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Abstract

Anthracycline-induced cardiotoxicity (ACT) is a key limiting factor in setting optimal chemotherapy

regimes for cancer patients, with almost half of patients expected to ultimately develop congestive heart

failure given high drug doses. However, the genetic basis of sensitivity to anthracyclines such as dox-

orubicin remains unclear. To begin addressing this, we created a panel of iPSC-derived cardiomyocytes

from 45 individuals and performed RNA-seq after 24h exposure to varying levels of doxorubicin. The

transcriptomic response to doxorubicin is substantial, with the majority of genes being differentially ex-

pressed across treatments of different concentrations and over 6000 genes showing evidence of differential

splicing. Overall, our observations indicate that that splicing fidelity decreases in the presence of dox-

orubicin. We detect 376 response-expression QTLs and 42 response-splicing QTLs, i.e. genetic variants

that modulate the individual transcriptomic response to doxorubicin in terms of expression and splicing

changes respectively. We show that inter-individual variation in transcriptional response is predictive of

cell damage measured in vitro using a cardiac troponin assay, which in turn is shown to be associated

with in vivo ACT risk. Finally, the molecular QTLs we detected are enriched in lower ACT GWAS

p-values, further supporting the in vivo relevance of our map of genetic regulation of cellular response to

anthracyclines.
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Introduction

Anthracyclines, including the prototypical doxorubicin, continue to be used as chemotherapeutic agents

treating a wide range of cancers, particularly leukemia, lymphoma, multiple myeloma, breast cancer, and

sarcoma. A well-known side-effect of doxorubicin treatment is anthracycline-induced cardiotoxicity (ACT).

For some patients ACT manifests as an asymptomatic reduction in cardiac function, as measured by left

ventricular ejection fraction (LVEF), but in more extreme cases ACT can lead to congestive heart failure

(CHF). The risk of CHF is dosage-dependent: an early study1 estimated 3% of patients at 400 mg/m2, 7%

of patients at 550 mg/m2, and 18% of patients at 700 mg/m2 develop CHF, where a more recent study

puts these numbers at 5%, 26% and 48% respectively2. Reduced LVEF shows a similar dosage-dependent

pattern, but is not fully predictive of CHF. Perhaps most daunting for patients is that CHF can occur years

after treatment: out of 1,807 cancer survivors followed for 7 years in a recent survey a third died of heart

diseases compared to 51% of cancer recurrence3.

Various candidate gene studies have attempted to find genetic determinants of ACT, but are plagued by

small sample sizes and unclear endpoint definitions, resulting in limited replication between studies. Two

ACT genome-wide association studies (GWAS) have been published4,5. While neither found genome-wide

significant associations using their discovery cohorts, both found one variant that they were able to replicate

in independent cohorts.

A nonsynonymous coding variant, rs2229774, in RARG (retinoic acid receptor γ) was found to be asso-

ciated with pediatric ACT using a Canadian European discovery cohort of 280 patients4, and replicated in

both a European (p = 0.004) and non-European cohort (p = 1×10−4). Modest signal (p = 0.076) supporting

rs2229774’s association with ACT was also reported in a recent study primarily focused on trastuzumab-

related cardiotoxicity6. RARG negative cell lines have reduced retinoic acid response element (RAREs)

activity and reduced suppression of Top2b 4, which has been proposed as a mediator of ACT.

In a different study, a GWAS in 845 patients with European-ancestry from a large adjuvant breast cancer

clinical trial, 51 of whom developed CHF, found no variants at genome-wide significance levels5. However,

one of the most promising variants, rs28714259 (p = 9×10−6 in discovery cohort), was genotyped two further

cohorts and showed modest replication (p = 0.04, 0.018). rs28714259 falls in a glucocorticoid receptor protein

binding peak, which may play a role in cardiac development.

An exciting approach to studying complex phenotypes, including disease, in human is to use induced

pluripotent stem cells (iPSC) and derived differentiated cells as in vitro model systems for disease. Work
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by us and others has demonstrated that iPSCs and iPSC-derived cell-types are powerful model systems

for understanding cell-type specific genetic regulation of transcription7,8,9,10,11, but it is less established

whether these systems can be used to model the interplay of genetic and environmental factors in disease

progression. Encouragingly, the response of iPSC-derived cardiomyocytes (ICs) to doxorubicin was recently

extensively characterized12. ICs derived from four individuals who developed ACT after doxorubicin treat-

ment (“DOXTOX” group) and four who did not (“DOX” group), showed clear differences in viability (via

apoptosis), metabolism, DNA damage, oxidative stress and mitochondrial function when exposed to dox-

orubicin. These observations suggest that ICs recapitulate in vivo inter-individual differences in doxorubicin

sensitivity. Gene expression response differences between the DOX and DOXTOX groups were found using

RNA-sequencing data, but the sample size was insufficient (RNA-seq was generated for only 3 individuals in

each group) to attempt mapping of genetic variants that might explain the observed functional differences

between individuals.

Here we used a panel of iPSC-derived cardiomyocytes from 45 individuals, exposed to five different drug

concentrations, to map the genetic basis of inter-individual differences in doxorubicin-sensitivity. We find

hundreds of genetics variants that modulate the transcriptomic response, including 42 that act on alternative

splicing. We show that the IC transcriptomic response predicts cardiac troponin levels in culture (indicative

of cell lysis) in these cell-lines, and that troponin level is itself predictive of ACT. Finally we demonstrated

that the mapped genetic variants show significant enrichment in lower ACT GWAS p-values.

