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Abstract

The development of high throughput single-cell technologies now allows the inves-
tigation of the genome-wide diversity of transcription. This diversity has shown two
faces: the expression dynamics (gene to gene variability) can be quantified more ac-
curately, thanks to the measurement of lowly-expressed genes. Second, the cell-to-cell
variability is high, with a low proportion of cells expressing the same gene at the same
time/level. Those emerging patterns appear to be very challenging from the statistical
point of view, especially to represent and to provide a summarized view of single-cell
expression data. PCA is one of the most powerful framework to provide a suitable rep-
resentation of high dimensional datasets, by searching for new axis catching the most
variability in the data. Unfortunately, classical PCA is based on Euclidean distances
and projections that work poorly in presence of over-dispersed counts that show zero-
inflation. We propose a probabilistic Count Matrix Factorization (pCMF) approach
for single-cell expression data analysis, that relies on a sparse Gamma-Poisson factor
model. This hierarchical model is inferred using a variational EM algorithm. We show
how this probabilistic framework induces a geometry that is suitable for single-cell data,
and produces a compression of the data that is very powerful for clustering purposes.
Our method is competed to other standard representation methods like t-SNE, and we
illustrate its performance for the representation of single-cell data. We especially focus
on a publicly available data set, being single-cell expression profile of neural stem cells.

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/211938doi: bioRxiv preprint 

ghislain.durif@inria.fr
https://doi.org/10.1101/211938


1 Introduction
The combination of massive parallel sequencing with high-throughput cell biology technolo-
gies has given rise to single-cell Genomics, which refer to techniques that now provide genome-
wide measurements of a cell’s molecular profile either based on DNA (Zong et al., 2012),
RNA (Picelli et al., 2013), or chromatin (Buenrostro et al., 2015; Rotem et al., 2015). Similar
to the paradigm shift of the 90s characterized by the first molecular profiles of tissues (Golub
et al., 1999), it is now possible to characterize molecular heterogeneity at the cellular level.
A tissue is now viewed as a population of cells of different types, and many fields have now
identified intra-tissue heterogeneities, in T cells (Buettner et al., 2015), lung cells (Trapnell
et al., 2014), or myeloid progenitors (Paul et al., 2015). The construction of a comprehensive
atlas of human cell types is now within our reach (Wagner et al., 2016).

The statistical characterization of heterogeneities in single-cell expression data thus requires
an appropriate model, since the abundance transcripts is quantified for each cell using read
counts. Hence, standard model based on Gaussian assumptions are likely to fail to catch
the biological variability of lowly expressed genes, and Poisson or Negative Binomial distri-
butions constitute an appropriate framework. Moreover, dropouts, either technical (due to
sampling difficulties) or biological (no expression or stochastic transcriptional activity), con-
stitute another major source of variability in scRNA-seq (single-cell RNA-seq) data, which
has motivated the development of the so-called Zero-Inflated models (Pierson & Yau, 2015).

A standard an popular way of quantifying and visualizing the variability within a dataset is
dimension reduction, principal component analysis (PCA) being the most widely used tech-
nique in practice. It consist in approximating the observation matrix X[n×p] (n cells, p genes),
by a factorized matrix of reduced rank, denoted UVT where U[n×K] and V[p×K] represent
the latent structure in the observation and variable spaces respectively. This projection onto
a lower-dimensional space (of dim. K) allows to catch gene co-expression patterns and clus-
ters of individuals. PCA is probably one of the most studied data analysis techniques, and
can be viewed either geometrically or through the light of a statistical model (Collins et al.,
2001; Landgraf & Lee, 2015). Model-based PCA offers the unique advantage to be adapted
to the data distribution and to be based on an appropriate metric, the Bregman divergence.
It consists in specifying the distribution of the data X[n×p] through a statistical model, and
to factorize E(X) instead of X. On the contrary, standard PCA is based on an implicit
Gaussian distribution with the `2 distance as a metric (Eckart & Young, 1936). Many dis-
tributions have been considered, especially for count data such as the Non-negative Matrix
Factorization (NMF) introduced in a Poisson-based framework by Lee & Seung (1999) or
the Gamma-Poisson factor model (Cemgil, 2009; Févotte & Cemgil, 2009; Landgraf & Lee,
2015). However, none of the currently available dimension reduction methods fully model
single-cell expression data.

Our method is based on probabilistic count matrix factorization (pCMF). We propose a di-
mension reduction method that is dedicated to over-dispersed counts with dropouts, in high
dimension. Our factor model takes advantage of the Poisson Gamma representation, with
the use of Gamma priors on the distribution of principal components. We model dropouts
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with a Zero-Inflated Poisson distribution (Simchowitz, 2013), and we introduce sparsity in
the model thanks to a spike-and-slab approach (Malsiner-Walli & Wagner, 2011) that is
based on a two component sparsity-inducing prior on loadings (Titsias & Lázaro-Gredilla,
2011). The model is inferred using a variational EM algorithm that scales favorably to
data dimension, as compared with Markov Chain Monte Carlo (MCMC) methods (Hoffman
et al., 2013; Blei et al., 2016). Then we propose a new criterion to assess the quality of fit of
the model to the data, as a percentage of explained deviance, because the standard variance
reduction that is used in PCA needs to be adapted to the new framework dedicated to counts.

We show that pCMF better catches the variability of simulated data, as compared with
available methods. Since PCA is widely used as a primary step for further analysis, such as
clustering, we also show how pCMF increases the performance of methods that are classically
using PCA as a first step, especially the popular t-SNE (van der Maaten & Hinton, 2008;
Amir et al., 2013). Using experimental published data, we show how pCMF provides a
dimension reduction that is adapted to scRNA-seq data, by providing a better representation
of the heterogeneities within datasets, which appears to be extremely helpful to characterize
cell types. Finally, pCMF is available in the form of a R package available at https:
//gitlab.inria.fr/gdurif/pCMF (in beta version) and soon on the CRAN.

