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Abstract 

 

In genome-wide association studies (GWAS) for thousands of phenotypes in large biobanks, most binary 

traits have substantially fewer cases than controls. Both of the widely used approaches, linear mixed 

model and the recently proposed logistic mixed model, perform poorly -- producing large type I error 

rates -- in the analysis of phenotypes with unbalanced case-control ratios. Here we propose a scalable 

and accurate generalized mixed model association test that uses the saddlepoint approximation (SPA) to 

calibrate the distribution of score test statistics.  This method, SAIGE, provides accurate p-values even 

when case-control ratios are extremely unbalanced. It utilizes state-of-art optimization strategies to 

reduce computational time and memory cost of generalized mixed model. The computation cost linearly 

depends on sample size, and hence can be applicable to GWAS for thousands of phenotypes by large 

biobanks. Through the analysis of UK Biobank data of 408,961 white British European-ancestry samples 

for >1400 binary phenotypes, we show that SAIGE can efficiently analyze large sample data, controlling 

for unbalanced case-control ratios and sample relatedness. 

 

Introduction 

 

Decreases in genotyping cost allow for large biobanks to genotype all participants, enabling genome-

wide scale phenome-wide association studies (PheWAS) in hundreds of thousands of samples. In a 

typical genome-wide PheWAS, GWAS for tens of million variants are performed for thousands of 

phenotypes constructed from Electronic Health Records (EHR) and/or survey questionnaires from 

participants in large cohorts
1,2

. For binary traits based on disease/condition status in PheWAS, cases are 

typically defined as individuals with specific International Classification of Disease (ICD) codes within the 

EHR.  Controls are usually all participants without the same or other related conditions
1,2

. Due to the low 

prevalence of many conditions/diseases, case-control ratios are often unbalanced (case:control=1:10) or 

extremely unbalanced (case:control<1:100). The scale of data and the unbalanced nature of binary traits 

pose substantial challenges for genome-wide PheWAS in biobanks.  

 

Population structure and relatedness are major confounders in genetic association studies and also need 

to be controlled in PheWAS. Linear mixed models (LMM) are widely used to account for these issues in 

GWAS for both binary and quantitative traits
3–8

. However, since LMM is not designed to analyze binary 

traits, it can have inflated type I error rates, especially in the presence of unbalanced case-control ratios. 

Recently, Chen, H. et al. have proposed to use logistic mixed models and developed a score test called 

the generalized mixed model association test (GMMAT)
9
. GMMAT assumes that score test statistics 

asymptotically follow a Gaussian distribution to estimate asymptotic p-values. Although GMMAT test 

statistics are more robust than the LMM based approaches, it can also suffer type I error rate inflation 

when case-control ratios are unbalanced, because unbalanced case-control ratios invalidate asymptotic 

assumptions of logistic regression
10

. In addition, since GMMAT requires O(MN
2
) computation and O(N

2
) 

memory space, where M is the number of genetic variants to be tested and N is the number of 

individuals, it cannot handle data with hundreds of thousands of samples. 

 

Here, we propose a novel method to allow for analysis of very large samples, for binary traits with 

unbalanced case-control ratios, which also infers and accounts for sample relatedness. Our method, 

Scalable and Accurate Implementation of GEneralized mixed model (SAIGE), uses the saddlepoint 

approximation (SPA)
11,12

 to calibrate unbalanced case-control ratios in score tests based on logistic 

mixed models. Since SPA uses all the cumulants, and hence all the moments, it is more accurate than 

using the Gaussian distribution, which uses only the first two moments. Similar to BOLT-LMM
8
, the large 

sample size method for linear mixed-models, our method utilizes state-of-art optimization strategies, 
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such as the preconditioned conjugate gradient (PCG) approach
13

 for solving linear systems for large 

cohorts without requiring a pre-computed genetic relationship matrix (GRM). The overall computation 

cost of this proposed method is O(MN), which is substantially lower than the computation cost of 

GMMAT
9
 and many popular LMM methods, such as GEMMA

7
. In addition, we reduce the memory use 

by compactly storing raw genotypes instead of calculating and storing the GRM.  

 

We have demonstrated that SAIGE controls for the inflated type I error rates for binary traits with 

unbalanced case-control ratios in related samples through simulation and the UK Biobank data of 

408,961 white British samples
14,15

. By evaluating its computation performance, we demonstrate the 

feasibility of SAIGE for large-scale PheWAS.  