Results

Measuring transcriptomic response to doxorubicin exposure

We generated iPSC-derived cardiomyocytes (ICs) for 45 Hutterite individuals (Figure 1a), and confirmed

cardiomyocyte identity (see Methods). We exposed all 45 IC lines to doxorubicin at 5 different concentrations

for 24 hours, after which samples were processed for RNA-sequencing. We obtained sufficient read depth

(10M exonic reads) for downstream analysis for 217 of the 5× 45 = 225 individual-concentration pairs, and

confirmed sample identity by calling exonic SNPs (see Methods). We observed a strong gene regulatory

response to doxorubicin across all concentrations, with 98% (12038 / 12317) of quantifiable genes (5% FDR)

showing differential expression across the different treatment concentrations. Our data shows excellent

concordance with an existing smaller RNA-seq dataset12 (Supplementary Figure S1). Principal component

analysis (PCA, Figure 1b) confirms that the main variation in the data is driven by doxorubicin concentration
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Figure 1: The transcriptomic response of cardiomyocytes to doxorubicin is substantial. a. Cardiomyocytes
were derived from lymphoblastoid cell lines (LCLs) of 45 Hutterite individuals, followed by exposure to dif-
fering concentrations of doxorubicin and RNA-sequencing. b. PCA of gene expression levels across samples
reveals that doxorubicin concentration explains more variance than inter-individual differences, and that the
response is non-linear with respect to concentration. c. A probabilistic mixture model uncovers six distinct
patterss of response across genes.

and that the effect of concentration on gene expression is nonlinear. For some individuals the expression

data following doxorubicin treatment with 1.25µM is closer to the data from treatment with 0.625µM ,

whereas for others it is closer to data from treatment with 2.5µM . This general pattern provides the

first indication in our data that that there is systematic variation in how different individuals respond to

doxorubicin exposure. Since the majority of genes appear responsive to doxorubicin we clustered genes into

six distinct response patterns using a mixture model approach (Figure 1c, see Methods). From largest to

smallest, these clusters represent genes that, through the gradient from low to high concentration treatments,

are 1) down regulated 2) initially up-regulated, then further down-regulated 3) up-regulated 4) transiently

down regulated 5) transiently up-regulated 6) down-regulated then partially recover (Supplementary Table

1). Gene set enrichments (Supplementary Figure S2, Supplementary Table 2) for the up-regulated cluster

include metabolic, mitochrondrial and extracellular processes, as well as known doxorubicin response genes

in breast cancer cell lines13. The down-regulated cluster shares genes with those down-regulated in response

to UV light, which, like doxorubicin, causes DNA-damage. Targets of p53, a transcription factor that

responds to DNA damage, are overrepresented in clusters 2 and 5; these clusters involve up-regulation at low

concentrations (0.625µM) but down-regulation at higher concentrations. Promoter analysis (Supplementary

Figure S3, Supplementary Table 3) revealed 21, 45, and 6 significantly enriched transcription factor (TF)

binding motifs for clusters 1, 2 and 3 respectively (and none for cluster 4-6). Examples include binding

sites for ZNF145, a TF that promotes GPX1 activity and protects cells from oxidative damage during
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mitochondrial respiratory dysfunction14, which is enriched in cluster 1 (down regulation w/ dox); RONIN,

a regulator of mitochrondrial development and function15, which is enriched in clusters 1 and 2; and MEF2,

myocyte enhancer factor 2, involved in regulating muscle development, stress-response and p38-mediated

apoptosis16, enriched in cluster 4 (although only at q = 0.33).

Mapping variants modulating doxorubicin response

We next sought to map single nucleotide polymorphisms (SNPs) that modulate the observed inter-individual

transcriptomic response to doxorubicin, leveraging available genetic variation across the 45 individuals17. We

developed a linear mixed model approach, called suez that extends the PANAMA framework18 to account for

relatedness amongst individuals, repeat measurements, multiple conditions and latent confounding. Testing

SNPs within 1Mb of the transcription start site (TSS), 518 genes have a variant with a detectable marginal

effect on expression (5% FDR, Supplementary Table 4). Reassuring, these eQTLs show strong replication

(Storey’s π1 = 0.80) in GTEx heart tissue, and do so more strongly than in GTEx brain (π1 = 0.69) or

lymphoblastoid cell line (π1 = 0.72) data (Figure 2a). Remarkably, even with our moderate number of

individuals, we are able to detect many response-eQTLs (reQTLs), i.e. variants that modulate (directly or

indirectly) transcriptomic response to doxorubicin. We found reQTLs for 376 genes at a nominal 5% FDR

(Supplementary Table 5), which we estimate using a parametric bootstrap corresponds to a true FDR of

8.5% (Figure 2b).

To characterize the detected reQTLs we assigned the response of the major and minor allele to one of

the six clusters previously learned (Figure 1c), with heterozygotes expected to display the average of the two

homozygous responses. 172 (46%) of reQTLs result in a qualitatively distinct response as determined by

the two alleles being assigned to different clusters. The most common transition, occurring for 33 reQTLs,

is that the major allele is associated with simple down-regulation (cluster 1) in response to doxorubicin,

whereas the minor allele shows a transient up-regulation at low concentration followed by down-regulation

at higher concentration (cluster 2).

