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Abstract	

Adaptation	is	a	key	component	of	efficient	coding	in	single	neurons.	However,	it	is	unclear	how	a	

population	of	adapting	neurons	manage	to	accurately	and	stably	encode	their	inputs.	We	start	with	an	

efficient	coding	framework	and	show	that	realistic	spike-frequency	adaptation	emerges	as	a	mechanism	

that	enables	a	neural	population	 to	 solve	a	global	 cost-accuracy	 tradeoff.	We	 learn	 that	adaptation	 is	

managed	by	E/I	balanced	recurrent	connectivity.	Such	coordinated	population	adaptation	re-distributes	

activity	from	highly	responsive	neurons	to	less	responsive	neurons,	rather	than	causing	a	global	response	

suppression.	As	a	result,	the	decoded	representation	remains	stable	despite	changing	activities	in	each	

neuron.	 In	 applying	 this	 framework	 to	 a	 model	 that	 encodes	 orientation,	 we	 replicate	 experimental	

findings,	 such	 as	 apparently-Poisson	 variability	 and	 the	 tilt	 illusion.	 Our	 results	 indicate	 the	 potential	

mechanisms	 behind	 these	 statistical	 and	 perceptual	 effects	 and	 underscore	 the	 diversity	 of	 neural	

adaptation	and	its	role	in	producing	a	stable	representation	of	the	stimulus.	We	find	that	facilitation	and	

dis-inhibition	emerge	along	with	the	more	predictable	effects	of	neural	adaptation,	such	as	suppression.		

Introduction	 	

	 The	range	of	firing	rates	that	a	sensory	neuron	can	maintain	is	limited	by	biophysical	constraints	

and	 available	metabolic	 resources.	 Yet,	 these	 same	 neurons	 have	 to	 represent	 sensory	 inputs	whose	

strength	varies	by	orders	of	magnitude.	Early	work	by	Barlow	and	Laughlin	(Barlow, 1961; Laughlin, 

1981)	 hypothesized	 and	 demonstrated	 that	 sensory	 neurons	 in	 early	 processing	 stages	 adapt	 their	

response	threshold	and	gain	as	a	function	of	the	range	of	inputs	that	they	recently	received.	A	particularly	

striking	example	of	 such	gain	modulation	at	 the	single	cell	 level	has	been	shown	 in	 the	 fly	H1	neuron	

(Brenner et al., 2000).	 Gain	 adaptation	 to	 input	 has	 been	 observed	 in	 other	 early	 sensory	 circuits	

(Solomon and Kohn, 2014; Wark et al., 2007),	such	as	in	the	retina	(Gollisch and Meister, 2010; 

Kastner and Baccus, 2014),	and	auditory	hair	cells	(Wen et al., 2009),	and	in	developing	cortical	

neurons	which	acquire	this	property	during	development	{Mease:2013hd}.		

	 The	work	of	Laughlin	and	Barlow	was	instrumental	in	uncovering	a	principle	of	neural	encoding	

where	adapting	neural	responses	maximize	information	transfer.	However,	the	natural	follow-up	question	

concerns	 the	 decoding	 of	 neural	 responses	 after	 they’ve	 been	 subject	 to	 adaptation.	 Even	 if	 such	

adaptation	might	be	involved	in	maximizing	information	transfer	in	later	processing	stages	(Adibi et al., 

2013; Wainwright, 1999),	it	also	results	in	profound	changes	of	the	mapping	of	neural	responses	to	

stimuli	 in	 a	 history-dependent	 manner.	 This	 raises	 the	 issue	 of	 how	 such	 adapting	 responses	 are	
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interpreted	and	reinterpreted	by	downstream	sensory	areas	 (Series et al., 2009).	One	possibility,	of	

course,	 is	 that	 downstream	areas	 do	 not	 change	 their	 decoding	 strategy,	 thus	 introducing	 systematic	

biases	in	perception	that	persist	for	as	long	as	the	adaptive	effects	are	present.	This	has	been	interpreted	

as	the	source	of	perceptual	 illusions	such	as	the	tilt	after-effect	or	the	waterfall	 illusion	(Barlow and 

Hill, 1963; Wainwright, 1999).	However,	such	illusions	are	classically	triggered	by	long	presentations	
of	salient	stimuli.	Neural	adaptation	or	repetition	suppression	can	affect	neural	responses	even	at	short	

time	scales	or	after	only	one	presentation	of	a	stimulus	(REFS).	If	not	taken	into	account	by	downstream	

areas,	 the	 resulting	 representational	 biases	 could	 outweigh	 any	 advantage	 in	 terms	 of	 information	

transfer.	 For	 example,	 it	 could	 become	 impossible	 to	 maintain	 a	 stable	 representation	 of	 successive	

sensory	 patterns	 in	 a	 population	 of	 adapting	 neurons.	 An	 example	 is	 given	 in	 Figure	 [[1]]	 where	 we	

presented	 successive	 stimuli	 corresponding	 to	 a	 spatial	 pattern	 of	 digital	 numbers	 to	 a	 population	 of	

integrate	and	fire	neurons	with	receptive	fields	that	tile	the	space.	An	optimal	linear	decoder	was	trained	

on	a	set	of	stimulus	patterns	that	did	not	include	the	test	patterns.	Without	adaptation,	the	neurons	were	

easily	decoded	and	the	test	patterns	were	recovered	with	the	linear	decoder.	When	the	neural	responses	

were	subject	to	adaptation,	however,	the	responses	became	strongly	history	dependent,	and	the	linear	

decoder	could	not	decode	the	test	patterns	as	accurately.	Successive	presentations	of	the	same	digital	

number	result	in	vastly	different	representations.	This	is	because	the	linear	decoder	does	not	take	past	

stimuli	into	account.	Over	long	timescales,	it	is	reasonable	to	consider	a	linear	decoder	that	is	updated	to	

produce	the	most	accurate	stimulus	representation	possible.	However,	this	requires	the	decoder	to	have	

additional	information	about	the	stimulus	or	information	about	the	changes	inherent	in	the	stimulus.	In	

this	study,	we	show	that	this	apparent	dilemma	is	resolved	when	coding	and	adaptation	are	understood	

at	the	level	of	the	population,	and	not	at	the	level	of	individual	cells.		

Sensory	neurons	 in	cortex	are	embedded	 in	highly	recurrent	networks	with	each	cell	 receiving	

strong	inhibitory	currents	that	co-vary	with	excitatory	currents	(Graupner and Reyes, 2013)	and	are	
thus	E/I	balanced.	Here,	we	show	that	in	balanced	networks,	heterogeneous	sensory	neurons	with	activity	

dependent	suppression	can	be	seen	as	solving	a	global	cost/accuracy	tradeoff	rather	than	a	local	tradeoff	

at	the	 level	of	each	neuron.	 In	that	case,	adaptation	at	the	 level	of	 individual	neurons	co-exists	with	a	

largely	stable	representation	at	the	population	level.	Rather	than	being	globally	suppressed	by	adaptation,	

E/I	balance	indirectly	ensures	that	the	neural	activity	is	redistributed	from	highly	responsive	neurons	to	

less	responsive	neurons	without	changing	the	interpretation	of	this	activity	by	downstream	areas.		
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	 Our	approach	suggests	that,	given	adaptation,	neural	coding	cannot	be	understood	at	the	level	of	

a	single	neuron,	except	in	cases	where	a	unique	sensory	feature	is	solely	encoded	by	a	single	neuron	(like	

the	H1	neuron).	In	areas	containing	large	numbers	of	interconnected	neurons	with	redundant	selectivity,	

many	 questions	 about	 neural	 coding	 and	 adaptation	 are	 only	 meaningful	 when	 applied	 to	 whole	

populations.	We	show	that	the	adapting	tuning	curves	of	a	single	neuron	can	reflect	a	collective,	flexible	

solution	found	by	the	network	in	particular	contexts.		