 
RESULTS 

 

Overview of Methods 

The SAIGE method contains two main steps: 1. Fitting the null logistic mixed model to estimate variance 

component and other model parameters. 2. Testing for association between each genetic variant and 

phenotypes by applying SPA to the score test statistics. Step 1 iteratively estimates the model 

parameters using the computational efficient average information restricted maximum likelihood (AI-

REML) algorithm
16

, which is also used in GMMAT
9
.  Several optimization strategies have been applied in 

step 1 to make fitting the null logistic mixed model practical for large data sets, such as the UK Biobank 
14,15

. First, the spectral decomposition has been replaced by the PCG to solve linear systems without 

inversing the � �  � GRM
13

 (as in BOLT-LMM
8
). The PCG method iteratively finds solutions of the linear 

system in a computation and memory-efficient way. Thus, instead of requiring a pre-computed GRM, 

which costs a significant amount of time to calculate when sample sizes are large, SAIGE uses the raw 

genotypes as input. The computation time is about O(M1N) times the number of iterations for the 

conjugate gradient to converge, where M1 is a number of variants to be used for constructing GRM. 

Second, to further reduce the memory usage during the model fitting, the raw genotypes are stored in a 

binary vector and elements of GRM are calculated when needed rather than being stored, so the 

memory usage is M1N/4 bytes (as in BOLT-LMM
8
 and GenABEL

17
). For example, for the UK Biobank data 

with M1 = 93,511 and N = 408,961 (white British participants), the memory usage drops from 669 

Gigabytes(Gb) for storing the GRM with float numbers to 9.56 Gb for the raw genotypes in a binary 

vector.  

 

After fitting the null logistic mixed model, the estimate of the random effects for each individual is 

obtained. The ratio of the variances of the score statistics with and without incorporating the variance 

components for the random effects is calculated using a subset of randomly selected genetic variants, 

similar to BOLT-LMM
8
 and GRAMMAR-Gamma

18
. This ratio has been previously suggested to be 

constant for score tests based on LMMs
18

. We have shown that the ratio is also approximately constant 

for all genetic variants with MAC ≥ 20 in the scenario of the logistic mixed models through analytic 

derivation and simulations (Supplementary Notes and Supplementary Figure 1).  

 

In step 2, for each variant, the variance ratio is used to calibrate the score statistic variance that does 

not incorporate variance components for random effects. Since GRM is no longer needed for this step, 

the computation time to obtain the score statistic for each variant is O(N). SAIGE next approximates the 

score test statistics using the SPA to obtain more accurate p-values than the normal distribution. A 

faster version of the SPA test, similar to the fastSPA method in the SPAtest R package that we recently 

developed
12

 , is used to further improve the computation time, which exploits the sparsity in low 

frequency or rare variants to reduce the computation cost.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 24, 2018. ; https://doi.org/10.1101/212357doi: bioRxiv preprint 

https://doi.org/10.1101/212357
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Computation and Memory Cost 

 

The key features of SAIGE compared to other existing methods are presented in Table 1, showing that 

SAIGE is the only mixed-model association method that is able to account for the unbalanced case-

control ratios while remaining computationally practical for large data sets. To further evaluate the 

computational performance of SAIGE, we randomly sampled subsets from the 408,458 white British UK 

Biobank participants who are defined as either coronary artery disease (CAD) cases (31,355) or controls 

(377,103) based on the PheWAS Code 411
2,14,15

 followed by benchmarking association tests using SAIGE 

and other existing methods on 200,000 genetic markers randomly selected out of the 71 million with 

imputation info � 0.3. The non-genetic covariates sex, birth year, and principal components 1 to 4 were 

adjusted in all tests. The log10 of the memory usage and projected computation time for testing the full 

set of 71 million genetic variants are plotted against the sample size as shown in Supplementary Figure 

2 and Supplementary Table 1. Although SAIGE and BOLT-LMM have the same order of computational 

complexity (Table 1), SAIGE was slower than BOLT-LMM across all sample sizes (ex. 517 vs 360 CPU 

hours when N=408,458). This is due to the fact that fitting logistic mixed model requires more iterative 

steps than linear mixed model, and applying SPA requires additional computation. SAIGE requires 

slightly less memory than BOLT-LMM (10  to 11 Gb when N=408,458) and the low memory usage makes 

both methods feasible for the large data set.  In contrast, GMMAT and GEMMA requires substantially 

more computation time and memory usage. For example, when N=400,000, projected memory usages 

of both GMMAT and GEMMA are more than 600 Gb. The actual computation time and memory usage of 

association tests for the full UK Biobank data for CAD are given in Table 1. SAIGE required 517 CPU hours 

and 10.3 Gb memory to analyze 71 million variants that have imputation info � 0.3 for 408,458 samples, 

which indicates that the analysis will be done in ~26 hours with 20 CPU cores.  