We further broke-down the significant reQTLs by considering the effect of genotype on expression at

each concentration (βc in Equation 6). We normalized the effect sizes relative to the βc with the largest

absolute value, i.e. we consider βc/βargmax |βc′ |, so that the largest genotype effect always corresponds to

a normalized value of 1. The resulting normalized effect profiles were split into 9 clusters using k-means

clustering (Figure 2d). The largest cluster (cluster 1, 85 reQTLs) represents reQTLs with a modest effect

size at low concentrations (0, 0.625µM) which is amplified at higher concentrations (Figure 2e shows a
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Figure 2: Genetic variation regulates the transcriptomic response to doxorubicin exposure. a. Marginal
eQTLs show strong replication in GTEx heart data, and lower replication in other tissues. b. We detect
100s of response-eQTLs (reQTLs): variants that modulate response to doxorubicin. The false positive rate
(FPR) is estimated using a parametric bootstrap. c. We developed a statistical method to assign the major
and minor allele response to one of the six clusters from Figure 1c. The strongest 46% of detected reQTLs
result in a discretely different response, whereas the remainder only modulate the response. d. For significant
reQTLs we calculated relative genotype effect sizes by dividing the fitted effect size at each concentration by
the (signed) effect size with the largest absolute value. K-means clustering of these effect size profiles reveals
distinct patterns, the most common being a small reduction in absolute effect size from 0 to 0.625µM followed
by the largest effects being at the highest concentrations. e. An example response-eQTL where rs112594884
regulates the response of the mitochondrial complex I chaperone NDUFAF1. Under the major (T) allele
we see moderate down-regulation at 0.625µM followed by up-regulation at higher concentrations. Under
the minor (G) allele, there is little change at 0.625µM followed by substantial down-regulation. Since the
genotype effects are reduced at 0.625µM and largest at high concentrations this reQTL is assigned to cluster
1 of panel d.
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highly significant example). Cluster 2 corresponds to reQTLs whose effect size is attenuated at the 0.625µM

treatment: examples of reQTLs in this cluster tend to be associated with higher expression level at the

0.625µM treatment (e.g. rs16853200’s association with ABCA12 response, Supplementary Figure S4).

Doxorubicin exposure reduces splicing fidelity

Oxidative stress, a major downstream consequence of doxorubicin exposure, disrupts splicing of individual

genes including HPRT, POLB 19, and SMA20. We queried the extent to which doxorubicin exposure disrupts

splicing patterns across the transcriptome using LeafCutter21. Across all samples LeafCutter detected

27769 alternative splicing “clusters” (referred to here as “ASCs” to avoid confusion with k-means clusters) ,

which correspond approximately to splicing events, with a median of 3.0 splice junctions per ASC. Of these,

10430 (59%) ASCs, corresponding to 6398 unique genes, showed an effect of doxorubicin exposure on splicing

outcomes (5% FDR, Supplementary Tables 6-7). To characterize these changes we calculated the entropy of

the splicing choices made for each significant ASC at each concentration and used k-means clusters patterns

of change in entropy (Figure 3a). The largest cluster has 6166 ASCs (59%), and corresponds to the null

of no clear change in entropy across concentrations. Clusters 2 (n = 1136) and 5 (n = 475) correspond to

increasing entropy with concentration, and clusters 3, 4, 6, 8 and 9 correspond to the maximum entropy

being at different concentrations and reaching different maximum levels. Interestingly, only the relatively

small cluster 8 (n = 304, 3% of ACSs) corresponds to a reduction in entropy at higher concentrations,

suggesting the dominant behavior is reduced splicing fidelity and increased alternative splicing in response

to doxorubicin.

We further tested the hypothesis that splicing fidelity decreases in the presence of doxorubicin by com-

paring patterns of intronic percent excised (Ψ) with canonical vs cryptic (unannotated) splice site usage.

We clustered the 7792 introns in significantly differentially spliced ASC, that have a change in percent ex-

cised (∆Ψ) > 0.1 for some pair of concentrations, into 8 response patterns based on their relative excision

proportions across concentrations. For each cluster we calculated the proportion of member introns with

neither end annotated, one end unannotated, or both ends annotated (Figure 3b). The clusters representing

increased Ψ with concentration (clusters 2, 4, 6 and 7) all show enrichment for cryptic splice site usage.

The two most populous clusters (1 and 2) correspond to Ψ decreasing and increasingly continuously with

doxorubicin concentration, respectively, and the difference in levels of cryptic splicing is extremely apparent

(hypergeometric p < 2× 10−16, odds ratio for one annotated end vs two is 28.0).

We additionally used LeafCutter quantification of percentage spliced in (PSI) for each splice junction to
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Figure 3: Doxorubicin exposure significantly impacts alternative splicing. a The entropy of splicing choices in-
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8

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2017. ; https://doi.org/10.1101/212381doi: bioRxiv preprint 

https://doi.org/10.1101/212381
http://creativecommons.org/licenses/by/4.0/


map splicing QTLs (sQTL) and response-splicing QTLs (rsQTL) using the same methodology as we employed

for reQTL mapping. We tested SNPs within 100kb of either end of the splice junction. At 5% FDR we found

467 ASCs with a marginal effect sQTL (Supplementary Table 8) and 42 with a rsQTL (Supplementary Table

9). An example rsQTL is rs72922482’s association with inclusion of exon 2 of APAF1 Interacting Protein

(APIP). Under the major T allele exon skipping is extremely rare: the LeafCutter PSI for the spanning

junction ranges from 0.00059 to 0.0049 across concentrations (Figure 3c). In rs72922482 heterozygotes,

however, the exon is skipped in a significant proportion of transcripts, and this effect is most pronounced

in the data collected after treatment at 1.25µM , with approximately 50% exon inclusion, suggesting the

minor C allele results in very low inclusion of the cassette exon. Another interesting example is NDUFAF6,

another mitochrondrial Complex I protein, where doxorubicin exposure (particularly at 0.625µM) results

in increased use of an alternative downstream transcription start site (TSS) which unmasks the influence of

rs896853 on a cassette exon between the two alternative TSS (Supplementary Figure S5).