Results	

Derivation	of	a	generically	efficient	population	
	 We	start	from	first	principles	to	arrive	at	a	network	that	efficiently	encodes	a	sensory	stimulus,	

s(t).	 For	 simplicity,	 we	 assume	 an	 arbitrary	 monotonic	 stimulus	 space	 such	 as	 luminance	 or	 color	

saturation.	The	stimulus	will	be	decoded	from	the	firing	activity	of	the	network	neurons	by	summing	their	

responses,	 r(t),	with	 their	 respective	 readout	weights,	w.	 Thus,	 a	 linear	 decoder	 is	 defined	 as	 𝑠(𝑡) =

𝑤'𝑟'' 𝑡 .	We	wish	to	construct	a	network	that	will	minimize	the	difference	between	s	and	s-hat	so	as	

to	produce	an	accurate	representation	of	the	stimulus.	Additionally,	we	wish	to	impose	efficiency	in	the	

neural	representation.	For	real	neurons,	spiking	comes	with	inherent	metabolic	costs	and	it	is	clear	that	

neurons	regulate	their	activity	so	that	their	firing	rates	don’t	approach	infinity	given	a	very	large	input.	To	

pose	 this	 problem	 more	 formally,	 we	 define	 an	 objective	 function	 composed	 of	 two	 terms,	 one	

representing	the	precision	of	the	representation,	and	the	other	the	cost	of	neural	activity	(Boerlin et al., 

2013):	

𝐸 = 	𝑠 − 𝑠 , + 𝜇 𝑟',

'

	

The	µ	parameter	weighs	the	efficiency	cost	relative	to	the	error.	Note	that	the	contributions	of	

the	neurons	are	squared,	penalizing	both	total	activity	and	high	individual	firing	rates,	and	encouraging	

the	neurons	to	share	the	burden	of	 representing	the	stimulus.	The	firing	rate	𝑟(𝑡)	 corresponds	to	the	

output	spike	trains	integrated	at	an	“adaptation”	time	scale,	ta.	We	assume	that	the	adaptation	time	scale	

is	much	 longer	than	the	decoder	time	scale	 (ta>>t),	meaning	that	the	cost	of	 firing	accumulates	much	

more	slowly	than	the	time-scale	at	which	the	signal	is	represented	in	the	spikes,	or	would	be	extracted	by	

downstream	synapses.	The	neuron	takes	 longer	 to	 recover	 from	a	spike	 than	the	 typical	 time-scale	of	

stimulation,	 a	hall-mark	of	 adaptation.	 In	 terms	of	 the	objective	 function,	 this	 expresses	 the	 fact	 that	
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maintaining	high	firing	rates	for	long	periods	of	time	is	far	more	metabolically	costly	than	short	bursts	of	

spiking.				

Note	that	the	decoder	weights	will	be	fixed.	Instead	of	updating	the	weights	to	better	represent	

stimuli	over	several	iterations,	as	is	done	for	the	perceptron	and	convolutional	neural	networks	{REFS},	

we	 derive	 a	 prescription	 for	 the	 voltage	 dynamics	 so	 that	 the	 network	 neurons	 can	 produce	 a	

reconstruction	of	any	stimulus	within	the	stimulus	space.	The	objective	function	is	minimized	to	obtain	

the	following	dynamical	equation	for	the	network	neurons	(see	methods	for	full	derivation):	

𝜏𝑉1 = −𝑉1 + 	𝑔1 𝑤1 𝑠 + 𝜏𝑠 − 	𝜏𝑔3 𝑤1𝑤4
5

𝑜4 − 𝜏𝑔3𝜇𝑜3 + 𝑔3
𝜏
𝜏7
− 1 𝜇𝑟9		

Where		oj	is	the	spike	train	of	neuron	j,	gi	=	2/(wj
2	+	µ)	is	the	gain	of	neuron	i,	and	t	is	a	membrane	

time	constant.	Each	neuron	is	effectively	representing	the	population	decoding	error,	𝑠 − 𝑠		given	that	we	

can	 express	 its	 membrane	 potential	 as	 𝑉3 = 	𝑔3𝑤3 𝑠 − 𝑠 −	𝑔3𝜇𝑟3.	 In	 other	 words,	 the	 membrane	

potential	is	proportional	to	the	coding	error,	penalized	by	the	past	activity	through	an	adaptive	current	

corresponding	to	the	past	integrated	activity.		The	neuron	fires	if	and	only	if	it	decreases	the	coding	error	

to	a	larger	extent	than	it	increases	the	cost,	which	is	equivalent	to	the	membrane	potential	exceeding	the	

firing	 threshold	 (equal	 to	1).	 It	 is	 followed	by	 a	 reset	of	 the	membrane	potential	 to	 -1.	 Together,	 the	

network	 neurons	 perform	 a	 greedy	 minimization	 in	 that	 they	 fire	 as	 soon	 as	 doing	 so	 benefits	 the	

objective.				

Spike-frequency	adaptation	emerges	in	the	network	solution	
The	form	of	the	voltage	equation	is	amenable	to	interpreting	its	terms	as	currents	to	the	neuron.	

The	−	 𝑤1𝑤45 𝑜4	term	indicates	that	neurons	are	connected	by	mutually	inhibitory	synapses	when	their	

decoder	weights	share	the	same	sign.	The	reset	of	the	membrane	potential	after	each	spike	is	included	as	

an	autapse.	Each	neuron	receives	 information	about	the	stimulus	as	weighted	feedforward	 input.	This	

feedforward	input	includes	a	differentiated	input	signal.	

The	final	current	term	corresponds	to	an	adaptation	current	that,	in	addition	to	the	reset	current,	

depresses	the	voltage	as	a	function	of	its	recent	activity	[[Fig.	2]]	but	it	does	so	on	a	longer	time	scale	than	

the	reset	which	is	immediate.	We	emphasize	that	this	spike-frequency	adaptation	current	emerged	solely	

as	a	result	of	the	efficiency	imposed	in	the	objective	(equation	[1]).	This	indicates	that	spike-frequency	

adaptation	 is	not	only	a	 solution	 to	 the	problem	of	efficiency	 in	a	 single,	 isolated	neuron	as	has	been	

shown	before,	but	spike-frequency	adaptation	is	also	a	solution	to	the	efficiency	that	is	imposed	on	an	
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entire	population	of	neurons.	We	next	illustrate	how	this	solution	prescribes	the	intrinsic	properties	of	

individual	neurons.	

