Tracing the Ancestry of Operons in Bacteria

Huy Nguyen¹, Ashish Jain², Oliver Eulenstein³, Iddo Friedberg¹,³*,

¹ Dpt. of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
² Dpt. of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
³ Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
⁴ Dpt. of Computer Science, Iowa State University, Ames, IA, USA

* idoerg@iastate.edu

Abstract

Complexity is a fundamental attribute of life. Complex systems are made of parts that together perform functions that a single component, or subsets containing individual components, cannot. Examples of complex molecular systems include protein structures such as the F_1F_0-ATPase, the ribosome, or the flagellar motor: each one of these structures requires most or all of its components to function properly. Given the ubiquity of complex systems in the biosphere, understanding the evolution of complexity is central to biology. At the molecular level, operons are a classic example of a complex system. An operon’s genes are co-transcribed under the control of a single promoter to a polycistronic mRNA molecule, and the operon’s gene products often form molecular complexes or metabolic pathways. With the large number of complete bacterial genomes available, we now have the opportunity to explore the evolution of these complex entities, by identifying possible intermediate states of operons. In this work, we developed a maximum parsimony algorithm to reconstruct ancestral operon states, and show a simple vertical evolution model of how operons may evolve from the individual component genes. We describe several ancestral states that are plausible functional intermediate forms leading to the full operon. We also offer Reconstruction of Ancestral Gene blocks Using Events or ROAGUE as a software tool for those interested in exploring gene block and operon evolution.

The software accompanying this paper is available under GPLv3 license in:
https://github.com/nguyennochuy91/Ancestral-Blocks-Reconstruction
All figures in this paper are available in enlarged downloadable form from:
https://github.com/nguyennochuy91/Ancestral-Blocks-Reconstruction/tree/master/images

Introduction

The evolution of complex systems is an open problem in biology, and has recently been studied intensively in genomes. To better understand how complex systems evolve, we focus on the problem of the evolution of orthologous gene blocks and operons in bacteria. Orthologous gene blocks or orthoblocks are sequences of genes co-located on the chromosomes of several species, whose evolutionary conservation is apparent. Operons can be viewed as a special case of gene blocks where the genes are co-transcribed to polycistronic mRNA and are often associated with a coherent function, such as a metabolic pathway or a protein complex. Several models have been proposed to explain gene block and operon evolution, and it may very well be that the models are not mutually exclusive, and different operons may evolve by different models, or indeed a single operon may be the result of the combination of several models.

Previously, we proposed a method that explains the evolution of orthoblocks and operons as a combination of events that take place in vertical evolution from common ancestors. In the evolution of an orthoblock, the different gene blocks may gain or lose genes, have genes duplicated, or have them split off (Figure I and Table I). By determining the frequency of the events for any orthoblock in a studied clade, we can determine a cost for each event, and thus create a cost function to determine an optimal vertical path for the evolution of orthoblocks. We used the cost function to determine the conservation of some operons and orthoblocks in proteobacteria, and show that orthoblocks that perform cellular information processing (such as mRNA translation) are more conserved than those that are associated with adaptation to specific environments.
In this study we use the orthoblock evolution cost function to reconstruct ancestral gene blocks. Reconstructing plausible ancestral states of extant complex entities can help us understand how they evolve, identify possible functional intermediate states, and determine which forces might affect their evolution. The rest of this paper is structured as follows: first, we briefly describe our approach. We then present and discuss the results using our algorithms to reconstruct the ancestral states of orthoblocks in a clade of Gram-negative bacteria and a clade of Gram-positive bacteria. This reconstruction involves orthoblocks comprising genes orthologous to those found in operons in *Escherichia coli* and in *Bacillus subtilis*, respectively. Our reconstructions of ancestral states show that: (1) some operons can rapidly evolve independently in several branches in their respective clades, suggesting that positive selection plays a major role in the evolution of gene blocks in bacteria; (2) other operons are highly conserved, their evolution predating the last common ancestor of the clades we chose, (3) some ancestral state can plausibly be described as intermediate functional forms, and (4) some operon conservation is sporadic and cannot be explained solely by vertical transmission suggesting horizontal gene transfer.