2 Results
We compare our method with standard approaches for unsupervised dimension reduction:
the Poisson-NMF (Lee & Seung, 1999), applied to raw counts (model-based matrix factor-
ization approach based on the Poisson distribution), and the sparse PCA (Witten et al.,
2009) on log counts (based on an `1 penalty in the optimization problem defining the PCA
to induce sparsity in the loadings V). In addition, we use the Zero-Inflated Factor Anal-
ysis (ZIFA) by Pierson & Yau (2015), a dimension reduction approach that is specifically
designed to handle dropout events in single-cell expression data (based on a zero-inflated
Gaussian factor model applied to log-transformed counts). We present quantitative cluster-
ing results and qualitative visualization results on simulated and experimental scRNA-seq
data. Another tool for dimension reduction and data visualization called t-SNE (van der
Maaten & Hinton, 2008) is used for data visualization. It requires to choose a “perplexity”
hyper-parameter that cannot be automatically calibrated, thus being less appropriate for a
quantitative analysis.

2.1 Simulated data analysis

Details about data generation are given in appendix (c.f. Section A.3). We generate synthetic
multivariate Negative Binomial counts, with n = 100 individuals and p = 1000 recorded
variables. We artificially create clusters of individuals and groups of dependent variables.
Then we set different levels of zero-inflation in the data (i.e. low or high probabilities of
dropout events, corresponding to random null values in the data), and some part of the p
variables are generated as random noise that do not induce any latent structure. Thus, we
can test the performance of our method in different realistic data configurations.
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2.1.1 Clustering in the observation space

Effect of zero-inflation. We first question the robustness of the different approaches
to the level of zero-inflation (ZI) in the data (no ZI, low ZI, high ZI corresponding to a
probability of dropout events being 0 or in [0.4; 0.6] or in [0.6; 0.8] respectively). We generate
data with 3 groups of observations and train the different methods with K = 3 (fixed in
this design). We also consider low and high separability between the groups of observations
(c.f. Section A.3). The quality of the clustering based on the reconstructed matrix Û (see
material and methods) will assess the ability of each method to retrieve the group structure
in the observation space despite the dropout events. We measure the adjusted Rand Index
(Rand, 1971) quantifying the accordance between the predicted clusters and original groups
of individuals. Contrary to other approaches (Figure 1), pCMF adapts to the level of zero-
inflation in the data and perfectly recovers the original groups of observations when the
separability is high (adjusted Rand Index close to 1 in the different ZI configuration). The
results of ZIFA indicates that using a zero-inflated Gaussian model is not sufficient to retrieve
the groups in our count data. Indeed, methods based on transformed counts (like ZIFA and
SPCA on log) do not account for the discrete nature of the data neither for their over-
dispersion (O’Hara & Kotze, 2010). As for the Poisson-NMF method, its performance are
comparable to pCMF for no dropout, but decrease as soon as there is zero-inflation in the
data.
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Figure 1: Adjusted Rand Index comparing clusters found by a κ-means algorithm (applied to Û
with κ = 3) and the original groups of individuals, for different levels of zero-inflation and different
levels of separation between groups of individuals in the data. The number of components is set
to K = 3. Data are generated with n = 100, p = 1000, 3 groups of individuals and 70% of noisy
variables. Average values and deviation are estimated across 100 repetitions.

Effect of noisy genes. To quantify the impact of noisy genes on the retrieval of the in-
dividual groups, we consider data generated with different proportion (0%, 40% or 70%) of
noisy genes that do not induce any structure in the data. We again consider two configura-
tions where groups of individuals or lowly of highly separated (c.f. Section A.3). The level of
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zero-inflation is set such that the probability of dropout events lies [0.4; 0.6]. In this setting,
we train different models and compute the adjusted Rand Index for increasing values of K
(number of components) to check the quality of the clustering of individuals when noisy genes
are present and when introducing new components. Similarly to previous simulations, the
clustering accuracy of pCMF is globally better than other methods, but all methods seem to
be resilient to the addition of noisy genes, except for ZIFA whose performance decreases in
this case. However, the performance of pCMF are not decreased by the introduction of new
components, contrary to ZIFA or NMF, which means that our methods seems more robust
to the choice of K.
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Figure 2: Adjusted Rand Index comparing clusters found by a κ-means algorithm (applied to
Û with κ = 2) and the original groups of individuals, depending on the number of components
(K = 1, . . . , 10), for different proportions of noisy genes and different levels of separation between
groups of individuals in the data. Data are generated with n = 100, p = 1000, 2 groups of individuals
and a probability of dropout events in [0.4; 0.6]. Average values and deviation are estimated across
100 repetitions.

2.1.2 Data visualization

The question of the data visualization is central in many recent single-cell transcriptomic
studies (e.g. Llorens-Bobadilla et al., 2015; Segerstolpe et al., 2016). The purpose is es-
pecially to represent a high dimensional data set in a low dimensional space that we can
visualize (generally in 2 or 3 dimensions), in order to identify groups of cells or to illustrate
the cell diversity. In the matrix factorization framework, we represent observation coordi-
nates (ûi1, ûi2)i=1,...,n from the matrix Û when the dimension is K = 2 (see material and
methods). We consider the same simulated data as previously (n = 100, p = 1000, 3 groups
of observations, 70% of noisy variables, dropout probability in [0.6; 0.8]).

Our visual results are consistent with the previous clustering results (c.f. Figure 3). In this
challenging context (high zero-inflation and numerous noisy variables), by using our pCMF
approach, we are able to graphically identify the groups of individuals in the simulated zero-
inflated count data. On the contrary, the 2-D visualization is not successful with the sparse
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PCA, ZIFA and Poisson-NMF, illustrating the interest of our data-specific approach com-
pared to others. We mention that we represent the individual coordinates Û in log scale for
our method pCMF, because the natural representation associated to the Gamma distribu-
tion in the exponential family is the logarithm.