Properties	of	individual	neurons	
The	network	solution	obtained	provides	feedforward,	recurrent,	and	autapse	weights	in	terms	of	

the	parameters	that	are	present	in	the	starting	assumptions.	Each	of	these	weights	are	factored	by	the	

intrinsic	gain	of	each	neuron,	which	can	be	used	as	a	metric	of	characteristic	excitability.	In	our	network	

paradigm,	 gain	 is	 inversely	 related	 to	 the	 decoding	weight	 of	 the	 neuron.	 Neurons	with	 the	 smallest	

decoding	weights	have	 the	 largest	gain,	and	vice-versa	 [(Fig.	3)].	Assuming	all	neurons	have	 the	 same	

baseline	 firing	 threshold,	 the	 feed-forward	 weights	 from	 input	 𝑖	 to	 neuron	 𝑗	 are	 set	 to	 𝑤35𝑔3 =

	2𝑤35/( 𝑤35, + 	𝜇)5 .		Thus,	the	feedforward	weights	are	inversely	related	to	decoding	weights	equal	to	or	

greater	than	1	[[Fig.	3B]].		

Each	neuron	discretizes	its	response	with	spikes,	therefore	the	neurons	have	a	precision	that	is	

proportional	to	their	decoding	weights.	The	contribution	of	each	spike	to	the	estimate	corresponds	to	the	

discretization	 error.	 In	 this	 regime,	 a	 neuron’s	 firing	 rate	 is	 effectively	 inversely	 proportional	 to	 its	

decoding	weight.	Neurons	with	small	decoding	weights	represent	smaller	changes	in	signals.	As	a	result,	

they	require	more	spikes	than	neurons	with	larger	decoding	weights	to	represent	the	same	stimulus	(Fig.[[	

3A]]).	These	“High	gain”	neurons	are	precise,	but	due	to	their	high	excitability,	they	are	costly.	In	contrast,	

neurons	 with	 large	 decoding	 weights	 (referred	 to	 as	 “Low	 gain”	 neurons)	 bring	 less	 precision	 to	 the	

estimate,	but	they	are	more	efficient	since	they	can	track	the	stimulus	with	relatively	few	spikes.	From	

now	on	we	will	refer	to	neurons	by	their	gains	rather	than	decoding	weights	to	draw	a	connection	to	the	

concept	of	neural	excitability.		

Our	model	is	general	and	can	include	many	forms	for	the	cost.	We	chose	a	cost	that	is	the	sum	of	

squared	 filtered	 spike	 trains,	 more	 generally	 known	 as	 an	 L2	 cost	 or	 quadratic	 penalty.	 This	 cost	

implements	an	exponential	 increase	in	spiking	threshold	after	each	spike.	This	determines,	 in	turn,	the	

response	 properties	 of	 individual	 neurons	 when	 recorded	 in	 isolation	 without	 any	 contribution	 from	

recurrent	 connections.	 Model	 neurons	 given	 a	 constant	 stimulus	 input	 fire	 at	 a	 rate	 that	 decreases	

exponentially	over	time	[(Fig.	3C)].		The	time	constant	of	this	adaptation	is	ultimately	determined	by	the	

neuron’s	 decoding	 weight.	 High	 gain	 neurons	 are	 more	 strongly	 adapted	 because	 their	 excitable	

responses	 lead	to	a	rapidly	 increasing	firing	threshold	after	every	spike	fired	in	quick	succession.	Thus,	

high	gain	neurons	are	penalized	by	their	own	past	activity	more	than	their	low	gain	counterparts.	
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There	 are	 very	 few	other	 plausible	 biological	mechanisms	 besides	 spike-frequency	 adaptation	

that	could	serve	to	make	the	network	more	efficient	and	it	seems	natural	that	the	efficiency	solution	for	

an	 individual	 neuron	 should	 generalize	 to	 that	 for	 a	 network.	 But	 it	 again	 raises	 the	question	of	 how	

adapting	 neuron	 responses	 are	 decoded	 unambiguously	 from	 a	 network	 of	 such	 neurons	 by	 a	 static	

decoder.	We	 illustrate	how	this	 conundrum	 is	 resolved	by	our	model	using	a	2-neuron	network	as	an	

example.	

Spike-frequency	adaptation	is	mitigated	by	mutual	dis-inhibition	
[[Figure	4]]	shows	the	activity	of	two	neurons	that	are	reciprocally	connected	as	prescribed	in	the	

derivation	(schematized	in	Fig.	[[4A]]).	They	receive	a	constant	stimulus.	If	one	looks	at	the	responses	of	

each	neuron	individually	[[Fig.	4B]],	one	finds	that	their	response	levels	fluctuate	dynamically	despite	the	

fact	that	the	signal	is	constant.	How,	then,	is	the	network	able	to	maintain	an	invariant	representation	of	

the	signal?	It	is	because	the	network	dynamics	coordinate	the	two	neurons	such	that	the	weighted	sum	

of	their	responses	(the	signal	estimate)	remains	accurate.	The	contribution	of	each	neuron	to	the	estimate	

is	shown	in	the	middle	panel	of	Figure	[[4B]].	Initially,	neuron	1	is	solely	responsible	for	maintaining	the	

network	estimate	but	after	a	brief	period	of	activity,	neuron	2	becomes	active	and	neuron	1’s	activity	is	

reduced.	The	accumulating	cost	[[bottom	panel	of	Fig.	4B]]	results	in	a	gradual	transfer	of	activity	from	

the	higher	gain	neuron	1	to	the	lower	gain	neuron	2.		

Thus,	while	the	stimulus	is	constant,	and	while	the	activity	of	the	two	neurons	vary,	their	response	

remains	around	a	line	defined	in	activity	space	by	s	=	w1r1	+	w2r2.	The	movement	of	the	activity	along	the	

manifold	defined	by	the	stimulus	reflects	a	progressive	redistribution	of	activity	to	satisfy	the	unfolding	

cost-accuracy	tradeoff,	but	without	affecting	the	stability	of	the	representation	[[Fig.	4C]].		

Contrast	this	to	the	2-neuron	network	that	is	not	recurrently	connected.	The	firing	activity	doesn’t	

follow	the	manifold	but	rather,	the	neuron	activity	rates	are	more	correlated.	Both	neurons	are	highly	

active	at	the	onset	of	the	stimulus	but	their	activity	decays	due	to	adaptation	[[Fig.	4D]].	The	network	

estimate	decays	with	the	activity	of	the	two	neurons,	leading	to	an	unstable	representation	of	a	constant	

stimulus.	This	is	worsened	with	stronger	adaptation	(higher	µ).	

This	example	illustrates	the	principle	of	how	a	population	representation	can	remain	stable,	even	

while	single	neurons	adapt,	through	an	interplay	of	activity-dependent	suppression	and	lateral	inhibition	

through	which	neurons	compete	to	represent	the	stimulus.		
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Coordinated	adaptation	of	a	neural	population	
Within	 a	 network	with	 several	 neurons	 [[Fig.	 5]],	 the	 recurrent	 connections	 interact	with	 the	

intrinsic	properties	of	the	neurons.	As	in	the	2-neuron	example,	the	first	neurons	to	be	recruited	are	those	

with	high	gains,	providing	an	 initially	very	precise	representation	of	the	signal,	but	a	costly	one.	These	

neurons	 inhibit	 the	 low	 gain	 neurons,	 preventing	 them	 from	 firing	 early	 in	 the	 stimulation	 period.	