 

Association analysis of binary traits in UK Biobank data 

 

We applied SAIGE to several randomly selected binary traits defined by the PheWAS Codes (PheCode) of 

UK Biobank
2,14,15

 and compared the association results with those obtained from the method based on 

linear mixed models, BOLT-LMM
8
, and SAIGE without the saddlepoint approximation (SAIGE-NoSPA), 

which is asymptotically equivalent to GMMAT
9
. Due to computation and memory cost, the current 

GMMAT method cannot analyze the UK Biobank data. We restrict our analysis to markers directly 

genotyped or imputed by the Haplotype Reference Consortium (HRC)
19

 panel due to quality control 

issues of non-HRC markers reported by the UK BioBank. Approximately 28 million markers with minor 

allele counts (MAC) ≥ 20 and imputation info score > 0.3 were used in the analysis. Among 408,961 

white British participants in the UK Biobank, 132,179 have at least one up to the third degree relative 

among the genotyped individuals
14,15

. We used 93,511 high quality genotyped variants to construct the 

GRM. In the UK Biobank data, most binary phenotypes based on PheCodes (1,431 out of 1,688; 84.8%) 

have case-control ratio lower than 1:100 (Supplementary Figure 3) and would likely demonstrate 

problematic inflation of association test statistics without SPA. 

 

Association results of four exemplary binary traits that have various case-control ratios are plotted in 

Manhattan plots shown in Figure 1 and in the quantile-quantile (QQ) plots stratified by minor allele 

frequency (MAF) shown in Figure 2. The four binary traits are coronary artery disease (PheCode 411) 

with 31,355 cases and 377,103 controls (1:12), colorectal cancer (PheCode 153) with 4,562 cases and 

382,756 controls (1:84), glaucoma (PheCode 365) with 4,462 cases and 397,761 controls (1:89), and 

thyroid cancer (PheCode 193) with 358 cases and 407,399 controls (1:1138). In the Manhattan plots in 

Figure 1, each locus that contains any variant with p-value < 5x10
-8

 is highlighted as blue or green to 
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indicate whether this locus has been reported by previous studies or not. Supplementary Table 2 

presents the number of all significant loci and those that have not been previously reported by each 

method for each trait and Supplementary Table 3 lists all significant loci identified by SAIGE.  

 

Both Manhattan and QQ plots show BOLT-LMM and SAIGE-NoSPA have greatly inflated type I error rates. 

The inflation problem is more severe as case-control ratios become more unbalanced and the MAF of 

the tested variants decreases. The genomic inflation factors (λ) at the 0.001, 0.01 p-value percentiles are 

shown for several MAF categories in Supplementary Table 4. For the colorectal cancer GWAS which has 

case-control ratio 1:84, λ at the 0.001 p-value percentile is 1.68 and 1.71 for variants with MAF� 0.01 by 

SAIGE-NoSPA and BOLT-LMM, while λ is 0.99 by SAIGE.  The inflation is even more severe for the test 

results by SAIGE-NoSPA and BOLT-LMM for the thyroid cancer, which has case-control ratio 1:1138, with 

the λ at the 0.001 p-value percentile around 4 to 5 for variants with MAF� 0.01 and all variants, 

respectively. With the unbalanced case-control ratio accounted for in SAIGE, the λ is again very close to 

1.  

 

We have generated summary statistics for all 1,403 PheCode-derived binary traits in 408,961 UK 

Biobank white British European-ancestry samples using SAIGE software and made them available in a 

public repository (see below for URL). 

 

Simulation Studies 

 

We investigated the type I error control and power of two logistic mixed model approaches, SAIGE and 

GMMAT, and the linear mixed model method BOLT-LMM that computes mixed model association 

statistics under the infinitesimal and non-infinitesimal models through simulation studies. We followed 

the steps described on the Methods section to simulate genotypes for 1,000 families, each with 10 

family members (N=10,000), based on the pedigree shown in Supplementary Figure 4.  