Transcriptional response to doxorubicin is predictive of in-vitro cardiac-damage indicator tro-

ponin

We used the level of cardiac troponin released into the culture media by lysed cardiomyocytes (see Meth-

ods, Supplementary Table 10) to estimate damage occurring as a result of doxorubicin exposure at different

concentrations. We observed significant variation in measurable damage caused by doxorubicin across in-

dividuals, with 13 of 45 cell lines having a significant correlation between doxorubicin dose and troponin

measurement (Figure 4a). We first sought to determine whether the inter-individual variation in troponin in

culture could be explained by variation in the overall gene expression response. Since we are interested in this

case in inter-individual differences rather than differences between concentration we normalized the troponin

measurements to have 0 mean and variance of 1 across samples at each doxorubicin treatment. We found

96.1% (95% credible interval [91.5%98.6%]) or 91.5% of the variance in this normalized troponin response

could be explained using gene expression levels (we excluded the troponin genes TNNT1-3 and TNNI1-3

from the analysis) at the corresponding doxorubicin concentrations, using a GREML-analysis22 or leave-out-

one cross validated LASSO23 respectively. The optimal LASSO model included 118 genes (Supplementary

Table 11).

To further explore the relationship between transcriptomic response and troponin presence in culture, we

analyzed differential expression (DE) with respect to troponin measurement at each doxorubicin concentra-

tion separately. We found 0, 7, 78, 2984 and 2863 differentially expressed genes (5% FDR, Supplementary
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Figure 4: Transcriptomic response is predictive of doxorubicin induced damage as measured by cardiac tro-
ponin. a. We measured cardiac troponin, a sensitive and specific test for myocardial cell damage, in response
to doxorubicin, across all cell lines. b. We performed differential expression analyses with respect to troponin
at each concentration separately, and observed more differentially expressed genes at higher concentrations
corresponding to an increased dynamic range of troponin response. c. We took differentially expressed genes
(5% FDR) at each concentration and checked for “replication” (nominal p < 0.05) at the other concentrations.
Note that no differentially expressed genes were discovered in control condition (0µM). d. We summarized
gene expression response by first fitting a “principal curve” following increasing doxorubicin concentration,
and then measuring the rate of progression along this curve for each individual. e. Increased transcriptomic
response is associated with reduced cardiac troponin levels, suggesting that the bulk of expression changes
we observe are in fact protective against cardiac damage. f. We trained a model to predict ACT risk from
gene expression response using available 3 v. 3 case/control data12 and applied this model to our data. Pre-
dicted ACT risk correlated significantly with the slope of troponin response (Spearman ρ = 0.38, p = 0.01),
supporting the in vivo disease relevance of our IC system.
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Table 12) at the 5 concentrations respectively (Figure 4b). The most strongly DE gene (with respect to

effect size) at the 5µM treatment is DUSP13, a known regulator of ASK1 -mediated apoptosis24. The large

number of DE genes at the 2.5µM and 5.0µM treatments are broadly shared (nominal replication rate 82%

to 85%), and DE genes at the 1.25µM treatment generally represent the most strongly DE genes at the

higher concentrations (Figure 4c).

To compare troponin measurements to transcriptomic response we determined an overall per-individual

level of transcriptomic response with respect to doxorubicin concentration. To this end we fit a principal

curve25 through all gene expression samples, initializing the curve to pass sequentially through the succes-

sive doxorubicin concentrations (Figure 4d). Projecting every sample on the principal curve gives a single

measure of “progression” through response to doxorubicin at increasing concentrations. We then regressed

these values against concentration for each individual to obtain a progression rate. We found the troponin

measurement slope is significantly negatively correlated (Spearman ρ = −0.42, p = 0.004, Figure 4e) with

the transcriptomic response rate, suggesting that much of the gene expression program being activated in

response to doxorubicin is in fact protective against cardiac damage.

Using previously published data12, we built a predictive model of ACT risk trained on RNA-seq of ICs

exposed to 1µM doxorubicin from doxorubicin-treated patients who did (“DOXTOX”, n = 3) or did not

(“DOX”, n = 3) develop ACT. Using LASSO with fixed λ = 10−5 the optimal model included 17 genes

as features (Supplementary Table 13). We applied this model to our expression data from the 0.625µM

treatment (since this concentration shows excellent concordance with the 1µM data of Burridge et al., see

Supplementary Figure S1) to obtain predicted log-odds of ACT. While these log-odds are unlikely to be well-

calibrated due to differences in the training and test datasets, they may still accurately represent relative risk

of ACT across our 45 individuals. Indeed, the log-odds correlated significantly with the troponin response

slope (Spearman correlation p = 0.01, Figure 4f), suggesting our troponin measurements, and by extension

our expression response data, recapitulate in vivo cellular response to doxorubicin.