Inhibition	from	neurons	with	a	higher	gain	delays	the	responses	of	other	neurons	with	lower	gains.	As	

time	goes	on,	however,	the	high	gain	neurons	adapt	and	their	response	starts	decaying.	This	is	enough	to	

disinhibit	neurons	with	slightly	lower	gains.	These	neurons	fire	in	turn,	inhibiting	the	high	gain	neurons	

and	shortening	their	transient.	For	low	gain	neurons,	the	delay	is	longer	and	highly	dependent	on	stimulus	

strength.	The	rise	in	activity	is	due	to	progressive	disinhibition,	not	feedforward	excitation.	This	process	

continues	 as	more	and	more	 low	gain	neurons	 are	 recruited	while	high	 gain	neurons	 are	 increasingly	

inhibited,	until	this	recruitment	ceases	for	𝑡 ≫ 𝜏7.	Note	that	each	part	of	the	response	is	shaped	by	the	

activity	of	other	neurons,	and	thus,	these	neurons	would	behave	differently	for	another	distribution	of	

input	gains.		

	 Because	the	disinhibition	of	low	gain	neurons	automatically	compensates	for	the	decay	in	high	

gain	 neural	 responses,	 the	 stimulus	 representation	 remains	 stable	 during	 the	 whole	 period	 [(Fig.	 5,	

bottom)].	However,	its	precision	degrades	as	more	low	gain	neurons	contribute	to	the	representation.	As	

a	result,	the	variance	of	the	representation	increases.	

Coordinated	adaptation	of	tuning	curves		
An	argument	frequently	used	to	mitigate	the	influence	of	neural	adaptation	on	perception	is	that	

while	this	may	affect	the	perceived	strength	of	the	stimulus,	it	does	not	affect	the	neural	coding	of	the	

stimulus	 identity.	 For	 example,	 visual	 luminance	 is	 normalized	 in	 early	 processing	 stages	 and	 visual	

features	are	represented	in	a	largely	contrast-invariant	way	by	later	processing	stages.	However,	as	we	

can	already	see	in	Figure	[[1]],	adaptation	could	still	have	deep	effects	on	the	coding	of	stimulus	patterns,	

if	those	are	presented	in	close	temporal	proximity.	

To	illustrate	what	coordinated	adaptation	implies	for	population	coding,	we	took	the	example	of	

a	population	of	visual	neurons	that	code	for	the	orientation	of	a	grating.	We	derived	a	neural	population	

that	 receives	 an	 oriented	 stimulus	 in	 the	 form	 of	 two	 input	 signals	 𝑠?(𝑡) = 𝐶𝑐𝑜𝑠(2𝜃) and	

𝑠,(𝑡) = 𝐶𝑠𝑖𝑛(2𝜃) 	where	C	 is	the	stimulus	strength	and	𝜃	 is	the	stimulus	orientation.	The	factor	of	2	

accounts	for	the	circular	symmetry	of	orientation,	with	0	=	180	degree.		Each	neuron	has	a	decoding	vector	

in	 the	 2D	 signal	 space,	 with	 an	 angle	 corresponding	 to	 its	 preferred	 orientation,	 and	 an	 amplitude	
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proportional	to	its	gain.	In	particular,	feedforward	connections	will	maximally	excite	a	model	neuron	at	

its	preferred	orientation,	and	will	maximally	inhibit	it	for	orthogonal	orientations.	The	cost,	as	before,	is	

assumed	 to	be	proportional	 to	 the	 sum	of	 squared	 filtered	 spike	 trains.	Neurons	have	equally	 spaced	

preferred	orientations	and	a	partner	neuron	that	shares	the	same	preference.	Each	pair	of	neurons	with	

identical	preferences	has	two	fixed	gains	per	orientation.		For	example,	there	are	two	neurons	that	prefer	

vertically	oriented	stimuli,	one	has	a	decoding	weight	of	3	and	 the	other	a	decoding	weight	of	9.	The	

resulting	network	has	a	double-wheeled	structure,	schematized	on	Figure	[[6A]].	

Figure	 [[6B]]	 illustrates	 the	spiking	 response	of	 the	dual-gain	network	 to	a	prolonged	oriented	

stimulus.	As	seen	in	the	simpler	model	from	Figure	[[5]],	high	gain	neurons	respond	first,	then	adapt.	As	

the	 responses	 of	 the	 high	 gain	 neurons	 decay,	 the	 low	 gain	 neurons	 are	 recruited	 to	 maintain	 the	

representation.	This	is	quantified	in	the	tuning	curves	in	Figure	[[6C]].	The	late	responses	of	the	high	gain	

neurons	are	suppressed	relative	to	their	early	responses.	Adaptation	results	in	a	reduced	gain	around	the	

adapted	orientation	for	high	gain	neurons.	This	is	due	to	the	suppression	of	their	transient.	Conversely,	

the	responses	of	the	low	gain	neurons	are	facilitated	in	the	later	part	of	the	presentation	and	their	tuning	

curves	are	broadened.	Here,	the	network	interactions	overrode	the	intrinsic	drive	for	the	low	gain	neurons	

to	adapt.	The	disinhibition	from	the	high	gain	neurons	combined	with	the	constant	feedforward	drive	to	

these	neurons	results	 in	facilitated	activity	rather	than	the	suppressed	activity	one	would	expect	to	be	

caused	by	adaptation.	Note	that	the	tuning	curves	for	the	high	gain	neurons	are	broader	than	those	for	

the	low	gain	neurons.	This	is	naturally	the	case	because	the	high	gain	neurons	are	more	excitable.	They	

are	more	likely	to	fire	in	response	to	oriented	stimuli	that	are	near	their	preference	than	low	gain	neurons.	

It	 should	 be	 acknowledged	 that	 the	 facilitation	 is	 a	 parameter-dependent	 effect,	 though	 a	 complete	

analysis	of	those	regimes	is	beyond	the	scope	of	this	paper.	

These	 features	 are	 reminiscent	 of	 the	 response	 to	 a	 one-dimensional	 stimulus	 (Fig.	 [[5]]).	

However,	we	also	observe	non-trivial	effects	on	the	neurons’	tuning	curves.	These	are	illustrated	in	Figure	

[[7]].	The	network	has	been	adapted	to	an	orientation	in	the	middle	of	the	range	for	2	seconds	and	then	

presented	a	test	orientation.	The	tuning	curves	in	the	middle	of	the	plot	echo	those	from	[[Figure	6]].	All	

neurons	have	bell-shaped	tuning	curves	covering	a	limited	range	of	orientations,	with	narrower	tuning	

curves	for	the	low	gain	neurons.	These	curves	show	in	greater	detail	why	the	low	gain	tuning	curves	widen.	