When considering t-SNE, it is generally used with a preliminary PCA step to reduce the
dimension. It appears (c.f. Figure 3) that using our approach pCMF as a preliminary step
before t-SNE gives better results for data visualization, This point supports our claim that
using data-specific model improves the quality of the reconstruction in the latent space.
Here, we used K = 20 for the preliminary dimension reduction before t-SNE (both for PCA
and pCMF). Using other dimensions (for instance K = 50 as in the default behavior of
t-SNE) gives similar results.
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Figure 3: Individuals representation (Û) in a subspace of dimension K = 2. Data are generated
with 3 groups of individuals, n = 100 and p = 1000, a probability of dropout events between 0.6
and 0.8, and 70% of noisy genes. t-SNE is applied with a preliminary dimension reduction step
based on pCMF or PCA (default behavior) with K = 20.

2.1.3 Additional results

Additional results regarding computation time comparison with state-of-the-art approaches
and performance enhancement of our zero-inflated sparse Gamma-Poisson factor model com-
pared to standard Gamma-Poisson factor model are given in appendix (Section A.4). Al-
though figures are not joined, we also mention that standard PCA does not give better
quantitative or qualitative results than sparse PCA.
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2.2 Analysis of single-cell data

We illustrate the performance of pCMF on a publicly available scRNA-seq dataset on neu-
ronal stem cells (Llorens-Bobadilla et al., 2015). Neural stem cells (NCS) constitute an
essential pool of adult cells for brain maintenance and repair. Llorens-Bobadilla et al. (2015)
proposed a study to unravel the molecular heterogeneities of NCS populations based on
scRNA-seq, and particularly focused on quiescent cells (qNSC). In their experiment, qNSC
were transplanted in vivo in order to study their neurogenic activity. Following transplanta-
tion, 92 qNSC produced neuroblasts and olfactory neurons, whose transcriptome was com-
pared with 21 astrocytes (CTX) and 27 transient amplifying progenitor cells (TAP). Then the
authors used a PCA approach to reveal a continuum of "activation state", from astrocytes
(low activation) to amplifying progenitor cells (TAP). We confront our pCMF output with
the standard PCA, with ZIFA and with t-SNE results. The first visual result is that pCMF
provides a better representation of the continuum than PCA and t-SNE, which probably
reflects a better modeling of the biological variations that exist between activation states.
Interestingly Llorens-Bobadilla et al. (2015) mention a minor overlap between qNSC and
parenchymal astrocytes (CTX), whereas pCMF rather reveals an important overlap between
CTX and qNSC1 cells. On the contrary, the t-SNE representation can hardly be interpreted
as an activation continuum. The results from ZIFA are consistent with pCMF representa-
tion, which is a confirmation that the signal of this continuous activation state is strong in
these data. Regarding the quantification of the biological variability, the first two axis of
PCA only catches 11.74% of the total variance, whereas pCMF catches 69% of the total
deviance. This illustrates the benefit of having a dimension reduction method that is based
on the proper distribution and proper reduction quality metric.
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Figure 4: Analysis of the scRNA-seq data from Llorens-Bobadilla et al. (2015), n = 141 cells,
p ∼ 14000 genes. We pre-selected genes expressed (count > 1) in at least 2 cells, with a log-variance
higher than 0.5 (as in the original paper). pCMF and t-SNE are applied to raw counts, while PCA
and ZIFA are applied to log-transformed counts.

3 Material and methods
We present the statistical model associated to our probabilistic Count Matrix Factorization
(pCMF) approach, based on a zero-inflated sparse Gamma-Poisson factor model. Then, we
introduce the framework to retrieve the factors U and V based on variational inference.
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3.1 Count Matrix Factorization for zero-inflated over-dispersed data

Details about the model (construction, identifiability) are given in appendix (Section A.1).

Zero-Inflated Sparse Gamma-Poisson factor model. Our data consist in a matrix
of counts, denoted by X ∈ Nn×p, that we want to linearly decompose onto a subspace of
dimension K, into a matrix product UVT . The factor U ∈ R+,n×K represent the coordinates
of the observations (cells) in the subspace of dimension K, and V ∈ Rp×K the contributions
(loadings) of variables (genes). In a standard Poisson Non-negative Matrix Factorization
(NMF, Lee & Seung, 1999), the associated model verifies X ∼P

(
UVT

)
. Details about the

underlying geometry associated to the model (generalization of the Euclidean geometry with
Bregman divergence and link with the deviance related to the model) are given in appendix
(Section A.1.2).

To account for over-dispersion in the data, we consider the Gamma-Poisson representation
(GaP, Cemgil, 2009; Zhou et al., 2012). To proceed, we consider a factor model, in which
factors U and V are modeled as independent random variables with Gamma distributions
such that Uik ∼ Γ(αk,1, αk,2) and Vjk ∼ Γ(βk,1, βk,2).

To model zero-inflation (Simchowitz, 2013), we introduce a dropout indicator variable Dij ∈
{0, 1} for i = 1, . . . , n and j = 1, . . . , p. In this context, Dij = 0 if gene j has been subject to
a dropout event in cell i. Each Dij follows a Bernoulli distribution with parameter πd

j . The
dropout indicators Dij are assumed to be independent from the factors U and V. Then,
by integrating Dij out, the conditional distribution of the counts is a zero-inflated Poisson
distribution:

Xij |Ui,Vj ∼ ×(1− πd
j )× δ0 + πd

j ×P
(∑

k Uik Vjk
)
.

Finally we introduce some parsimony in our model, i.e. by assuming that only a proportion
of recorded variables carry the signal, others being noise. To do so, the prior on the loading
variables Vjk is set to be a two-group sparsity-inducing prior (Engelhardt & Adams, 2014):

Vjk ∼ (1− πs
j)× δ0 + πs

j × Γ(βk,1, βk,2) ,

where πs
j stands for the prior probability for gene j to contribute to any loading. This spike-

and-slab formulation (Mitchell & Beauchamp, 1988) ensures that Vjk is either null (gene
j does not contribute to factor k), or drawn from the Gamma distribution (when gene j
contributes to the factor k).