Materials and Methods

Definitions

Gene block-based evolutionary events, and event-based distances

A *reference taxon* is a taxon where operons have been identified by experimental means. Here we use *E. coli* K-12 MG1655 and *B. subtilis* as reference taxa. The reference taxon serves as a standard of truth to determine if the genes on a suspected orthoblock do indeed reside, at least in one species, in an operon or a similar co-regulated gene block. **Neighboring genes**: two genes are considered neighboring if they are ≤ 500 nucleotides apart and on the same strand. A **gene block** comprises no less than two neighboring open reading frames (ORFs). **Orthoblocks**, gene blocks that are orthologous, are defined as follows: two organisms have orthoblocks when each organism must have at least two neighboring genes that are homologous to genes in a gene block in the reference taxon’s genome. An **event** is a change in the gene block between any two species with homologous gene blocks.

We identify three types of pairwise events between orthoblocks in different taxa: splits, deletions, and duplications. The **event-based distance** between any two orthoblocks is the sum of the minimized count of splits, duplications, and deletions, which is elaborated upon in **Orthoblock Distance Functions**. See Figure 1. The terms reference taxa, neighboring genes, gene blocks, events, and orthoblocks are elaborated upon in [15].
Fig 1. Orthoblocks from species A-E are arranged in a species phylogenetic tree. Species C has an experimentally-determined operon (Black arrows), and serves as the reference taxon. The orthologs in species A, B, D, and E were determined as explained in the text. The events between C and all other species for this orthoblock are:
- A-C: deletion (of gene c)
- B-C: split (of gene c)
- C-D: duplication (of gene b) and split (jagged line)
- C-E: duplication (of gene b)

The full list of the pairwise events between all species is in Table 1. The tree’s inner nodes show proposed intermediate states in the operon’s evolution. The numbers in the brackets are a 3-tuple showing the cumulative count of events going from the leaf nodes to the tree root: [deletions, duplications, splits]. The way these ancestral states are determined is elaborated below.

Table 1. All pairwise events for the orthoblocks shown in Figure 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>split, deletion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>deletion</td>
<td></td>
<td>split</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>duplication, deletion, split</td>
<td>duplication, deletion, split</td>
<td>duplication, 2× split, split</td>
<td>duplication, split</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>duplication, deletion</td>
<td>duplication, deletion</td>
<td>duplication, split</td>
<td>split</td>
<td></td>
</tr>
</tbody>
</table>

Choosing species

The species tree for each clade was built using rpoB as the species marker. For the study of Gram negatives with E. coli as a reference species, we use the group of taxa from [11]. For the study of Gram positives with B. subtilis as the reference species, we use the Phylogenetic Diversity Analysis program (PDA) [16,17] to select 33 equidistant species.
Orthoblocks in Phylogenetic Trees

For each orthoblock studied, we use a phylogenetic species tree \(T \) comprising a set of extant species related to either one of our reference taxa. The topology of \(T \) is determined using multiple sequence alignment of gene \(rpoB \) followed by the Neighbor Joining algorithm as described in [13]. Each leaf node \(v \) in \(T \) contains the orthologs to the genes in an operon in the reference species (\(E. coli \) or \(B. subtilis \)). For any two genes \(a \) and \(b \), if the chromosomal distance is less than 500 bp, they are written as \(a|b \). If the distance is greater than 500 bp, the genes will be written as \(ab \) or \(or \). The distance between any two homologous gene blocks \(O \) and \(O' \) is greater than 500 bp, they are written with the separator character ‘|’ as: \(a|b \). For a species tree \(T \), we define the following:

1. \(V(T) \): the set of nodes of \(T \).
2. \(E(T) \): the set of edges of \(T \).
3. \(L(T) \): set of leaf nodes of \(T \).
4. \(I(T) \): set of inner nodes of \(T \).
5. For node \(v \in V(T) \), let \(O \) be the gene block assigned to \(v \), we define:
 (a) \(v.gene[g] \): the set that represents the choice of including of gene \(g \) in \(O \). There are only 3 possible cases.
 i. \(v.gene[g] = \{1\} \): this means that gene \(g \) has to be in \(O \).
 ii. \(v.gene[g] = \{0\} \): this means that gene \(g \) can not be in \(O \).
 iii. \(v.gene[g] = \{0,1\} \): this means that gene \(g \) can either be in \(O \) or not in \(v \).
 (b) \(I_g(v) \): the identity function of gene \(g \) in \(O \). It can only takes value of 0 for not appearing in \(O \) or 1 otherwise.
 (c) \(v.dup[g] \): the set that represents the duplication status of gene \(g \) in \(O \). There are only 3 possible cases.
 i. \(v.dup[g] = \{1\} \): this means that gene \(g \) has to be duplicated in \(O \).
 ii. \(v.dup[g] = \{0\} \): this means that gene \(g \) can not be duplicated in \(O \).
 iii. \(v.dup[g] = \{0,1\} \): this means that gene \(g \) can either be duplicated or not in \(O \).
 (d) \(Gene(O) \): the set of gene of \(O \).
 (e) \(Dup(O) \): the set of gene that is duplicated in \(O \).
 (f) \(HasLeaf(v) \): the set of leaf nodes that can be reached from node \(v \) in postorder traversal.
 (g) \(FREQ_g(v) \): frequency of gene \(g \) in gene blocks assigned to each leaf nodes in \(HasLeaf(v) \).
 (h) \(DUP_g(v) \): frequency of duplications of gene \(g \) in gene blocks assigned to each leaf nodes in \(HasLeaf(v) \).

Orthoblock Distance Functions

The distance between any two homologous gene blocks \(O, O' \) are defined as follows:

1. Split distance \((d_s) \) is the absolute difference in the number of relevant gene blocks between the two taxa. Relevant gene blocks between two taxa can be computed by only including the genes that appear in both taxa. We define \(Rel(O,O') \) as relevant gene blocks of \(O \) to \(O' \) and formalize the split distance as:
 \[
 d_s(O,O') := ||Rel(O,O')|| - ||Rel(O',O)||
 \]
 Example: for the reference gene block with genes (abcdefg), genome A has blocks: \(O := ((ab),(def)) \) and genome B has \(O':=((abc),(de),(fg)) \). We then compute the relevant gene blocks \(Rel(O,O') \) as: \(((ab),(def)) \) and \(Rel(O',O) = ((ab),(de),(f)) \) (removing genes c,g). Therefore, \(d_s(O,O') = |2 - 3| = 1 \).
2. **Duplication distance** \((d_u)\) is the pairwise count of duplications between two gene blocks. We define \(Dif(O, O')\) as the set of duplicated genes of gene block \(O\), so that these genes also appear in \(O'\) but are not duplicated in \(O'\). We formalize the duplication distance as:

\[
d_u(O, O') := |Dif(O, O')| + |Dif(O', O)|
\]

Example: For a reference gene block \((abcde)\), genome A has gene block \(O = ((abdl))\) and genome B has gene block \(O' = ((abcce))\), respectively. The ortholog of gene \(O_b\) is duplicated in genome B, creating a duplication distance \(d_u(O, O')\) of 1. However, since gene \(c\) does not exist in \(O\), it has no bearing on the duplication distance between the homologous gene blocks \(O\) and \(O'\). We then compute \(Dif(O, O') = \emptyset\) and \(Dif(O', O) = \{b\}\). Therefore, \(d_u(O, O') = 0 + 1 = 1\)

3. **Deletion distance** \((d_d)\) is the difference in the number of orthologs that are in the homologous gene blocks of the genome of one organism, or the other, but not in both. In short, it is the symmetric difference between the set of orthologous genes of the two gene blocks \(O, O'\). We formalize the deletion distance as:

\[
d_d(O, O') := |Gene(O) \triangle Gene(O')|
\]

In addition, the deletion distance can also be defined using the identity function:

\[
d_d(O, O') := |\sum_g (I_g(O) - I_g(O'))|
\]

Example: For a reference gene block \((abcdef)\), genome A has gene block \(O = ((abdl))\) and genome B has gene block \(O' = ((abcce))\), respectively. Since there are only genes \(a, b\) that appear in both genomes, \(d_d(O, O') = \{|a, b, d\} \triangle \{|a, b, c, e\}| = 1 + 1 = 3\)

The duplication distance and split distance depend on the deletion distance. Intuitively, the duplication of a gene \(g\) in gene block \(O\) requires such gene appearing in \(O\). Split distance depends on the relevant gene blocks from two taxa. Hence, it depends on the genes that appear in both taxa. Therefore, the split distance and the duplication distance depend on the deletion distance. Using the three distance functions above, we define the total distance between any two homologous gene blocks \(O, O'\) as:

\[
d(O, O') := d_d(O, O') + d_u(O, O') + d_s(O, O')
\]