There	is	a	flank	effect	for	both	populations	of	neurons	where	adaptation	at	the	flank	of	the	control	tuning	

curve	 leads	 to	 a	 facilitated	 response	 to	 the	 adapting	 orientation.	 For	 stronger/weaker	

adaptation/stimulus,	 we	 find	 that	 the	 low	 gain	 neuron	 that	 prefers	 the	 adapting	 orientation	 has	 a	
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suppressed	response	after	adaptation	unlike	the	facilitated	effect	shown	in	Figure	[[6C]].	 Interestingly,	

however,	we	observe	a	flank	effect	where	low	gain	neurons	that	have	a	similar	orientation	preference	are	

facilitated.	This	results	in	a	stronger	contribution	of	low	gain	neurons	for	test	stimuli	near	the	adapted	

orientation.	 Similar	 observations	 have	 been	 made	 in	 experiments	 of	 mouse	 visual	 cortex	 area	 V1	

(Jeyabalaratnam et al., 2013).	

Variability	
The	same	qualitative	effects	are	observed	in	the	network	with	random	preferred	orientations	and	

gains	 (Fig.	 [[8]]).	 Tuning	 curves	 are	 suppressed	 around	 the	 preferred	 orientation,	 but	 can	 be	 either	

facilitated	or	suppressed	when	the	adapted	stimulus	falls	on	the	flank	of	the	tuning	curve,	accompanied	

(or	not)	by	a	shift	toward	the	adapted	stimulus.	However,	the	effect	on	single	neurons	is	otherwise	very	

variable.	In	fact,	adaptation	in	one	neuron	is	impossible	to	predict	quantitatively	without	observing	the	

rest	of	the	network.	

Furthermore,	 this	 variability	 extends	 in	 a	 trial-to-trial	manner.	 The	 history-dependence	 of	 the	

network	 ensures	 that	 a	 given	 stimulus	 is	 never	 represented	 the	 same	 exact	 way	 twice	 by	 the	 same	

neurons,	even	if	the	decoded	representation	is	stable	from	trial-to-trial.	This	is	illustrated	in	Figure	[[9]]	

showing	the	response	of	a	network	to	a	given	stimulus	during	three	different	trials.	The	network	is	the	

same	and	the	stimulus	 is	 the	same.	The	only	change	 is	 the	sequence	of	stimuli	 that	preceded	the	test	

stimulus.	The	sequence	of	adapting	orientations	all	had	the	same	magnitude	and	duration	but	their	order	

was	shuffled	in	each	of	the	three	trials.	In	each	trial,	the	first	adapting	stimulus	activates	a	set	of	neurons	

with	matching	preferred	orientations.	 Some	of	 those	neurons	will	 become	 fatigued	and	 the	 following	

adapting	orientation	would	activate	a	different	set	of	neurons	that	may	or	may	not	overlap,	and	so	on.	

After	the	adapting	stimuli,	the	network	will	be	in	a	different	state	than	it	was	originally	and	in	a	different	

state	than	the	network	following	a	differently	sequenced	set	of	adapting	stimuli,	resulting	in	a	different	

representation	 of	 the	 test	 stimulus.	 This	 kind	 of	 trial-to-trial	 variability	 is	 a	 common	 occurrence	 in	

experimental	studies	of	individual	neuron	activity.			

Perceptual	adaptation	
We	have	stressed	the	accuracy	of	the	stimulus	representation	in	the	face	of	time-varying	activity	

due	to	adaptation.	While	this	kind	of	activity	could	be	interpreted	as	leading	to	a	stable	percept	in	spite	

of	adaptation,	we	acknowledge	that	perceptual	errors	and	biases	are	abundant	in	the	natural	world.	Our	

network	is	capable	of	emulating	these	errors	and	it	is	able	to	do	so	in	a	manner	that	is	consistent	with	

experimental	findings.	The	network	will	produce	a	stable	representation	as	long	as	there	are	a	sufficient	
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number	of	neurons	to	maintain	it.	If	the	adaptation	is	too	strong	or	the	stimulus	presentation	too	long,	

and	 there	 aren’t	 enough	 neurons	 to	 capture	 that	 range	 of	 stimulus	 presentation	 variables,	 then	 the	

network	estimate	will	degrade.	This	degradation	can	lead	to	a	bias	in	the	decoder	[[Fig	10]].	An	oriented,	

strong,	adapting	stimulus	 is	presented	 for	2	seconds	 followed	by	a	 test	orientation,	as	schematized	 in	

Figure	[[10A]].	An	example	of	the	resulting	network	activity	is	shown	in	Figure	[[10B]].	Before	adaptation	

takes	 hold,	 the	 adapting	 stimulus	 activates	 the	 high	 gain	 neurons	 with	 preferences	 at	 and	 near	 the	

stimulus	orientation.	Because	the	adapting	stimulus	is	strong,	high	gain	neurons	with	similar	preferences	

are	quickly	recruited.	As	the	stimulus	persists,	the	most	strongly	activated	high	gain	neurons	fatigue	and	

the	 low	gain	neurons	with	matching	preferences	are	recruited.	Some	high	gain	neurons	with	opposing	

preferences	are	also	recruited	due	to	the	strong	excitatory	input	coming	from	the	newly	activated	low	

gain	neurons.	After	the	2	second	presentation	of	the	adapting	orientation,	a	weaker	peripherally	oriented	

test	stimulus	 is	delivered.	The	response	distribution	and	dynamics	are	markedly	different.	 Instead	of	a	

widely-tuned	 response,	 the	 weaker	 stimulus	 produces	 a	 more	 narrowly	 distributed	 response.	 The	

decoded	 orientation	 is	 offset	 from	 the	 test	 stimulus	 orientation,	 indicating	 a	 bias	 in	 the	 perceived	

orientation.		

A	classical	study	of	such	perceptual	bias	is	the	tilt	illusion	(Gibson and Radner, 1937).	In	the	
tilt	 illusion,	 the	 orientation	 of	 a	 test	 grating	 is	 perceived	 incorrectly	 after	 adaptation	 to	 a	 differently	

oriented	stimulus.	Experimental	studies	report	that	the	perceived	orientation	is	repulsed	away	from	the	

adapted	orientation,	the	effect	being	maximal	for	stimuli	tilted	around	15-20	degrees.	This	effect	has	been	

confirmed	in	the	visual	cortex	(Jin et al., 2005).	Our	findings	replicate	this	effect	[[(Fig.	10C,D)]].	The	
test	 stimulus	 is	 a	 vertical	 grating.	 It	 is	 perceived	 to	 be	 repulsed	 from	 vertical	 when	 the	 adaptor	 is	

approximately	15	degrees	from	vertical	[[Fig.	10C,	middle	panel]].	However,	when	the	adaptor	 is	quite	

obliquely	oriented,	the	vertical	test	grating	is	perceived	to	be	oriented	in	a	direction	that	is	attracted	to	

the	 adaptor	 [[Fig.	 10C,	 right	 panel]].	 Test	 stimuli	 within	 a	 range	 of	 0-45	 degrees	 difference	 from	 the	

adaptor	orientation	are	repulsed	whereas	test	stimuli	with	a	greater	than	45	degree	difference	from	the	

adaptor	orientation	are	attracted	 [[Fig.	10D]].	 In	accordance	with	experimental	 findings,	 the	 repulsion	

effect	has	a	greater	amplitude	than	the	attraction	effect.	