Cardiomyocyte molecular QTLs show enrichment in ACT GWAS

To determine the disease-relevance of our molecular QTLs we obtained summary statistics for the largest

ACT GWAS to date5. While this GWAS was not sufficiently powered to find genome-wide significant

associations, 11 variants representing 9 independent loci have p < 10−5, with the most significant (rs2184559)

at p = 2.8 × 10−6. Of the 8 GWAS variants with p < 10−5 either tested in our eQTL mapping, or in high

LD (R2 > 0.8) with a tested SNP, 7 have a nominally significant marginal eQTL (p < 0.05, the 8th has
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Figure 5: Cardiomyocyte molecular QTLs are enriched in the largest available ACT GWAS5. a. rs4058287
has a GWAS p-value of 9.68 × 10−6 and is a nominally significant eQTL (p = 0.0016) for ALPK2, which
is down-regulated in response to doxorubicin. b. SNPs that have either a marginal or response eQTL with
p < 10−5 are enriched in GWAS variants with p < 0.05 (hypergeometric test p = 3× 10−6). c. SNPs with a
marginal or response splicing QTL at p < 10−5 show modest enrichment in GWAS p < 0.005 (hypergeometric
p = 0.02).

p = 0.07) and four have a reQTL with p < 0.1. The one replicated variant in this GWAS, rs28714259, was

not genotyped in our data but is in high LD (R2 = 0.98) with rs11855704 which is a nominally significant

marginal eQTL for tubulin gamma complex associated protein 5 (TUBGCP5, Supplementary Figure S6).

rs4058287 (GWAS p-value 9.68 × 10−6) has a marginal effect on Alpha-Protein Kinase 2 (ALPK2, also

known as “Heart Alpha-Protein Kinase” since it was discovered in mouse heart26 and is expressed in few other

tissues27) expression (p = 0.0016) as well as a weak interaction effect (p = 0.06, see Figure 5a). Interestingly,

ALPK2 has been shown to upregulate DNA repair genes and to enable caspase-3 cleavage and apoptosis in

a colorectal cancer model28. The replicating variant from Aminkeng et al.4, rs2229774 only occurs in two

individuals in our cohort (who are heterozygous) making eQTL mapping infeasible. Additionally we find a

marginal effect eQTL (p = 0.0017, Supplementary Figure S7) on SLC28A3 for rs885004, which has previously

been associated with ACT in a candidate gene study29. rs885004 is intronic, falls in DNase I hypersensitivity

and H3K27ac peaks and is in LD (R2 = 0.98) with another ACT implicated variant, rs785375830.

Since the GWAS was overall underpowered, we additionally assessed whether there was detectable en-

richment of low GWAS p-values for our regulatory QTLs. We considered SNPs with either a marginal or

response eQTL with nominal p < 10−5 (corresponding approximately to 5% FDR) and found a significant

enrichment for GWAS p-values under 0.05 (one-sided hypergeometric p = 3×10−6, OR=1.2, Figure 5b). We

observed a more modest enrichment for splicing QTLs: using the same criteria to define a set of sQTL vari-
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ants we observe significant enrichment in GWAS p-values under 0.005 (one-sided hypergeometric p = 0.02,

5c) but not under 0.05 (one-sided hypergeometric p = 0.7).

Discussion

Human iPSC-derived somatic cells provide a powerful, renewable and reproducible tool for modeling cellular

responses to external perturbation in vitro, especially for non-blood cell-types such as cardiomyocytes which

are extremely challenging to collect and even then are typically only available post-mortem. We established a

sufficiently large iPSC panel to effectively query the transcriptomic response of differentiated cardiomyocytes

to doxorubicin. We were also able to characterize the role of genetic variation in modulating this response,

both in terms of total expression and alternative splicing. There are, of course, caveats associated with

using an in vitro system, which may not accurately represent certain aspects cardiac response to doxorubicin

in vivo. That said, the replication of GTEx heart eQTLs, association of troponin levels with predicted

ACT-risk12, and the observed GWAS enrichment, all support the notion that the IC system recapitulates

substantial elements of in vivo biology. It is challenging to quantify this agreement however, and there are

in vivo factors that are certainly not represented: in particular, excessive fibrosis plays a role in ACT31,32,33,

although it is unclear whether fibroblasts are directly activated by doxorubicin exposure or simply respond

indirectly to cardiomyocyte damage.

For many diseases such as ACT which involve an environmental perturbation it is reasonable to suppose

that eQTLs detected at steady-state are only tangentially relevant when attempting to interpret disease

variants. Such concerns motivated us to focus on response eQTLs, i.e. variants that that have functional

consequences under specific cellular conditions because they interact, directly or indirectly, with the treat-

ment. We used a statistical definition of reQTLs corresponding to cases where gene expression levels are

significantly better explained using a model including an interaction term between genotype and treatment

(represented as a categorical variable), compared to a model with only additive effects for genotype and

treatment. Our characterization of the detected reQTL demonstrates that these variants are indeed candi-

date drivers of differences in individual transcriptomic response to doxorubicin. The strongest reQTL effects

correspond to completely different response patterns for the major and minor alleles, while weaker effects

correspond to more subtle modulation of the same response pattern. We note that it is not necessarily the

case that such reQTLs are the only functionally relevant eQTLs. eSNPs with a marginal (additive) effect on

expression of a gene responsive to doxorubicin (as most genes are) could still be important if the relationship

between expression and ACT-risk is nonlinear, for example involving thresholding effects.
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We observed a statistical enrichment of expression and (to a lesser extent) splicing QTLs in ACT GWAS.