 

Type I error rates 

 

The type I error rates for SAIGE, SAIGE-NoSPA, GMMAT, and BOLT-LMM have been evaluated based on 

the association tests performed on 10
9
 simulated genetic variants. The variants were simulated using 

the same MAF spectrum of the UK Biobank HRC imputation data with case-control ratio 1:99, 1:9, and 

1:1. Two different values of variance component parameter �=1 and 2 were considered, which 

correspond to the liability scale heritability 0.23 and 0.38, respectively. The empirical type I error rates 

at the α = 5x10
-4 

and α = 5x10
-8 

are shown in the Supplementary Table 5.  SAIGE-NoSPA, GMMAT, and 

BOLT-LMM have greatly inflated type I error rates when the case-control ratios are moderately or 

extremely unbalanced and slightly deflated type I error rates when the case-control ratios are balanced. 

This is expected as previous studies have suggested inflation of the score tests in the presence of the 

unbalanced case-control ratios and deflation in balanced studies
10,12

. We also observed that GMMAT 

score test statistics do not follow the normal distribution when MAF is low and case-control is 

unbalanced (Supplementary Figure 5). Unlike GMMAT and BOLT-LMM, SAIGE has no inflation when 

case-control ratios are unbalanced. SAIGE also has no deflation when the case-control ratios are 

balanced.  

 

To further investigate the type I error rates by MAF and case-control ratios, we carried out additional 

simulations. Supplementary Figure 6 shows QQ plots of 1,000,000 rare variants (MAF = 0.005) with 

various case-control ratios (1:1, 1:9, and 1:99) and Supplementary Figure 7 shows QQ plots of 1,000,000 

variants with different MAF (0.005, 0.01, and 0.3) when case-control ratio was 1:99.  Consistent to what 
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has been observed in the real data study, GMMAT and SAIGE-NoSPA is more inflated for less frequent 

variants with more unbalanced case-control ratios. In contrast, SAIGE has successfully corrected this 

problem.  

 

To evaluate whether SAIGE can control type I error rates in the presence of population stratification, we 

have simulated two subpopulations with Fst 0.013, which corresponds to the average Fst between 

Finnish and non-Finnish Europeans
20

. We assumed that subpopulations have different disease 

prevalences (0.01 for subpopulation 1 and 0.02 for subpopulation 2, 0.1 for subpopulation 1 and 0.2 for 

subpopulation 2, and 0.5 for subpopulation 1 and 0.4 for subpopulation 2). Both subpopulations have 

1,000 families, each with 10 family members based on the pedigree shown in Supplementary Figure 4. 

Association tests were performed on 10 million simulated markers and the first four principle 

components were included as covariates (Supplementary Figure 8). QQ plots (Supplementary Figure 9) 

show that the test statistics were well calibrated regardless of the variance component parameter 	 and 

prevalence. This simulation result demonstrates that SAIGE produces well-calibrated p-values in the 

presence of population stratification.  

 

Power 

 

Next, we evaluated empirical power. Since power simulation requires re-estimating a variance 

component parameter for each variant to test, to reduce computational burden, we used SAIGE-NoSPA 

instead of the original GMMAT software. Due to the inflated type I error rates of BOLT-LMM and 

GMMAT (and SAIGE-NoSPA), for a fair comparison, we estimated power at the test-specific empirical α 

levels that yield type I error rate α = 5x10
-8

 (Supplementary Table 6).  Supplementary Figure 10 shows 

the power curve by odds ratios for variants with MAF 0.05, 0.1 and 0.2 when �=1. When the case-

control ratio is balanced, the power of SAIGE, SAIGE-NoSPA and BOLT-LMM were nearly identical. For 

studies with moderately unbalanced case-control ratio (case:control=1:9), SAIGE has higher power than 

SAIGE-NoSPA and BOLT-LMM, which is due to very small empirical α for SAIGE-NoSPA and BOLT-LMM 

resulted from type I error inflation. The power gap is much larger when the case-control ratios are 

extremely unbalanced.  Power results for �=2 yielded the same conclusion regarding the methods 

comparison (data not shown). 

 

Overall simulation studies show that SAIGE can control type I error rates even when case-control ratios 

are extremely unbalanced and can be more powerful than GMMAT and BOLT-LMM. In contrast, GMMAT 

and BOLT-LMM suffer type I error inflation, and the inflation is especially severe with low MAF and 

unbalanced case-control ratios. 

 

 

Code and data availability  

 

SAIGE is implemented as an open-source R package available at 

https://github.com/weizhouUMICH/SAIGE/. The GWAS results for 1403 binary phenotypes with the 

PheCodes
2
 constructed based on ICD codes in UK Biobank using SAIGE are currently available for public 

download at 

https://www.dropbox.com/sh/wuj4y8wsqjz78om/AAACfAJK54KtvnzSTAoaZTLma?dl=0. 