Discussion	

As	individual	neurons	adapt,	their	responsiveness	varies	over	time.	This	poses	a	potential	problem	

by	causing	time-varying	activity	over	the	course	of	a	constant	stimulus	presentation	because	the	stimulus	
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may	not	be	encoded	properly	over	the	course	of	the	presentation.	A	second	problem	arises	in	the	trial-

to-trial	 variability	 produced	 by	 adaptation	 that	 is	 observed	 at	 the	 single	 neuron	 level.	 The	 context	

dependence	caused	by	adaptation	begs	the	question	of	how	a	consistent	representation	can	be	decoded	

from	 a	 network	 in	 which	 all,	 or	 most,	 neurons	 are	 subject	 to	 adaptation.	 Our	 study	 shows	 that	 the	

potentially	harmful	effects	of	adaptation	on	the	individual	neuron’s	ability	to	encode	a	stimulus	can	be	

mitigated	by	a	coordinated	population	response.	Other	studies	that	have	addressed	this	 issue	propose	

updating	the	decoder	or	have	considered	synaptic	plasticity	mechanisms	(Hosoya et al., 2005).	Our	
study	offers	an	alternative,	plausible	framework	for	resolving	the	cost-accuracy	tradeoff	on	a	shorter	time	

scale	than	the	operating	time	scale	for	synaptic	plasticity.		

Our	model	is	developed	from	an	efficient	predictive	coding	framework	(Boerlin et al., 2013; 

Olshausen and Field, 1996; Spratling, 2010)	in	which	we	enforce	efficiency	in	the	encoder	and	
accuracy	in	the	decoder.	The	imposed	efficiency	condition	was	presented	in	the	form	of	a	metabolic	cost	

term	 in	 the	 objective	 function.	 This	 produced	 spike-frequency	 adapting	 activity	 in	 the	 encoding	

population.	Meanwhile,	the	accuracy	condition	ensures	that	an	accurately	decoded	representation	will	

be	produced	even	as	neural	responses	are	subject	to	adaptation	and	the	decoder	remains	unchanged.	

Our	normative	approach	allows	for	an	investigation	of	the	possible	neural	mechanisms	that	brain	circuits	

might	employ	 to	 solve	 this	 cost/accuracy	 tradeoff.	We	 found	 that	 E/I	 balanced	 recurrent	 connectivity	

permits	 a	 network	 to	 manage	 the	 deleterious	 effects	 of	 adapting	 neural	 activity.	 An	 E/I	 balanced	

connectivity	scheme	maintains	network	neurons	near	their	firing	threshold.	Disinhibition	from	adapting	

neurons	 can	 then	quickly	 recruit	neurons	with	 similar	preferences	 so	as	 to	maintain	a	 stable	network	

output.	This	approach	can	be	generalized	to	many	other	types	of	cost,	arbitrary	weights	and	number	of	

neurons.			

Single	neuron	coding	is	dynamic	rather	than	a	static	property	
	 Our	model	 suggests	 that	diverse	adaptation	properties	within	a	population	can	be	an	asset.	A	

heterogeneous	 population	 of	 neurons	 is	 able	 to	 better	 distribute	 the	 cost	 to	 maximize	 efficiency	 in	

different	contexts.	Studies	in	the	retina	show	that	retinal	ganglion	cells	with	different	adaptive	properties	

complement	 each	 other	 such	 that	 sensitizing	 cells	 can	 improve	 the	 encoding	 of	 weak	 signals	 when	

fatiguing	cells	adapt	(Kastner and Baccus, 2011).	This	arrangement	is	particularly	advantageous	for	

encoding	contrast	decrements	which	would	be	difficult	to	distinguish	from	the	prior	stimulus	distribution	

if	only	suppressive	adaptation	prevailed.	At	the	same	time,	these	heterogeneities	contribute	to	complex	

dynamics	in	the	neural	spike	trains,	obscuring	the	relationship	between	neural	activity	and	neural	coding	
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for	an	observer	of	single	neuron	activity.	We	make	the	prediction	that	neurophysiological	studies	where	

single	 neuron	 activity	 is	 recorded	may	 exhibit	 an	 experimental	 bias	 that	 results	 in	 highly	 responsive	

neurons	being	overrepresented	in	the	sample.	However,	more	recent	methods	based	on	recording	large,	

dense	population	of	neurons	may	not	suffer	as	much	from	this	selection.	In	those	studies,	the	observed	

variability	of	adaptation	effects	are	in	line	with	our	predictions	{REFS}.		

Moreover,	 our	 study	 challenges	 the	 notion	 that	 tuning	 is	 a	 static	 characteristic	 of	 neurons.	

Experiments	 increasingly	 reveal	 that	 neurons	 change	 their	 tuning	 dynamically	with	 changing	 stimulus	

statistics	(Hollmann et al., 2015; Hosoya et al., 2005; Nagel and Doupe, 2006; Smirnakis 

et al., 1997; Solomon and Kohn, 2014; Wark et al., 2007).	In	the	visual	cortex,	it	has	been	shown	
that	the	tilt	after	effect	 is	not	only	an	effect	of	response	suppression	but	that	 it	also	has	the	effect	of	

shifting	the	tuning	curves	of	neurons	away	from	their	preferred	orientations	(Jin et al., 2005).	While	it	

may	be	possible	 to	predict	 some	aspect	of	 the	 tuning	 change	 from	measurements	of	 intrinsic	neuron	

properties,	 our	 study	 shows	 that	 a	 great	 deal	 of	 the	 change	may	 be	 a	 network	 effect	 rather	 than	 an	

intrinsic	neuronal	effect.	Thus,	 the	extent	of	adaptation	for	a	single	neuron	may	be	difficult	 to	predict	

without	considering	the	properties	of	the	rest	of	the	network.	Such	unpredictable	adaptation	could	be	a	

problem	for	the	 interpretation	by	downstream	readouts,	however,	we	show	that	when	the	network	 is	

considered	as	a	whole,	the	adaptive	effects	in	one	neuron	can	be	compensated	for	by	another	neuron	

that	reports	to	the	same	readout.	In	other	words,	the	apparently	complex	adaptation	at	the	single	neuron	

level	and	the	poisson-randomness	of	spike	trains	(see	(Boerlin et al., 2013))	is	not	an	impediment	to	

the	network	but	rather	an	indicator	of	the	manner	 in	which	the	signal	 is	encoded	by	the	network	as	a	

whole.	

Variable	population	codes	
Our	 study	provides	a	possible	explanation	 for	 the	 trial-to-trial	 variability	 seen	 in	 recordings	of	

neural	populations.	It	is	possible	that	the	population	as	a	whole	is	producing	the	most	accurate	encoding	

of	its	inputs	that	it	can	manage	given	a	history-dependent	adaptation	of	parts	of	the	population.		