Quality of the reconstruction. In our GaP model, we can use the deviance or equiv-
alently the Bregman divergence (c.f. Section A.1.2) between the data matrix X and the
reconstructed matrix ÛV̂T to quantify the quality of the model. Regarding PCA, the per-
centage of explained variance is a natural and unequivocal quantification of the quality of
the representation. In our case, since the models are not nested for increasing K, it appears
non trivial to define a percentage of explained deviance.
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We denote the conditional Poisson log-likelihood in our model as log p(X |λ), where λ is a
n× p matrix of Poisson intensities. To assess the quality of our model, we propose to define
the percentage of explained deviance as:

%dev =
log p(X |λ = ÛV̂T )− log p(X |λ = X̄)

log p(X |λ = X)− log p(X |λ = X̄)

where ÛV̂T is the predicted reconstructed matrix in our model, and X̄ is the column average
of X. We use two baselines: (i) the log-likelihood of the saturated model, i.e. log p(X |λ =
X) (as in the deviance), which corresponds to the richest model and (ii) the log-likelihood of
the model where each Poisson intensities λij is estimated by the average of the observations
in the column j, i.e. log p(X |λ = X̄), which is the most simple model that we could use.
This formulation ensures that the ratio %dev lies in [0; 1].

3.2 Factor inference.

To avoid using the heavy machinery of MCMC (Nathoo et al., 2013) to infer the intractable
posterior of the latent variables in our model, we use the framework of variational infer-
ence (Hoffman et al., 2013). The principle is to approximate the intractable posterior by a
factorizable distribution, called the variational distribution, regarding the Kullback-Leibler
divergence (that quantify probability distribution proximity). Variational inference can be
reformulated into a maximization problem, that admits a solution under some reasonable
assumptions on the variational distributions.

To be more precise, we use a variational EM algorithm (Beal & Ghahramani, 2003) that
allows to jointly approximate the posterior distributions of the latent variables and the
hyper-parameters of the model. This approach was successfully adapted to the standard
Gamma-Poisson factor model Dikmen & Févotte (2012), and we propose an extension to
our zero-inflated sparse model. Details about the inference framework are given in appendix
(Section A.2).

4 Conclusion
In this work, we provide a new framework for dimension reduction in unsupervised context.
In particular, we introduce a model-based matrix factorization method specifically designed
to analyse single-cell RNA-seq data. Our probabilistic Count Matrix Factorization (pCMF)
approach accounts for the specificity of these data, being zero-inflated and over-dispersed
counts. In other word, we propose a generalized PCA procedure that is suitable for data
visualization and clustering. The interest of our zero-inflated sparse Gamma-Poisson factor
model is to replace the variance-based formulation of PCA, associated to the Euclidean ge-
ometry and the Gaussian distribution, with a metric (based on Bregman divergence) that is
adapted to scRNA-seq data characteristics.

Analyzing single-cell expression profiles is a huge challenge to understand the cell diversity
in a tissue/an organism and more precisely characterize the associated gene activity. We

9

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/211938doi: bioRxiv preprint 

https://doi.org/10.1101/211938


show on simulations and experimental data that our pCMF approach is able to catch the
underlying structure in zero-inflated over-dispersed count data. In particular, we show that
our method can be used for data visualization in a lower dimensional space or for prelimi-
nary dimension reduction before a clustering step. In both cases, pCMF performs as well or
out-performs state-of-the-art approaches, especially the PCA (being the gold standard) or
more specific methods such as the NMF (count based) or ZIFA (zero-inflation specific).

In addition, our work could benefit from improvements. We are working on a model selection
strategy to automatically select the dimension K, based on the integrated completed likeli-
hood (Matthieu & Mohammed, 2016). This could refine the use of pCMF as a preliminary
dimension reduction step before clustering or visualization with t-SNE.
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Appendix

A.1 Count Matrix Factorization for zero-inflated over-
dispersed data

A.1.1 The Poisson factor model

Our data consist in a matrix of counts, denoted by X ∈ Nn×p, that we want to decompose
onto K principal components, K being fixed in a first step. We introduce U ∈ R+,n×K the
coordinates of the observations (cells) on the K principal components, and V ∈ Rp×K the
contributions (loadings) of variables (genes) on the new axes. In a standard Poisson Matrix
Factorization (see Lee & Seung, 1999), that we call Poisson-NMF, the model is such that
X ∼P

(
UVT

)
.

A.1.2 Underlying geometry

To quantify the quality of approximation of matrix X by Λ = UVT , we consider the Bregman
divergence as a metric (see Banerjee et al., 2005; Chen et al., 2008). This divergence can be
viewed as a generalization of the Euclidean metric to the exponential family. Thus the model
we propose is developed within the framework of the generalized PCA proposed by Collins
et al. (2001) and based on this Bregman divergence. In the Poisson model, the Bregman
divergence between two n× p matrices X and Λ is defined as (Févotte & Cemgil, 2009):

D(X |Λ) =
n∑
i=1

p∑
j=1

xij log

(
xij
Λij

)
− xij + Λij.

The interest here is to choose a geometry that is induced by an appropriate probabilistic
model dedicated to count data. Indeed, the least squares criterion used in PCA for instance,
might not be appropriate for non-Gaussian data. The Bregman divergence can also be
related to the deviance of the Poisson model defined such as

Dev(X, ÛV̂T ) = −2×
(

log p(X |Λ = ÛV̂T )− log p(X |Λ = X)
)
,

with log p(X |Λ) the Poisson log-likelihood, thus Dev(X, ÛV̂T ) ∝ D(X | ÛV̂T ).