However, with no genome-wide significant associations available, fine-mapping of causal variants remains

fraught. We anticipate our findings will be increasingly valuable as larger-scale ACT GWAS become available.

We derived ICs from healthy individuals so we do not known which individuals would develop ACT if they

required anthracycline treatment. Mapping molecular response QTLs in larger panels of ICs from patients

treated with anthracyclines who do or do not develop ACT symptoms would allow stronger conclusions to

be drawn about the contribution of the detected (r)eQTLs to disease etiology.

Finally, an interesting observation in our study is that splicing fidelity is reduced upon doxorubicin

exposure. This is not completely unexpected since a key downstream side-effect of doxorubicin is increased

oxidative stress, which has been previously associated with dysregulated splicing of specific genes19,20. Our

finding that this effect is prevalent across the transcriptome poses further questions about what known effects

of doxorubicin might, in fact, be mediated by changes in splicing.

Methods

Sample collection and genotyping

Generation of lymphoblastoid cell lines (LCLs) and genome-wide genotyping of many individuals from a

multi-generational pedigree were performed previously. Briefly, lymphocytes were isolated from whole blood

samples using Ficoll-Paque and immortalized using Epstein Barr Virus34,35. Phased genotypes were ob-

tained by combining pedigree information, genotypes from SNP arrays, and genotypes from whole genome

sequencing of related individuals17.

iPSC reprogramming and cardiomyocyte differentiation

We reprogrammed the 45 LCLs to iPSCs using episomal plasmid vectors, containing OCT3/4, p53 shRNA,

SOX2, KLF4, L-MYC, and LIN28 which avoids integrating additional transgenes36. Initially, the lines were

generated on mouse embryonic fibroblasts (MEF), which coated the well and served as feeder cells to create

an environment supportive of pluripotent stem cells. The colony was then mechanically passaged on MEF

and tested for expression of pluripotency-associated markers by immunofluorescence staining and RT-PCR.

The lines were passaged for at least 10 weeks on MEF to ensure lines had stabilized. We characterized

the iPSC lines using the embryoid body assay, karyotyping, and the PluriTest37 classifier. iPSC lines were

then transitioned to feeder-free conditions, which was necessary to prime the iPSCs for differentiation. Next

14

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2017. ; https://doi.org/10.1101/212381doi: bioRxiv preprint 

https://doi.org/10.1101/212381
http://creativecommons.org/licenses/by/4.0/


we differentiated the iPSCs to cardiomyocytes38,39. iPSC lines were covered with a 1:60 dilution matrigel

overlay for 24 hours. On day 0 iPSC lines were treated with 12µM of the GSK3 inhibitor, CHIR99021, in

RPMI+B27 medium (RPMI1640, 2nM L-glutamine and 1x B27 supplement minus insulin) for 24 hours at

which time media was replaced with fresh RPMI+B27. 72 hours after the addition of CHIR99021 (Day 3),

2µM of the Wnt inhibitor Wnt C-59 was added for 48 hours. Fresh RPMI+B27 was added on Days 5, 7 and

10. Beating cells appeared between Days 8-10. These cardiomyocytes consisted of ventricular, atrial and

pacemaker-like cells. The cells formed thick layers and contract throughout the well. Metabolic selection was

used to purify the cardiomyocytes40 from Day 14 to Day 20 when glucose-free RPMI media supplemented

with the components essential for cardiomyocyte differentiation39, ascorbic acid and human serum albumin,

together with lactate, a substrate uniquely metabolized by cardiomyocytes, was added to cells. Because

this lactate media can only be metabolized by cardiomyocytes, the non-cardiomyocytes in the culture were

removed over the 6 day treatment. On day 20 the cardiomyocytes, now at a high cTnT purity, were replated

for experiments in media that contains only galactose and fatty acids as an energy source. This galactose

media forces the cardiomyocytes to undergo aerobic respiration, rather than anaerobic glycolysis common in

cultured cells.

Doxorubicin exposure

We incubated the cardiomyocytes in 0, 0.625, 1.25, 2.5, or 5 µM doxorubicin. After 24 hours, we collected

the serum and cells from each condition. From the serum, we measured cardiac Troponin T levels using

the ABNOVA Troponin I (Human) ELISA kit (cat. no. KA0233). From the cells, we extracted RNA for

sequencing. Each treatment batch contained 1 to 4 individuals. RNA quality was assessed with the Agilent

Bioanalyzer.

RNA-sequencing

We prepared libraries using the Illumina TruSeq Library Kit and generated 50bp single-end reads on a

HiSeq 4000 at the University of Chicago Functional Genomics Facility. We confirmed sequencing quality

using FastQC and MultiQC41. We confirmed sample identity by 1) comparing allelic counts (quantified

using samtools mpileup42) of exonic SNPs to the known genotypes and 2) running verifyBamID43.
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Expression quantification

We aligned RNA-seq reads using STAR version 2.5.2a44 to GRCh38/GENCODE release 24. We counted

reads using featureCounts45 and calculated counts per million reads (cpm) using ‘cpm‘ from the ‘edgeR‘ R

package (version 3.18.1)46. We discarded samples with < 109 reads and genes with median log2(cpm) less

than 0.

Differential expression analysis

We performed differential expression (DE) analysis across all 5 doxorubicin concentrations jointly, using either

a linear model on quantile normalized cpm value or Spearman correlation, followed by Benjamini-Hochberg

False Discovery Rate (FDR) control. Since the vast majority of genes showed differential expression we did

not investigate better powered DE methods such as DESeq2.