Validating	the	framework	experimentally.		
How	 could	 this	 framework	 be	 tested	 experimentally,	 given	 that	 single	 neuron	 dynamics	 is	

impossible	to	predict	in	isolation?	Our	model	applies	at	the	level	of	relatively	densely	connected	(and	thus,	

local)	populations.	Observing	the	organized	transfer	of	responses	between	neurons	through	adaptation	

and	E/I	balance	would	require	one	to	record	a	significant	proportion	of	these	neurons	locally	(neurons	

that	are	 likely	to	be	interconnected	directly	or	through	interneurons).	Recent	experimental	techniques	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/211748doi: bioRxiv preprint 

https://doi.org/10.1101/211748
http://creativecommons.org/licenses/by-nc-nd/4.0/


render	 such	 recordings	 possible	 (REFS),	 bringing	 an	 experimental	 validation	 of	 this	 framework	within	

grasp.	These	recording	could	be	compared	before	and	after	adaptation,	over	the	duration	of	prolonged	

stimuli,	or	over	many	repetitions	of	the	same	stimulus.	What	we	expect	to	see	is	a	generalization	of	the	

effect	illustrated	in	figure	[[4B,C]]	to	larger	neural	populations.	First	of	all,	there	should	exist	a	decoder	of	

neural	 activity,	 independent	 of	 stimulus	history	 that	 can	detect	 the	 stimulus	 despite	 large	 changes	 in	

neural	activity	over	time.	Second	of	all,	shuffling	the	neural	responses,	for	example	between	early	and	

later	 part	 of	 the	 responses	 to	 a	 prolonged	 stimulus,	 should	 have	 detrimental	 effects	 on	 such	 stable	

decoding.	And	finally,	over	the	course	of	adaptation,	the	activity	of	the	different	neurons	should	not	vary	

independently.	 For	 example,	 if	 we	 performed	 dimensionality	 reduction	 (such	 as	 principle	 component	

analysis)	of	the	neural	population	activity	during	a	prolonged	stimulus	presentation,	we	might	be	able	to	

observe	 that	neural	 responses	over	 time	 (and	 trials)	 is	 constrained	on	a	 subspace	where	 the	 stimulus	

representation	 is	 stable.	 Another,	more	 direct	way	 of	 testing	 our	 framework	would	 be	 to	 activate	 or	

inactivate	a	part	of	the	neural	populations.	This	could	be	done	optogenetically	for	example	(REFS).	Such	

manipulations	could	change	the	way	neurons	(whose	activity	remained	unperturbed)	adapt.	In	particular,	

weakly	responsive	(low	gain)	neurons	could	start	exhibiting	some	of	the	properties	of	high	gain	neurons,	

such	as	stronger,	earlier	transient	response	responses	and	a	more	pronounced	subsequent	decay	in	firing	

rates.							

METHODS	

Network	model	
We	 provide	 here	 a	 brief	 description	 of	 the	 network	 structure	 and	 the	 objective	 function	 it	

minimizes.	We	consider	a	spiking	neural	network	composed	of	N	neurons	that	encodes	a	set	of	M	sensory	

signals,	 .		Estimates	of	these	input	signals,	 ,	are	decoded	by	applying	a	set	of	

decoding	weights	𝑠D = 	 𝑤D5E
5F? 𝑟5 	 ,	where	rj	 is	 the	filtered	spike	train	of	neuron	 j.	The	filtered	spike	

train	corresponds	to	a	leaky	integration	of	its	spikes,	𝑟5 = 	𝜏𝑜5 ∗ 	𝑒
IJ
K ,	with	 ,	with		 	the	

spike	time	of	the	kth	spike	in	neuron	j	and	t	the	time	scale	of	the	decoder.	As	we	will	see,	 	will	correspond	

to	the	membrane	time	constant	of	the	model	neurons.		

The	decoding	weights	Wij	are	given	a	priori	(they	determine	the	selectivity	and	gain	of	the	model	

neurons).	We	want	to	construct	a	neural	network	that	represents	the	signals	most	efficiently,	given	the	

fixed	decoding	weights.	Efficiency	is	defined	as	the	minimization	of	an	objective	function	composed	of	

two	terms,	one	penalizing	large	coding	errors,	and	the	other	penalizing	high	sustained	firing	rates:	
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𝐸(𝑡) = 𝑠(𝑡) − 𝑠(𝑡)
,
+ 𝜇 𝑟',

'

	

The	sustained	firing	rates	are	defined	as	an	integration	of	the	spike	trains	at	a	slow	time	scale,	with	𝑟5 =

	𝜏7𝑜5 ∗ 	𝑒
IJ
KL 	,	ta	>	t,	and	µ	is	a	positive	constant	regulating	the	cost/accuracy	tradeoff.		

In	 order	 to	minimize	 this	 objective	 function,	we	 define	 a	 spiking	 rule	 that	 performs	 a	 greedy	

minimization.	Thus,	neuron	 j	 fires	as	 soon	as	 this	 results	 in	a	minimization	of	 the	cost,	 i.e.	 as	 soon	as		

.	Solving	this	equation	leads	to	the	following	spike	rule:	neuron	j	spikes	if	

	
ZEqn2	 (1)	

	

With	 	being	the	“gain”	of	neuron	j.	We	interpret	the	lefthand	side	of	this	equation	

as	the	membrane	potential	of	neuron	 j,	and	the	right	hand	side	as	 its	 firing	threshold.	The	membrane	

potential	dynamics	are	obtained	by	taking	the	derivative	of	the	voltage	expression	with	respect	to	time.		

	
ZEqn3	 (2)	

	

The	lateral	connection	between	neuron	k	and	neuron	j	is	equal	to	 .	Thus,	the	

lateral	connections	measure	to	what	extent	the	feed-forward	connections	of	two	neurons	are	correlated,	

and	remove	these	correlations	to	obtain	the	most	efficient	code.		The	firing	threshold	of	all	neurons	is	

equal	to	1,	while	the	reset	is	performed	by	the	“self-connection”	term	 .	Thus,	after	each	spike,	

the	membrane	 potential	 is	 simply	 reset	 to	 -1.	 Note	 that	 	 is	 a	multiplicative	 term	 applied	 to	 all	 the	

connections	(feedforward	and	lateral)	as	well	as	on	the	spike-based	adaptation	term.	Moreover,	the	gain	

is	approximately	inversely	proportional	to	the	norm	of	the	decoding	weights.	Generally,	the	feedforward	

connections	of	the	neuron	will	scale	inversely	with	the	strength	of	its	contribution	to	the	decoded	signals.	

Digital	number	encoding	network	
The	 network	 used	 in	 Figure	 [[1]]	 is	 a	 generic	 recurrent	 network	 of	 400	 neurons	with	 random	

recurrent	and	feedforward	weights.	The	feedforward	weights	are	a	7x400	matrix	of	values	drawn	from	a	

uniform	distribution	 in	the	[-1,1]	range.	The	recurrent	weights	are	drawn	from	a	Gaussian	distribution	
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with	mean	=	0,	std	=	0.87	(close	to	1)	and	are	a	400x400	matrix,	however,	all	neurons	had	an	autapse	that	

was	the	sum	of	the	negative	squares	of	its	feedforward	weights.	The	network	was	trained	on	100	stimulus	

examples	of	300	ms	each	that	were	generated	randomly	from	a	uniform	distribution	of	input	values	from	

[0,4].	An	optimal	linear	decoder	was	obtained	from	this	training	by	taking	the	inverse	of	the	responses	

and	multiplying	them	by	the	stimulus	training	examples:	decoder	=	pinv(r(t))s(t).	The	trained	network	was	

then	presented	with	a	sequence	of	8	digitized	patterns	of	200	ms	each	separated	by	100ms	of	no	stimulus	

input.	 To	 demonstrate	 the	 effect	 of	 adaptation,	 the	 trained	 network	 was	 run	 on	 the	 same	 stimulus	

sequence	and	with	the	same	linear	decoder	but	this	time	the	spiking	threshold	was	dynamically	regulated	

by	past	spiking	activity	such	that	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑡) = 	1 + 	𝜇𝑟(𝑡),	where	𝑟(𝑡) = − ?
PL
𝑟(𝑡) + 𝑜(𝑡).	