Supplementary Table 7 includes the phenotype information and URL links for downloading summary 

statistics, Q-Q plots, and Manhattan plots for the 1,403 phenotypes. We also display the results in the 

Michigan PheWeb http://pheweb.sph.umich.edu/UKBiobank, which consists of Manhattan plots, Q-Q 
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plots, and regional association plots for each phenotype as well as the PheWAS plots for every genetic 

marker.   

 

 

 

DISCUSSION  

 

In this paper, we have presented a method to perform the association tests for binary traits in large 

cohorts in the presence of sample relatedness, which provides accurate p-value estimates for even 

extremely unbalanced case-control settings (with a prevalence < 0.1%). The dramatic decrease of the 

genotyping cost over the last decade allows more and more large biobanks to genotype all of their 

participants followed by genome-wide PheWAS, in which GWASs are performed for all thousands of 

diseases/conditions characterized based on EHR and/or survey questionnaires to identify genetic risk 

factors across different phenotypes
1,2,21

. Several challenges exist for PheWAS studies by large cohorts. 

Statistically, inflated type I error rates caused by unbalanced case-control ratios and sample relatedness 

need to be corrected. Computationally, most of existing mixed model association methods are not 

feasible for large sample sizes.  Our method, SAIGE, uses logistic mixed model to account for the sample 

relatedness and applies the saddle point approximation (SPA) to correct the inflation caused by the 

unbalanced case-control ratio in the score tests based on logistic mixed models. 

 

SAIGE successfully corrects the inflation of type I error rates of low-frequency variants with binary traits 

that have unbalanced case-control ratios while also accounting for the relatedness among samples. 

Furthermore, our method uses several optimization strategies that are similar to those used by BOLT-

LMM to improve its computational feasibility for large cohorts. For example, the preconditioned 

conjugate gradient algorithm is used to solve linear systems instead of the Cholesky decomposition 

method so that the time complexity for fitting the null logistic model is decreased from O(N
3
) to 

approximately O(M1N
1.5

), where M1 is the number of pruned markers used for estimating the genetic 

relationship matrix and the N is the sample size.  

 

In the selection of genetic markers (M1) for estimating the kinship matrix and the variance component, 

trade off exists between computational cost and performance of adjusting for sample relatedness. 

Increasing the number of markers used for that step linearly increases the computation time and 

memory. On the other hand, using too few markers may not be sufficient to account for all subtle 

sample relatedness. For example, Yang et al. have shown that using a few thousand markers is not 

sufficient to yield correct type I error control
22

. In the UK Biobank data analysis, we used 93,511 

independent, high quality genotyped variants, which were used by the UK Biobank data group to 

estimate the kinship coefficients between samples
15

. We carried out a sensitivity analysis by increasing 

the number of markers to 340,447 (Supplementary Section 2.3). Using more markers to estimate the 

kinship matrix for the UK Biobank data analysis produced generally similar association p-values but with 

lambdas closer to 1. 

 

Using genome-wide genetic markers to adjust for sample relatedness tends to have the proximal 

contamination problem, which can reduce association test power 
6,8,22,23

. To avoid it, the leave-one-

chromosome-out (LOCO) scheme can be used. We implemented the LOCO option in SAIGE. A sensitivity 

analysis (Supplementary Section 1.2.5) on the four exemplary binary phenotypes in the UK Biobank 

suggested that the proximal contamination in GWAS for diseases with relatively low prevalence, such as 

thyroid cancer, glaucoma, and colorectal cancer, is not as substantial as for more common diseases, e.g. 

coronary artery disease. 
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Given the inflation of type I errors of linear mixed model for rare variants (MAF < 0.5%) with unbalanced 

case-control phenotypes, current GWAS studies address the problem by excluding rare variants from the 

analysis. However, this practice can lead to false negative results if associated rare variants are simply 

excluded rather than analyzed properly.  For example, after using SAIGE to analyze rare variants in the 

UK Biobank, we identified a nonsense variant in MYOC (MAF = 0.14%) that was significantly associated 

with glaucoma.  In our preliminary analysis of UK Biobank data of 1,283 non-sex specific phenotypes, we 

observed 1,609 genetic variants, including variants in the same locus, with minor allele frequency < 0.5% 

with SAIGE p-values < 5x10
-8

 (Supplementary Section 2.4). The method as implemented in SAIGE can 

control for type I error rates regardless of MAF and case-control ratios and will facilitate identification of 

rare disease-associated variants.  