We clustered genes into “response patterns” using a K-component mixture model

π ∼ Dir(1/K, · · · , 1/K)

zg|π ∼ Discrete(π)

yngc|zg = k, θ ∼ N(θck, σ
2) (1)

where π is a prior probability vector over cluster assignments, Dir is the Dirichlet distribution, zg is cluster

from which gene g is generated, yngc is the expression of gene g in individual n at concentration c, θck

is the mixture parameter (mean) across concentrations for cluster k, and σ2 is a shared noise variance.

We marginalize (sum) over zg and optimize with respect to π, θ, σ using the rstan R package47 (version

2.16.2). The hyperparameters of the Dirichlet distribution are set such that in the limit of large K the model

approximates a Dirichlet process mixture48 which automatically learns of an appropriate number of mixture

components to use from data.

Gene set and promoter motif enrichment were performed using HOMER v4.9.149 using default parameters

and without de novo motif search.

Response eQTL mapping

We developed an extension of the PANAMA18 linear mixed model (LMM) framework to map eQTLs and

response eQTLs while accounting for latent confounding, which we call suez. suez entails a two step
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procedure. Step one is used to learn latent factors from all genes, using the model

yncg =
∑
k

Wkgxnck + ung + vcg + ξncg + εncg

Wkg ∼ N(0, σ2
k) factor loadings/coefficients

ung ∼ N(0, σ2
u) individual random effects

ξ ∼MVN(0, σ2
ξΣ) kinship random effect

ε ∼MVN(0, diag(σ2
ε )) noise

where xnck are latent factors, vcg are per gene, per concentration fixed effects. We integrate over W,u, ξ and

ε, which results in a per gene multivariate normal,

y:g ∼MVN

(
V v:g,

∑
k

σ2
kx:kx

T
k: + σ2

uU + σ2
ξΣ + σ2

eI

)
, (2)

where y:g refers to the vector of expression for gene g across all individuals and concentrations (i.e. all

“samples” where a sample is an individual-concentration pair), V is a matrix mapping concentrations to

samples (i.e. Vsc = 1 iff sample s is at concentration c) and U is a matrix of which samples are for the same

individual (i.e. Uss′ = 1 if sample s and sample s′ come from the same individual). We optimize x, v and

the variances {σ2
u, σ

2
k, σ

2
ξ , σ

2
ε } jointly across all genes g.

In step 2 we test individual gene-SNP pairs while accounting for confounding using the covariance matrix

Σπ =
∑
k

σ2
kx:kx

T
k: + σ2

uU + σ2
ξΣ (3)

which includes both latent confounding, individual random effects and similarity due to kinship. We consider

three LMMs, all with the same parameterization of the covariance σ2
πΣπ+σ2

eI where σ2
π and σ2

e are optimized

along with the fixed effects to allow the extent to which each gene follows the global covariance pattern to

be adapted. The simple structure of this covariance also allows pre-computation of the eigen-decomposition

of Σπ which enables linear (rather than cubic) time evaluation of the likelihood and its gradient.

Model 0 involves no effect of the SNP (and can therefore be fit once for a gene), a fixed effect for concen-

tration. Model 1 adds a marginal effect of the SNP genotype dosage d. Finally model 2 adds an interaction

effect between concentration and genotype, which is equivalent to a concentration-specific genotype effect.
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In summary:

Model 0: E[yncg] = vcg (4)

Model 1: E[yncg] = vcg + βdn (5)

Model 2: E[yncg] = vcg + βcdn (6)

We optimize σ2
π, σ2

e and the regression coefficients for each of the three models separately, and use likelihood

ratio tests (LRT) to compare the models. Comparing Model 1 vs 0 (one degree of freedom) tests whether

there is a marginal effect of the variant. Comparing Model 2 vs 1 (C − 1 = 4 degrees of freedom, where

C is the number of conditions/concentrations) tests whether there is an interaction effect, i.e. whether the

genetic effect on expression is different at different concentrations (or equivalently whether the response to

doxorubicin is different for different genotypes). Finally Model 2 vs 0 (C = 5 degrees of freedom) tests

whether there is any effect of genotype on expression, either in terms of a marginal or concentration-specific

effect. We use the conservative approach of using Bonferroni correction across SNPs for a gene, followed by

Benjamini-Hochberg FDR control.

We quantile normalize the expression levels across all samples for each gene to a standard normal distri-

bution so that the distributional assumptions of our linear mixed model are reasonable. However, optimizing

the variance parameters σ2
π and σ2

e means that the χ2 distribution for the LRT will only hold asymptotically

and p-values for finite sample sizes will tend to be somewhat anti-conservative. To account for this for

response-eQTLs, we use a parametric bootstrap since there is no fully valid permutation strategy for testing

interaction effects. This involves first fitting Model 1 and then simulating new expression data under the

fitted model. Models 1 and 2 are then (re)fit to this data and compared using an LRT. We then perform

Bonferroni correction across SNPs for each gene to obtain an empirical null distribution of per gene p-values

which we use to estimate the true FDR for our response-eQTL results.

For significant reQTLs we assigned the response of the minor allele and major allele to the previously

determined clusters using the model

ync|zA, za, θ ∼ N
(

1

2
dnθczA +

1

2
(2− dn)θcza , σ

2

)
,

where ync is the expression for individual n at concentration c, zA and za are the cluster assignments for

the major and minor allele respectively, dn ∈ {0, 1, 2} is the genotype dosage, and θ and σ2 are fixed at the
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values learned in Equation 1. For each reQTL separately we calculate the likelihood of y given all possible

pairs of assignments (zA, za) and choose the maximum likelihood solution.