Orientation	model	
	 The	network	follows	the	same	derivation	as	outlined	for	the	network	model.	It	has	2	dimensions	

and	200	neurons.	There	are	two	subpopulations	of	neurons	such	that	100	neurons	are	high	gain	neurons	

with	a	feedforward	gain	of	3	and	the	remaining	100	neurons	are	low	gain	neurons	with	a	feedforward	

gain	of	9.	Because	the	gain	inverts	the	feedforward	weights,	low	gain	neurons	have	a	low	intrinsic	gain	

and	vice	versa.	Both	populations	span	the	unit	circle	evenly	such	that	one	 low	gain	and	one	high	gain	

neuron	share	the	same	preferred	orientation.	Tuning	curves	in	Figure	[[6]]	were	generated	by	presenting	

the	network	with	a	full	range	of	stimulus	orientations	of	gain=50.	Neuron	responses	were	centered	on	

their	preferred	orientation	and	the	mean	was	taken	for	each	subpopulation.	Control	tuning	curves	(no	

adaptation)	were	normalized	to	one,	tuning	curves	after	adaptation	were	normalized	to	control	tuning	

curves.	Tuning	curves	after	adaptation	were	made	by	lining	up	neuron	responses	to	an	adapting	stimulus	

that	corresponded	with	its	preferred	orientation.	Standard	deviations	were	computed	on	these	centered	

data.	

	 The	random	gain	network	was	 identical	 to	the	above	with	the	exception	that	the	feedforward	

weight	gains	were	randomly	selected	from	a	uniform	distribution	in	the	range	[3,9].	

	 The	tilt	illusion	curve	was	generated	by	presenting	the	network	with	an	adaptor	orientation	
(duration	=	2s)	and	a	subsequent	test	orientation	(250ms).	The	test	orientation	remained	the	same	
while	a	series	of	adaptor	orientations	were	used.	The	encoded	angle	was	decoded	from	the	network	
output	by	taking	the	arc	tangent	of	the	mean	output	over	the	250ms	presentation	of	the	test	stimulus.	
The	difference	between	the	decoded	orientation	and	the	test	orientation	was	plotted.	The	adaptor	had	
a	stimulus	gain	of	25	while	the	test	had	a	gain	of	5.		 	
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(A)	schematic.	(B)	top,	sequence	of	patterned	stimuli,	middle,	trained	random	recurrent	
network	output,	bottom,	output	of	same	trained	random	recurrent	network	but	with	
adapting	neuron	responses.

Figure 1
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50 ms

SFA	fig.	Top,	voltage	trace	of	isolated	neuron	with	adaptation.	Bottom,	
adaptation	current	of	same	neuron.	

Figure 2
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Intrinsic	neuron	properties.	(A)High	gain	neurons	(light	blue)	are	precise	while	low	gain	
neurons	(dark	blue)	have	less	precision.	(B)	Relationship	between	gain	and	feedforward	
weight	and	decoding	weight	(mu=1).	(C)	High	gain	neurons	have	the	steepest	adaptation	
whereas	low	gain	neurons	do	not	adapt	as	rapidly	given	the	same	input.

Figure 3
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2-neuron	fig.	(A)	Schematic.	(B)	Top,	spikes	from	neuron	1	(light	blue)	and	neuron	2	(dark	blue),	middle,	respective	
postsynaptic	variables	r(t),	bottom,	stim	(grey),	estimate	(orange),	cost	(yellow).	(C)	balanced	network	follows	a	manifold.	
(translucent	orange,	no	recurr,	mu	=	0.02;	dark	orange,	no	recurr,	mu=0.4).(D)	No	recurrent	connections.	Top,	r(t)	for	
successively	greater	mu	with	darker	shades	(mu=0.05,0.1,0.2,0.4).	Bottom,	estimates	and	cost	with	greater	mu	as	color	
deepens.

Figure 4
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Adapting	population	of	heterogeneous	neurons.	A,	raster	of	spikes	from	10	neuron	
balanced	network	in	response	to	a	pulse	stimulus.	B,	stimulus	(gray)	and	network	
estimate	(orange).

500 ms

A

B

Figure 5
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Orientation	fig.	(a)	schematic.	(b)	network	activity	showing	early	and	late	response	to	a	
prolonged	stim.	(c)	tuning	curves	of	high	gain	and	low	gain	neurons	during	early	
response	and	late	part	of	response	to	orientation.	

A B

C

Figure 6
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Tuning	curves	showing	neuron	responses	to	a	full	range	of	test	orientations	(x-axis)	
after	adaptation	to	a	single	orientation	indicated	by	black	dashed	line.	Light	and	
dark	blue	curves	are	those	for	the	high	gain	and	low	gain	neurons,	respectively,	in	
control	(i.e.	before	adaptation).	Orange	and	red	curves	are	high	and	low	gain	
neurons	tuning	curves	after	adaptation	to	orientation	indicated	by	black	line.

Figure 7
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Selected	tuning	curves	from	orientation	network	with	random	neuron	gains.	Blue	
curves,	before	adaptation;	red	curves,	after	weak	adaptation;	orange	curves,	after	
strong	adaptation.	Some	neuron	responses	are	suppressed	after	adaptation	while	
others	are	facilitated,	and	some	tuning	curves	shift	laterally	after	adaptation.	

Figure 8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/211748doi: bioRxiv preprint 

https://doi.org/10.1101/211748
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 100 200 300 400
time (ms)

trial 1

trial 2

trial 3

Variable	population	activity	in	response	to	the	same	test	stimulus	over	3	trials.	Each	
trial	differs	in	the	sequence	of	stimuli	presented	before	the	test	stimulus.	Popout
shows	detail	over	a	100ms	window	at	the	onset	of	the	test	stimulus	for	the	3	trials.

Figure 9
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mu=0.2, tau=5, taua=1000, s=25,5, Nn=200

1 sec

(A)	Schematic	of	tilt	adaptation	protocol.	(B)	Network	activity	in	response	to	an	adapting	stimulus	
followed	by	a	test	stim.	Black	arrows,	neurons	that	prefer	adapting	orientation;	red	arrow,	test	
orientation;	orange	arrow,	decoded	orientation.	(C)	Examples	of	tilt	bias:	(left)	no	bias	before	
adaptation,	(middle)	network	estimate	is	biased	away	from	test	stimulus	and	adaptor	when	
adaptor	is	near	test	orientation,	(right)	estimate	is	biased	towards	adaptor	when	adaptor	is	at	large	
angle	to	test	stimulus.	(D)	estimate bias is repulsive	for near adaptation and attractive for oblique
adaptation.
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