 

There are several limitations in SAIGE. First, the time for algorithm convergence may vary among 

phenotypes and study samples given different heritability levels and sample relatedness. Second, SAIGE 

has been observed to be slightly conservative when case-control ratios are extremely unbalanced 

(Supplementary Table 5). Third, the accurate odds ratio estimation requires fitting the model under the 

alternative and is not computational efficient. Similar to several other mixed model methods
3,8,18

, SAIGE 

estimates odds ratios for genetic markers using the parameter estimates from the null model. Fourth, 

SAIGE assumes that the effect sizes of genetic markers are normally distributed with a mean of zero and 

standard deviation of one, which follows an infinitesimal architecture. With this assumption, SAIGE may 

sacrifice power to detect genetic signals whose genetic architecture is non-infinitesimal. Last, the 

variance component estimates 	̂ from SAIGE is biased and hence it should not be used to estimate the 

heritability (Supplementary Section 2.1). This is because SAIGE uses penalized quasi-likelihood (PQL) to 

estimate 	̂. However, as shown in our simulation studies and elsewhere
9
, PQL-based approaches works 

well to adjust for sample relatedness. In future, we plan to extend the current single variant test to 

gene- or region-based multiple variant test to improve power for identifying disease susceptibility rare 

variants.   

  

With the emergence of large-scale biobank, PheWAS will be an important tool to identify genetic 

components of complex traits. Here we describe a scalable and accurate method, SAIGE, for the analysis 

of binary phenotypes in genome-wide PheWAS. Currently, SAIGE is the only available approach to adjust 

for both case-control imbalance and family relatedness, which are commonly observed in PheWAS 

datasets. In addition, the optimization approaches used in SAIGE make it scalable for the current largest 

(UK Biobank) and future much larger datasets. Through simulation and real data analysis, we have 

demonstrated that our method can efficiently analyze a dataset with 400,000 samples and adjust for 

type I error rates even when the case-control ratios are extremely unbalanced. Our method will provide 

an accurate and scalable solution for large scale biobank data analysis and ultimately contribute to 

identify genetic mechanism of complex diseases.   

 

 

METHODS 

 

Generalized linear mixed model for binary traits 

In a case-control study with sample size �, we denote the status of the ith individual using ��  1 or 0 

for being a case or a control. Let the 1 � �1 � �� vector ��  represent � covariates including the 

intercept and ��  represent the allele counts (0, 1 or 2) for the variant to test. The logistic mixed model 

can be written as 
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���������  ��� � ��� �  �  
 

where ��  !���  1 | �� , �� ,  �� is the probability for the ith individual being a case given the covariates 

and genotypes as well as the random effect, which is denoted as  � . The random effect  �  is assumed to 

be distributed as �(0, 	 #), where # is an � �  � genetic relationship matrix (GRM) and 	 is the 

additive genetic variance. The � is a �1 � ��  �  1 coefficient vector of fixed effects and � is a coefficient 

of the genetic effect.  

 

Estimate variance component and other model parameters (Step 1) 

To fit the null model, ����������  ��� �  �, penalized quasi-likelihood (PQL) method
24

 and the AI-REML 

algorithm
16

 are used to iteratively estimate �	̂, �$,  %). At iteration k, let �	̂���, �$���,  %���) be estimated 

�	̂, �$,  %), �̂�

���
 the estimated mean of �� , &' ���  (�)�*�̂�

��� +1 , �̂����-., and Σ%���= 0&' ���1�� � 	̂���# be 

an 2 �  2 matrix of the variance of working vector �3�  ������ �  ���� � ��� , �̂����)/ 4�̂���� +1 , �̂����-5 . 

To obtain log quasi-likelihood and average information at each iteration, the current GMMAT approach 

calculates the inverse of Σ%���. Since it is computationally too expensive for large N, we use the 

preconditioned conjugate gradient (PCG)
13,25

, which allows calculating quasi-likelihood and average 

information without calculating 0Σ%���1�� (See Supplementary for details). PCG is a numerical method to 

find solutions of linear system. It is particularly useful when the system is very large. BOLT-LMM
8
 

successfully used it to estimate variance component in linear mixed model.  