As for all k-means clustering in the paper, we used KMeans rcpp function of the R package ClusterR

v1.0.6, taking the best of 10 initializations using the k-means++ option, to cluster the normalized genotype

effect profiles of the significant associations. The choice of 9 clusters was determined manually.

Splicing analysis

We ran LeafCutter v0.2.6 dev (using default settings) which allows joint differential intron excision testing

across more than two conditions. For each Alternative Splicing Cluster (ASC) LeafCutter fits a set of

PercentSplicedIn probability vectors ψc, across detected splice junctions i, at each concentration c. For

ASCs determined to be significantly (5% FDR) differential spliced across concentrations, we calculated the

entropy hc = −
∑
i ψci logψci at each concentration c. We normalized these profiles as h̃c = hc/h̄c and

clustered these profiles, using KMeans rcpp as above.

To investigate the relative usage of cryptic splice sites we first determined the set of 7792 splice junctions

that a) fell in ASCs determined to be significantly differentially spliced (5% FDR) and b) had maxc ψci −

minc ψci > 0.1. We obtained normalized intron excision rates by subtracting the per intron mean and

dividing by the per intron standard deviation. These ψ profiles were clustered using KMeans rcpp. Cryptic

splice site usage was determined by considering all exons in Gencode v26 and ignoring transcript structure

(i.e. a junction spanning two splice sites used but only in different transcripts would still be considered

“annotated”).

For (response) splicing QTL we calculated within ASC intron excision ψ with pseudocount of 0.5, and

set entries with 0 denominator (no reads for that ASC in that sample) to the mean across all other samples.

These values were then 1) z-score normalized across samples and 2) quantile normalized to a normal across

introns. QTL mapping was then performed using suez considering each intron as a “gene”.

Modeling cardiac troponin response

We assessed the proportion of variance in cardiac troponin response explained by gene expression response.

Let yci represent the troponin level measured in individual i at doxorubicin concentration c, normalized to

have 0 mean and variance 1 across individuals at each concentration. Let xcig be the expression of gene g
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(in individual i at concentration c), z-score normalized across samples. We consider the linear model

yci =
∑
g

βgxcig + εci (7)

where εci ∼ N(0, σ2
ε ) is noise and the coefficients βg are given a prior N(0, σ2

β/G) where G = 12, 317 is the

number of genes in the analysis. Integrating over βg we have

y: ∼ N

(
0, σ2

β

1

G

∑
g

x:gx
T
:g + σ2

ε I

)
(8)

We optimize this model wrt σβ and σε to obtain an estimate σ2
β/(σ

2
β + σ2

ε ) of the percent variance of y

explained by x.

Code and data availability

All the custom analysis scripts used for this project are available at https://github.com/davidaknowles/

dox. The suez response eQTL mapping R package is available at https://github.com/davidaknowles/

suez. The following data are available as Supplementary Data: 1) differential expression cluster assignments,

2) significant (5% FDR) eQTLs and sQTLs, 3) differential splicing results, 4) levels of cardiac troponin and

the predicted transcriptomic response. In addition to the Supplementary Data included with this paper

full results are hosted at http://web.stanford.edu/~dak33/dox/ including 1) gene-by-sample matrix of

RNA-seq quantification (log counts per million), 2) LeafCutter intron excision quantification 3) p-values for

all tested eQTLs, reQTLs, sQTLs, and rsQTLs. The RNA-seq FASTQ files will be added to the dbGaP

database50 under dbGaP accession phs000185 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs000185). The genotype data files cannot be shared because releasing genotype

data from a subset of individuals in the pedigree would enable the reconstruction of genotypes of other

members of the pedigree, which would violate the original protocol approved by the research ethics board17.

The summary statistics for the ACT GWAS were given to us by the authors of the study5.
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Figure S1: Our expression data is concordant with an existing small RNA-seq dataset12. DOXTOX and
DOX correspond to samples from patients that did and did not develop ACT after doxorubicin chemother-
apy respectively. We additionally see that the transcriptional response at higher concentrations cannot be
extrapolated from that at lower concentrations. Higher concentrations are not shown since including these
compresses the first PC obscuring the relevant variation.
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Figure S2: Gene set enrichment analysis of genes in each response cluster confirms expected patterns:
metabolic, mitochrondrial and DNA damage processes, as well as existing doxorubicin response genes.
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Figure S3: Enrichment of transcription factor binding motifs for each response pattern, using HOMER. **
denotes q < 0.05, * denotes q < 0.5.
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Figure S5: Doxorubicin exposure results in the use of a downstream alternative TSS which uncovers an
association between rs896853 genotype and inclusion of the exon at chr8:94975318-94975415.
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Figure S6: rs28714259, the one replicated variant from Schneider et al.5 is in high LD (R2 = 0.98) with
rs11855704, which is a nominally significant (p = 0.036) eQTL for TUBGCP5. TUBGCP5 is strongly
down-regulated in the presence of doxorubicin.
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Figure S7: The intronic (to SLC28A3) rs885004, and the closely linked (R2 = 0.98) synonymous vari-
ant rs7853758, have been associated with ACT by candidate gene studies30,29. We find rs885004, but not
rs7853758, has a significant marginal effect on SLC28A3 expression.
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