A.1.3 Modeling over-dispersion

To account for over-dispersion in the data, we consider the Poisson Gamma representation
(GaP), as proposed by Cemgil (2009). To proceed, we consider a factor model, in which
factors U and V are modeled as independent random variables with Gamma distributions
such that

Uik ∼ Γ(αk,1, αk,2) ,

Vjk ∼ Γ(βk,1, βk,2) .
(A.1)
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Then some third-party latent variables are introduced to facilitate the derivation of our
inference methods. We consider latent variables Z = [Zijk] ∈ Rn×p×K , defined such that
Xij =

∑
k Zijk. This new indicator variable quantifies the contribution of factor k to the

data. Here Zijk are assumed to be conditionally independent and to follow a conditional
Poisson distribution, i.e. Zijk |Uik, Vjk ∼ P(Uik Vjk). Thus, the conditional distribution of
Xij remains P(

∑
k Uik Vjk) thanks to the additive property of the Poisson distribution.

A.1.4 Dropout modeling using a zero-inflated (ZI) model

We introduce a dropout variable Dij ∈ {0, 1} for i = 1, . . . , n and j = 1, . . . , p. This indicator
is defined such that each Dij = 0 if gene j has been subject to a dropout event in cell i,
with Dij ∼ B(πd

j ). We consider gene-specific dropout rates, πd
j , following recommendations

of the literature (Pierson & Yau, 2015). Thus, to include zero inflation in the probabilistic
factor model, we consider that:

Xij |Ui,Vj,D ∼ ×(1−Dij)× δ0 +Dij ×P
(∑

k

Uik Vjk
)
.

The dropout indicators Dij are assumed to be independent from the factors. Then we can
check, by integrating Dij out, that the probability of observing a zero in the data becomes:

P
(
Xij = 0 |Ui,Vj ; π

)
= (1− πd

j ) + πd
j exp

(
−
∑

kUik Vjk
)
,

which illustrates the two potential sources of zeros.

A.1.5 Probabilistic variable selection

Finally we suppose that our model is parsimonious, by considering that among all recorded
variables, only a proportion carries the signal, the others being noise. To do so, we modify
the prior of the loadings variables Vjk, to consider a sparse model with a two-group sparsity-
inducing prior. The model is then enriched by the introduction of a new indicator variable
Sjk ∼ B(πs

j), that equals 1 if gene j contributes to the loading Vjk, and zero otherwise. πs
j

stands for the prior probability for gene j to contribute to any loading. To define the sparse
GaP factor model, we modify the distribution of the loadings latent factor Vjk, such that

Vjk|Sjk ∼ (1− Sjk)× δ0 + Sjk × Γ(βk,1, βk,2) .

This spike-and-slab formulation ensures that Vjk is either null (gene j does not contribute to
factor k), or drawn from the Gamma distribution (when gene j contributes to the factor).
Then the contribution of gene j to the component k is accounted for in the conditional
Poisson distribution of Xij, with

Xij |Ui,V
′
j,D,Sj ∼ (1−Dij)(1− Sjk)× δ0 + P

(
Dij

∑
k Uik [Sjk V

′
jk]
)
,

where Vjk = Sjk V
′
jk such that V ′jk ∼ Γ(βk,1, βk,2).
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A.1.6 Model Identifiability

Scaling effect. As stated in Dikmen & Févotte (2012), GaP factor models suffer from
identifiability issues, due to the scaling of the Gamma prior parameters α and β. Indeed,
considering α∗k,2 = ηk αk,2 and β∗k,2 = η−1k βk,2 for fixed values ηk, and usins the scaling
property of the Gamma distribution: if Uik ∼ Gamma(αk,1, αk,2) then ηkU ∼ Γ(αk,1, η

−1
k αk,2).

We can show that the joint log-likelihood regarding UH−1 and VH with H = diag(ηk)k=1:K

verifies:
log p(X,UH−1,VH |α1,Hα2,β1,H

−1β2)

= log p(X,U,V |α1,α2,β1,β2)

+ (n− p)
∑
k

log(ηk)
(A.2)

When n = p, there is an identifiability issue regarding the scaling of the parameters αk,2 and
βk,2, because different values lead to the same joint log-likelihood. In such case, a solution
will be to fix the scale parameters αk,2 and βk,2 to avoid the scaling effect. When n 6= p,
the only problem is a potential solution with infinite norm with αk,2 → 0 and βk,2 → ∞ or
vice-versa (c.f. Dikmen & Févotte, 2012). However, in practice we did not encounter such
sequence of diverging parameters.

When considering sparsity and/or zero-inflation in the model, Equation (A.2) still holds
regarding the parameters of the Gamma prior distributions and we have to consider the
same precaution.

Factor order. In practice, principal components of standard PCA show very convenient
properties: they are orthogonal (thanks to the SVD), they can be naturally ordered (thanks
to Eckart & Young (1936) theorem), and they are associated to nested models. Unfortu-
nately, likelihood-based factor models do not share the same properties. Indeed, for NMF
or for our GaP factor model, the likelihood that defines the model is identifiable up to a
permutation of factors (i.e. by permuting the columns in Û and V̂ according to the same
reordering). Hence, there does not exist a natural ordering for components of probabilistic
factor models. Thus we propose an ordering defined by the cumulative Bregman divergence:

k 7→ D
(
X | Û1:k(V̂1:k)

T
)
.

In addition, we mention that the different GaP factor models are not nested when the
dimension K increases (as in the NMF), thus the factor estimates are computed for any
dimension, contrary to PCA.

A.2 Model inference using a variational EM algorithm
Our goal is to infer the posterior distributions over the factors U and V depending on
the data X. To proceed, we extend the version of the variational EM algorithm (Beal &
Ghahramani, 2003) proposed by Dikmen & Févotte (2012) in the context of the standard
Gamma-Poisson factor model, to our sparse and zero-inflated GaP model.
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A.2.1 Definition of variational distributions

In the variational framework, the posterior p(Z,U,V,S,D |X) is approximated by the vari-
ational distribution q(Z,U,V,S,D) regarding the Kullback-Leibler divergence (Hoffman
et al., 2013), that quantifies the divergence between two probability distributions. Since the
posterior is not explicit, the inference of q is based on the optimization of the Evidence Lower
Bound (ELBO), denoted by J(q) and defined as:

J(q) = Eq[log p(X,Z,U,V,S,D)]− Eq[log q(U,V,Z,S,D)] , (A.3)

that is a lower bound on the marginal log-likelihood log p(X). In addition, maximizing the
ELBO J(q) is equivalent to minimizing the KL divergence between q and the posterior dis-
tribution of the model (Hoffman et al., 2013).