 

A score test statistics for Ho: �  0 is 6  ���7 , �̂�  �8��7 , �̂� where G and Y are � �  1 genotype 

and phenotype vectors, respectively, and �̂ is the estimated mean of Y under the null hypothesis, and 

�8  � , ����&' ������&' � is the covariate adjusted genotype vector. The variance of T, Var(T) 

 �8�!�8, where !%  9%�� , 9%���:��9%���;����9%��. For each variant, given !%, calculation of Var(T) 

requires O(N
2
) computation. In addition, since our approach does not calculate 9%��, and hence !%, 

obtaining Var(T) requires applying PCG for each variant, which can be computationally very expensive. 

To reduce computation cost, we use the same approximation approach used in BOLT-LMM and 

GRAMMAR-GAMMAR
18

, in which we estimate a variance of T with assuming that true random effect   is 

given, and then calculate ratio between these two variance. Suppose Var(T)* = �8�&' �8, which is a 

variance estimate of T assuming  % is given. Let r = Var(T)/Var(T)* ratio of these two different types of 

variance estimates. In Supplementary materials, we have shown that the ratio is approximately constant 

for all variants. Using this fact, we can estimate r using a relatively small number of variants. In all the 

numerical studies in this paper, we used 30 variants to estimate r.  

  

Score test with SPA (Step 2) 

 

Suppose <̂ is the estimated ratio (i.e. r) in Step 1. Now the variance adjusted test statistics is  

6	
�  �8��7 , �̂�
=<̂�8�&' �8

 , 
which has mean zero and variance 1 under the null hypothesis.  The computation of 6	
�  requires O(N) 

computation. The traditional score tests assume that T (and hence Tadj) asymptotically follows a 

Gaussian distribution under Ho: �  0, which is using only the first two moments (mean and variance). 

When the case-control ratios are unbalanced and variants have low MAC, the underlying distribution of 

Tadj can be substantially different from Gaussian distribution. To obtain accurate p-values, we use 

Saddlepoint approximation method (SPA)
11,12,26

, which approximates distribution using the entire 

cumulant generating function (CGF). A fast version of SPA (fastSPA)
12

 has recently been developed and 
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applied to PheWAS, and provides accurate p-values even when case-control ratios are extremely 

unbalanced (ex. case:control=1:600).  

 

To apply fastSPA to Tadj we need to obtain CGF of Tadj first. To do this, we use the fact that given  %, Tadj is 

a weighted sum of independent Bernoulli random variables. The approximated cumulant generating 

function is  

 

>��; @$, A�  B log:1 , @$� � @$�E����;
�

���

, A� B �8�
�

���

@$� 
where the constant c=Var*(T)

-1/2
. Let >���� and >FF��� are first and second derivatives of K with respect 

to t. To calculate the probability that 6	
� � G, where q is an observed test statistic, we use the 

following formula
11

  

  

�<:6	
� �  G; H I�G�   Φ KL � 1
L log +M

L-N, 
where L  O��2�PQ�R2SPQG , >�PQ�TU

�

� , M  PQS>��:PQ;T
�

� and PQ   PQ�G� is the solution of the equation 

>�:PQ;  G. As fastSPA
12

, we exploit the sparsity of genotype vector when MAF of variants are low. In 

addition, since normal approximation works well when the test statistic is close to the mean, we use the 

normal distribution when the test statistic is within two standard deviation of the mean.  

 

Data simulation  

 

We carried out a series of simulations to evaluate and compare the performance of SAIGE to GMMAT. 

We randomly simulated a set of 1,000,000 base-pair “pseudo” sequences, in which variants are 

independent to each other. Alleles for each variant were randomly drawn from Binomial(n = 2, p = MAF). 

Then we performed the gene-dropping simulation
27

 using these sequences as founder haplotypes that 

were propagated through the pedigree of 10 family members shown in Supplementary Figure 4. Binary 

phenotypes were generated from the following logistic mixed model 

������@���  �� �  � �  �� � �� � ��� 

where Gi is the genotype value, � is the genetic log odds ratio,   �  is the random effect simulated from 

��0, τ #� with τ  1. Two covariates, X1 and X2, were simulated from Bernoulli(0.5) and N(0,1), 

respectively. The intercept �� was determined by given prevalence (i.e. case-control ratios). 

To evaluate the type I error rates at genome-wide α=5×10
-8

, 10 million markers along with 100 sets of 

phenotypes with different random seeds for case-control ratios 1:99, 1:9, and 1:1 were simulated with 

�  0. Given τ  1 and 2, the liability scale heritability is 0.23 and 0.38, respectively
28

 (Supplementary 

Section 2.1). Association tests were performed on the 10 million genetic markers for each of the 100 

sets of phenotypes using SAIGE, GMMAT, and BOLT-LMM, therefore in total 10
9 

tests were performed. 

