-classes (Supplementary Table 1).
Quantification of enhancer enrichments:

10,000 random sets of background variants matched to the input set of variants (before LD
expansion) by distance to the nearest gene, minor allele frequency, and the number of variants
in each tagged LD block are sampled. The variants from each background set are then expanded
into their corresponding LD blocks to match the number of variants in the LD expanded input

set and overlapped with the same sets of functional annotations. Then, the empirical p-value
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for the significance of the overlap of the input data with each functional annotation or

combination of annotations a (e.g. eRNA enhancer overlap, or both eRNA enhancer overlap and

1+bg ¢

eQTL overlap) in a given tissue category tis defined as p, s = T 10000’

where b, ; is the number

of background samples that include at least as many LD blocks overlapping the annotation a in
the tissue context t as the input dataset. By default, each LD block only contributes one
effective count for annotation overlap in order to correct for LD structure, but INFERNO will
also report results counting each variant in an LD block separately. These empirical p-values are

corrected for multiple testing using the Benjamini-Hochberg procedure [67].
eQTL Colocalization analysis

For colocalization analysis, INFERNO uses the COLOC R package [16] to compare the eQTL
signals tested in GTEx across all 44 tissues against GWAS summary statistics. For each tag region
and GTEx tissue, the script identifies all the genes tested for eQTL with the tagging variant in
the region, reads in the eQTL data for each gene, and performs colocalization analysis using all
the GWAS variants 500,000bp on either side of the tag variant that are also found in the eQTL
data. Minor allele frequencies (MAFs) can be defined by the user or can be extracted from
1,000 Genomes data using a custom preprocessing script. Then, the MAF and p-values of
variants in the GWAS and eQTL datasets are used for co-localization analysis, including a user-

defined sample size and case/control ratio for the GWAS of interest.
IncRNA correlation analysis

To find the target genes of each IncRNA found to have a co-localized eQTL signal, reads per

kilobase per million (RPKM) values across all RNA-sequenced samples in GTEx are used.
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GENCODE annotations are used to identify GTEx target genes that are categorized as IncRNAs
[68], and the RPKM expression files are used to extract the expression of all genes expressed in
at least one sample, including each IncRNA, for one chromosome at a time. Then the pipeline
calculates the correlations of the IncRNA expression vectors against all columns (genes) of the
gene expression matrix using the corr.test function from the psych R package [69]. Two
correlation measures are computed: the Pearson correlation, which measures the linear
relationship between two variables, and the Spearman correlation, which is a rank-based test
that does not assume a linear relationship. User-defined parameters on the absolute value of
both the Spearman and Pearson correlation measures, 0.5 by default, are used to identify

IncRNA target genes.
Schizophrenia GWAS analysis

The full summary statistics file (scz2.snp.results.txt) and 128 top variants (scz2.rep.128.txt) for
the schizophrenia analysis were obtained from the Psychiatric Genomics Consortium
downloads page [70]. The top variants were parsed to remove variants on sex chromosomes
and converted into INFERNO input format using awk scripts. The summary statistics were
annotated with minor allele frequencies from the 1,000 genomes data using a custom script,
annotate_input_variants.R, in the data_preprocessing/ section of the INFERNO code. These
parsed files were then used as input to INFERNO, and the exact call used is available in the

INFERNO README file [65].
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Figure 1: Outline of INFERNO pipeline approach.
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Figure 2: Characteristics of expanded variant sets for schizophrenia analysis. A) Number of
variants after p-value expansion, LD pruning, and LD expansion. B) Counts of expanded set
variants in genomic partitions. C) Number of variants overlapping enhancers from FANTOMS5

and Roadmap. D) Distribution of APWM scores for variants overlapping HOMER TFBSs.
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Supplementary Figure 2: Tag region-specific sampling enrichment results for schizophrenia

signals. A) Region around rs2239063 (12p13.33). B) Region around rs2693698 (14g32.2). C)

Region around rs6704641 (2g33.1). D) Region around rs4330281 (3p24.3)
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Supplementary Figure 3: All results from co-localization analysis integrated with annotation
overlaps. Counts in barplots refer to individual variants underlying an eQTL signal in a given tag

region, including all variants in the ABF-expanded sets.
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Supplementary Figure 4: Scatterplot of distribution of Pearson vs. Spearman correlations of top

MRNA transcripts correlated with IncRNAs identified as eQTL targets by INFERNO.
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