To derive the optimization, q is assumed to lie in the mean-field variational family, i.e. (i)
to be factorisable with independence between latent variables and between observations and
(ii) to follow the conjugacy in the exponential family, i.e. to be in the same exponential
family as the full conditional distribution on each latent variables in the model.

Thanks to the first assumption, in our model, the variational distribution q is defined as
follows:

q(U,V,Z,S,D) =
n∏
i=1

K∏
k=1

q(Uik | aik)×
p∏
j=1

K∏
k=1

q(V ′jk |bjk)

×
n∏
i=1

p∏
j=1

q
(
(Zijk)k | (Rijk)k

)
×

p∏
j=1

K∏
k=1

q(Sjk | psjk)

×
n∏
i=1

p∏
j=1

q(Dij | pdij)

where aik, bjk, (rijk)k, psjk and pdij are the parameters of the variational distribution regard-
ing Uik, V ′jk, (Zijk)k, Sjk, Dij, respectively. Then we need to precise the full conditional
distributions of the model before defining the variational distributions more precisely.

A.2.2 Full conditional distributions

In our factor model all full conditionals are tractable. Thanks to the Gamma-Poisson con-
jugacy, the full conditionals of Uik and V ′jk are Gamma distributions. The proof is based on
the Bayes rule and the distribution of the latent variables Z, that are actually necessary to
derive p(Uik |— ) and p(V ′jk |— ). The full conditional of the vector Zij is also explicit, being
a Multinomial distribution (Zhou & Carin, 2012) when Dij 6= 0 and deterministic null when
Dij = 0, i.e. (Zijk)k |— ∼ DijM

(
Xij, (ρijk)k

)
. Here the Multinomial probabilities (ρijk)k

depend on (Sjk, Uik, V
′
jk)k, and quantify the prior contribution of factor k to the observations

Xij, i.e.

ρijk =
Sjk Uik V

′
jk∑

` Sj` Ui` V
′
j`

.
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This point justifies why the variational distribution is based on the vector Zij instead of
taking each Zijk separately. Note that if the Sjk are null for all k or if Dij = 0 (i.e. Xij = 0),
the vector (Zijk)k is deterministic and takes null values.

We summarize the full conditionals in the sparse ZI-GaP factor model regarding Uik, Vjk
and (Zijk)k, that are defined such as:

Uik |— ∼ Γ(αk,1 +
∑

j Dij Sjk Zijk, αk,2 +
∑

j Dij Sjk Vjk) ,

Vjk |— ∼ Γ(βk,1 +
∑

iDij Sjk Zijk, βk,2 +
∑

iDij Sjk Uik) ,

(Zijk)k |— ∼ DijM
(
Xij, (ρijk)k

)
,

(A.4)

Zero Inflation. Regarding the zero-inflation indicators, Dij is a binary variable, its distri-
bution is either deterministic or Bernoulli. When the entry Xij is non null, Dij is certainly
equal to one. When Xij = 0, the full conditional is explicit and the Bernoulli probability
only depends on the prior over Dij and the probability that Xij is null. It can be formulated
as follows:

p(Dij = 1 |— ) =
πd
j e
−

∑
k Sjk Uik V

′
jk

(1− πd
j ) + πd

j e
−

∑
k Sjk Uik V

′
jk

.

Sparsity and variable selection. The sparsity indicator Sjk is also a binary variable and
its full conditional is also an explicit Bernoulli distribution. It depends on the prior over
Sjk and the probability that gene j contributes to the components k, quantified by the joint
distribution on (Zijk)i, thus:

p(Sjk = 1 |— ) ∝ πs
j ×

∏
i exp(−Sjk Uik V ′jk) (Sjk Uik V

′
jk)

Zijk .

A.2.3 Approximate posteriors

To approximate the (intractable) posterior distributions, variational distributions are as-
sumed to lie in the same exponential family as the corresponding full conditionals and to be
independent such that:

Zij
q∼M

(
(rijk)k

) Uik
q∼ Γ(aik,1, aik,2)

V ′jk
q∼ Γ(bjk,1, bjk,2)

Sjk
q∼ B(psjk)

Dij
q∼ B(pdij),

where q∼ denotes the variational distribution. The strength of our approach is the resulting
explicit approximate distribution on the loadings that induces sparsity:

Vjk|Sjk
q∼ (1− Sjk)× δ0 + Sjk × Γ(bjk,1, bjk,2),

In the following, the derivation of variational parameters involves the moments and log-
moments of the latent variables regarding the variational distribution. Since the distributions
q is fully determined, these moments can be directly computed. For the sake of simplicity,
we will use notation Ûik = Eq[Uik] and l̂ogU ik = Eq[logUik] (collected in the matrices Û and
l̂og U respectively), with similar notations for other hidden variables of the model (Vjk, Dij,
Sjk, Zijk).
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A.2.4 Derivation of variational parameters

In order to find a stationary point of the ELBO, J(q) is differentiated regarding each vari-
ational parameter separately. The formulation of the ELBO regarding each parameter
separately is based on the corresponding full conditional, i.e. p(Uik |— ), p(Vjk |— ) and
p
(
(Zijk)k |—

)
. The partial formulation are therefore respectively:

J(q)
∣∣
aik

= Eq[log p(Uik |—)]− Eq[log q(Uik ; aik)] + cst

J(q)
∣∣
bjk

= Eq[log p(Vjk |—)]− Eq[log q(Vjk ; bjk)] + cst

J(q)
∣∣
(rijk)k

= Eq
[

log p
(
(Zijk)k |—

)]
− Eq

[
log q

(
(Zijk)k ; (rijk)k

)]
+ cst

Therefore, the ELBO is explicit regarding each variational parameter and the gradient of the
ELBO J(q) depending on the variational parameters aik, bjk and rijk respectively can be
derived to find the coordinate of the stationary point, that corresponds to a local optimum. In
practice, the optimum value for each variational parameter corresponds to the expectation
regarding q of the corresponding parameter of the full conditional distribution (Hoffman
et al., 2013). Thus the coordinates of the ELBO’s gradient optimal point are explicit.