To have a realistic MAF spectrum, MAFs were randomly sampled from the MAF spectrum in UK Biobank 

data (Supplementary Figure 11).  Additional type I error simulations were carried out for five different 

MAFs (0.005, 0.01, 0.05, 0.1 and 0.3) to evaluate type I error rates by MAFs and in the presence of 

population stratification (Supplementary Section 2.2). 

 

For the power simulation, phenotypes were generated under the alternative hypothesis � W 0. For each 

of the MAF 0.05 and 0.2, we simulated 1,000 datasets, and power was evaluated at test-specific 

empirical α, which yields nominal α=5×10
-8

. The empirical α was estimated from the previous type I 
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error simulations. As the same as type I error simulations, three different case-control ratios (1:99, 1:9, 

and 1:1) were considered. 

Note that since we evaluated the empirical type I error rates and power based on genetic variants that 

were simulated independently, the LD Score regression
29

 calibration and the leave-one-chromosome-

out (LOCO) scheme were not applied in BOLT-LMM or SAIGE.   

 

 

 

Phenotype definition in UK Biobank 

 

We used a previously published scheme to defined disease-specific binary phenotypes by combining 

hospital ICD-9 codes into hierarchical PheCodes, each representing a more or less specific disease group
2
.  

ICD-10 codes were mapped to PheCodes using a combination of available maps through the Unified 

Medical Language System(https://www.nlm.nih.gov/research/umls/) and other sources, string matching, 

and manual review. Study participants were labeled a PheCode if they had one or more of the PheCode-

specific ICD codes. Cases were all study participants with the PheCode of interest and controls were all 

study participants without the PheCode of interest or any related PheCodes. Gender checks were 

performed, so PheCodes specific for one gender could not mistakenly be assigned to the other gender. 
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Figure 1. Manhattan plots of association p values resulting from SAIGE, SAIGE-NoSPA(asymptotically

equivalent to GMMAT) and BOLT-LMM for A. coronary artery disease (PheCode 411, case:control = 1:12)

B. colorectal cancer (PheCode 153, case:control = 1:84), C. glaucoma (PheCode 365, case: control = 1:89)

and D. thyroid cancer (PheCode 193, case:control=1:1138). Blue: loci with association p-value < 5x10
-8

,

which have been previously reported, Green: loci that have association p-value < 5x10
-8

 and have not

been reported before. Since results from SAIGE-noSPA and BOLT-LMM contain many false positive

signals for colorectal cancer, glaucoma, and thyroid cancer, the significant loci are not highlighted
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Figure 2. Quantile-quantile plots of association p-values resulting from SAIGE, SAIGE-NoSPA

(asymptotically equivalent to GMMAT) and BOLT-LMM for A. coronary artery disease (PheCode 411

case: control = 1:12), B. colorectal cancer (PheCode 153, case: control = 1:84), C. glaucoma (PheCode

365, case: control = 1:89), and D. thyroid cancer (PheCode 193, case: control=1:1138)
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Table 1. Comparison of different methods for GWAS with mixed effect models  

 

 

Method Features Algorithm Complexity 

Benchmarks for 

UK Biobank Data 

Coronary Artery 

Disease 

(PheCode 411) 

Does not 

require pre-

computed 

genetic 

relationship 

matrix 

Feasible 

for large 

sample 

sizes 

Developed 

for 

binary 

traits 

Accounts 

for 

unbalanced 

case-

control 

ratio 

Tests 

quantitative 

traits 

Time complexity 
Memory usage 

(Gbyte) 

Time 

CPU hrs 
Memory 

Step 1 Step 2 Step 1 Step 2 

Logistic 

mixed 

model 

SAIGE � � � � � O(PM1N
1.5

) 
* O(MN） M1N/4 N 517 10.3G 

GMMAT   �  � O(PN
3

) O(MN
2

) F N
2

 F N
2

 NA NA 

Linear 

mixed 

model 

BOLT-LMM � �   � O(PM1N
1.5

) 
* O(MN） M1N/4 N 360 10.9G 

GEMMA     � O(N
3

) O(MN
2

) F N
2

 FN
2

 NA NA 

 

 

 

N: number of samples 

P: number of iterations required to reach convergence 

M1: number of markers used to construct the kinship matrix;    

M: total number of markers to be tested 

F: Byte for floating number 

* Number of iterations in PCG is assumed as O(N
0.5

)
8
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