Variational parameters of factors. We derive the stationary point formulation for the
variational parameters regarding Uik and Vjk, being explicitly (directly derived from the
partial derivatives of J(q)):

aik =
(
αk,1 +

∑
j D̂ij Ŝjk Ẑijk , αk,2 +

∑
j D̂ij Ŝjk V̂ ′jk

)T
bjk =

(
βk,1 + Ŝjk

∑
i D̂ij Ẑijk , βk,2 + Ŝjk

∑
i D̂ij Ûik

)T
.

As for variable Zijk = UijVjk, its posterior distribution depends on parameter rijk with
the relation log(rijk) = Eq[log(ρijk)]. Hence, the variational distribution on (Zijk)k naturally
depends on the selection indicator Sjk (since our model focuses on loadings selection). In par-
ticular, the variational parameter rijk depends on Sjk, trough a specific term Eq[log(Sjk V

′
jk)]

that is computed using the variational distribution of Sjk (a Bernoulli distribution of param-
eter psjk). To proceed, we introduce S̃jk, the discretized predictor of Sjk such that

S̃jk = 1{psjk>τ},

where τ is a threshold specified by the user (for instance 0.5). Then, the formulation of the
optimal variational parameter rijk is approximated by:

rijk =
S̃jk exp

(
l̂ogU ik + l̂og V ′jk

)
∑

` S̃j` exp
(

l̂ogU i` + l̂og V ′j`

) .
Variational dropout proportion. Regarding the zero-inflated probabilities pdij, when
Xij 6= 0, the posterior is explicit since Dij = 1 with probability one. Hence, only the case
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Xij = 0 requires a variational inference. As stated previously, the full conditional is explicit
and it is possible to derive and optimize the ELBO (based on the natural parametrization
of the Bernoulli distribution in the exponential family). Eventually, pdij is computed as:

logit(pdij) = logit(πd
j )−

∑
k Ŝjk ÛikV̂

′
jk ,

where the Bernoulli prior probability πd
j is corrected by Eq[logP(Xij = 0)] to account for the

probability of Xij being a true zero.

Variational Selection probability. Concerning the sparse indicator Sjk, the natural
parametrization of the Bernoulli distribution is based on the logit of the Bernoulli probability.
Hence we can write an explicit formulation of the ELBO regarding psjk based on the full
conditional on Sjk. Following this formulation, the stationary point psjk verifies:

logit(psjk) = logit(πs
j)−

∑
iD̂ij Ûik V̂

′
jk + D̂ij Ẑijk

(
l̂ogU ik + l̂og V ′jk

)
.

This corresponds to a correction of the Bernoulli prior probability πs
j , depending is on

the quantification of the contribution of gene j to component k in all individuals, i.e.
Eq[
∑

i log p(Zijk)].

A.2.5 Variational EM algorithm

We use the variational-EM algorithm (Beal & Ghahramani, 2003) to jointly approximate
the posterior distributions and to estimate the hyper-parameters Ω = (α,β,πs,πd). In
this framework, the variational inference is used within a variational E-step, in which the
standard expectation of the joint likelihood regarding the posterior E[p(X,U,V,S,D ; Ω)|X]
is approximated by

Eq[p(X,U,V,S,D ; Ω)].

Then the variational M-step consists in maximizing Eq[p(X,U,V,S,D ; Ω)] w.r.t. the hyper-
parameters Ω. In the variational-EM algorithm, we have explicit formulations of the station-
ary points regarding variational parameters (E-step) and prior hyper-parameters (M-step)
in the model, thus we use a coordinate descent iterative algorithm (see Wright, 2015, for a
review) to infer the variational distribution.

In particular, the hyper-parameters are updated within the M-step such that:

αk,1 =ψ−1

(
logαk,2 +

1

n

∑
i

l̂ogU ij

)
, αk,2 =

αk,1∑
i Ûij/n

,

βk,1 =ψ−1

(
log βk,2 +

1

p

∑
j

l̂og V ij

)
, βk,2 =

βk,1∑
j V̂ij/p

,

πD
j =

1

n

∑
i

pD
ij, πS

j =
1

K

∑
k

pS
jk,

where ψ is the digamma function, i.e. the derivative of the log-Gamma function. Recalling
that, for a variable U ∼ Γ(α1, α2), E[U ] = α1/α2 and E[logU ] = ψ(α1)− logα2, the update

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 31, 2017. ; https://doi.org/10.1101/211938doi: bioRxiv preprint 

https://doi.org/10.1101/211938


rule for the Gamma prior parameters on Uik corresponds to averaging the moments and log-
moments of the variational distribution on Uik over i (similarly for Vjk over j). Regarding
the Bernoulli prior parameters πD

j , the update rule is also an average of the corresponding
variational parameter over i (similarly for πS

j over k).

A.3 Data generation
We set the hyper-parameters (αk,1, αk,2)k and (βk,1, βk,2)k of the Gamma prior distributions
on Uik and Vjk to generate structure in the data, i.e. groups of individuals and groups of
variables.

Generation of U. In practice, individuals i = 1, . . . , n are partitioned into N balanced
groups, denoted by U1, . . . ,UN . To do so, we generate a matrix U with blocks on the diagonal.
Each block, denoted by BU,g contains n/N rows and K/N columns. Each entry Uik in each
block BU,g (g = 1, . . . , N) is drawn from a Gamma distribution Γ(α + εα, 1) with a shape
parameter depending on α > 0 and an additive term εα > 0. All entries Uik that are not in
the diagonal blocks of U are drawn from a Gamma distribution Γ(α, 1). Hence, each groups
of individuals Ug corresponds to a block BU,g. Thus, this generation pattern requires that
K > N . In addition, the term εα > 0 quantifies how much the groups of individuals are
distinct. In practice, we fix α = 4, we use εα = 4 or 8 (for low or high separation respectively)
and N = 2 or 3 groups of individuals.

Generation of V. The question of simulating data based on a sparse representation V
of the variables in our context of matrix factorization is not straightforward. Indeed, if we
impose that some variables j do not contribute to any component k, i.e. that Vjk is null for
any k, then

∑
k Uik Vjk is always null for i = 1, . . . , n. Thus, the recorded data entry Xij will

be deterministic and null for any observation i (i.e. the jth column in X will be null). There
is no interest to generate full columns of null values in the matrix X, since it is unnecessary
to use a statistical analysis to determine that a column of zeros will not be informative.
This question is not an issue about the formulation of the model, but rather concerns the
generation of non informative columns in X that will correspond to null rows in the matrix V.

To overcome this issue, we use the following generative process. The variables j = 1, . . . , p
are first partitioned into two groups V0 and V∅ of respective sizes p0 and p − p0 (with
p0 ≤ p). The p0 variables in V0 will represent the pertinent variables for the lower dimensional
representation, whereas variables in V∅ will be considered irrelevant or noise. The matrix V
will be a concatenation of two matrices V0 and V∅:

Vp×K =

 V0

V∅


All Vjk in V∅ are drawn from a Gamma distribution Γ(0.7, 1), so that E[Vjk] will be small
but non null to avoid null columns in X. The ratio p0/p sets the expected degree of sparsity
in the model. In practice, we set p0/p = 1, 0.6 or 0.3 corresponding to different proportions
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of noisy genes (0, 40 or 70% of noisy genes).

To simulate dependency between recorded variables, we generate groups of variables in the
set V0 of pertinent variables. We use a similar strategy as the one used to simulate U. V0 is
partitioned into P balanced groups, denoted by V1, . . . ,VP . We generate the corresponding
matrix V0 with blocks on the diagonal. Each block, denoted by BV,g contains p0/P rows and
K/P columns: Each entry Vjk in each block BV,g (g = 1, . . . , P ) is drawn from a Gamma
distribution Γ(β + εβ, 1) with a shape parameter depending on β > 0 and an additive term
εβ > 0. All entries Vjk that are not in the blocks on diagonal are drawn from a Gamma
distribution Γ(β, 1). Hence, each groups of individuals Vg corresponds to a block BV,g.
Again, this generation pattern requires that K > N . In addition, the term εβ > 0 quantifies
how much the groups of genes are distinct. In practice, we fix β = 4, we use εβ = 4 or 8 (for
high or low dependency respectively) and P = 2 groups of variables.

Generation of X. The data are simulated according to their conditional Poisson distri-
bution in the model i.e. P(

∑
k uik vjk). In practice, we want to consider zero-inflation in

the model, thus we consider the Dirac-Poisson mixture and simulate Xij according to the
following conditional distribution:

Xij | (Uik, Vjk)k, Dij ∼ (1−Dij)× δ0 +Dij ×P(
∑

k Uik Vjk) ,

where the dropout indicator Dij is drawn from a Bernoulli distribution B(πd
j ), the proportion

of dropout events is set by the probability πd
j . To generate data without dropout events, we

just have to set Dij = 1 for any couple (i, j), i.e. πd
j = 1 for any j.

In practice, we fix K = 50, n = 100 and p = 1000 to simulate our data. We generate different
level of zero-inflation: πd

j = 1 for any j, corresponding to “no zero-inflation”; πd
j ∈ [0.4; 0.6]

corresponding to what we call “low zero-inflation”; and πd
j ∈ [0.2; 0.4] corresponding to what

we call “high zero-inflation” in the data.

A.4 Additional results

A.4.1 Computation time

Figure A.1 shows average computation time for the different methods (pCMF, Poisson-NMF,
SPCA, ZIFA) for a single run on a single-core standard CPU with frequency between 2 and
2.5 GHz. All methods, including ours, have different levels of multi-threading and can bene-
fit from multi-core CPU computations. We restrained to a single CPU core for each method
run, because we were simultaneously running a huge number of simulations on a CPU cluster.

Our method shows comparable computation time as state-of-the-art approaches as Poisson-
NMF (from the NMF R-package) or ZIFA (from the ZIFA Python-package). The sparse PCA
(from the PMA R-package) is the gold standard regarding running time thanks to the effi-
ciency of the PCA algorithm based on the Singular Value Decomposition (SVD) algorithm.
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However, we recall that (sparse) PCA shows poor results regarding clustering and data vi-
sualization.

Eventually, we mention that our method is available in an R-package, however our algorithms
are implemented in interfaced C++ for computational efficiency.
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Figure A.1: Computation time on a single CPU core for the different approaches, depending on the
number of variables p, for different levels of zero-inflation and different proportion of noisy variables
in the data. The number of components is set to K = 10. Data are generated with n = 100 and 2
groups of individuals. Average values and deviation are estimated across 100 repetitions.

A.4.2 Standard GaP versus our ZI sparse GaP factor model

Figure A.2 illustrates the interest of our zero-inflated sparse Gamma-Poisson factor model
compared to the standard Gamma-Poisson factor model, especially in presence of dropout
events and noisy genes. Our method pCMF based on our ZI sparse GaP factor model
performs as well as the pCMF based on the standard GaP factor model when there is no
dropout events in the data, independently from the proportion of noisy genes. In addition,
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when the level of zero-inflation is higher, we can see that the ZI-specific model outperforms
the standard ones, highlighting the interest of our approach.
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Figure A.2: Adjusted Rand Index comparing clusters found by a κ-means algorithm (applied to Û
with κ = 2) and the original groups of individuals, depending on the number of individual groups
in the data, for different levels of zero-inflation and different proportion of noisy variables in the
data. The number of components is set to K = 10. Data are generated with n = 100, p = 1000.
Average values and deviation are estimated across 100 repetitions.
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