Problem Definition

Let \(T\) be a tree, and \(G\) be the set of genes in a reference operon. We define \(\Omega\) as the set of all possible orthoblocks over gene set \(G\). Let \(\lambda : L \rightarrow \Omega\) be the labeling of \(L\) (assign orthoblocks from \(\Omega\) to the leaf nodes of \(T\), this can include empty orthoblocks). We define the function \(\lambda : V \rightarrow \Omega\) to be an extension of \(\lambda\) on \(T\) if it coincides with \(\lambda\) on the leaves of \(T\) (assign an orthoblock to each node of \(T\)). If \(\lambda(v) = O\), we say that vertex \(v\) is labelled with orthoblock \(O\). Furthermore, given orthoblock \(O\), we define \(Gene.Block(O)\) as the set of gene blocks in \(O\). Given a labelling \(\lambda\) and an edge \((u, v) \in E\), we define the distance between the two labellings of the endpoints \(u, v\) as \(d(u, v) := d(\lambda(u), \lambda(v))\) and the total distance function as \(d(\lambda) := \sum_{(u, v) \in E} d(u, v)\).

The Maximum Parsimony problem is now defined as follows: given a tree \(T\), an operon gene set \(G\), the orthoblock set \(\Omega\) and a leaf labeling \(\lambda\), find a labeling \(\hat{\lambda}\) that minimizes \(d(\hat{\lambda})\)

Here we explore two related Maximum Parsimony heuristic approaches, local and global, to reconstruct ancestral gene blocks.

Local Maximum Parsimony

Briefly, the local approach focuses on finding the optimal parent ancestral gene block given its child gene blocks. For each internal node \(u\), let \(u_1\) and \(u_2\) be its 2 direct children. We present a greedy local optimization algorithm. See Figure 2.
Input: T, G, Ω, λ

Result: $\hat{\lambda}$

for internal node u when traversing T in post-order do

Let u_1, u_2 to be u's children

Let $O_1 := \lambda(u_1)$, $O_2 := \lambda(u_2)$

initial := GeneBlock(O_1) \cup GeneBlock(O_2)

initial$_{\text{gene}}$:= \{ g|$\text{FREQ}_{g}(u) > .5$ \}

Remove genes in initial that is not included in initial$_{\text{gene}}$

Remove gene blocks in initial that is a subset of another gene block in initial

Let $U_1G := \text{set}()$

for gene block $b \in$ GeneBlock(O_1) do

for gene g in b do

if $g \notin$ initial$_{\text{gene}}$ then

Remove gene g from b

end

end

$U_1G = U_1G \cup b$;

end

if $|\text{initial}| < |U_1G|$ or $|\text{initial}| > |U_1G|$ then

initial := U_1G

end

for gene block $b \in$ initial do

if b has a duplication of gene g and $\text{DUP}_s(u) \leq .5$ then

Remove the duplicated gene of g from b

end

end

$\hat{\lambda}(u) :=$ initial

end

Return $\hat{\lambda}$

Algorithm 1: Local cost function minimization for reconstructing ancestral nodes
After that, we provide an optimal solution that minimizes the aggregate sum of the two distances.

Consider the orthoblocks

\[\text{Orthoblock Distance Functions} \]

\[\text{Global Maximum Parsimony} \]

\[\text{In Orthoblock Distance Functions, we determined that the split distance and duplication distance depend on the deletion distance. While finding the global minimum for each separate distance is simple, this dependency makes finding the global minimum of the aggregate of the three distances challenging. In the following example, we demonstrate the minimization of the deletion distance, and then of the split distance. After that, we provide an optimal solution that minimizes the aggregate sum of the two distances.} \]

\[\text{Given an inner node } v \text{ and its two child nodes } v_1 \text{ and } v_2, \text{ let } O \text{ be the gene block to be assigned to } v. \text{ Consider the orthoblocks } O_1 \text{ and } O_2 \text{ of } v_1 \text{ and } v_2 \text{ respectively as:} \]

\[O_1 : ab|cd|ef|g|k \]
\[O_2 : bc|de|fb|f|jo \]

\[\text{We define the set of genes that appear in both } O_1 \text{ and } O_2 \text{ as } S = \{b,c,d,e,f,g,k,o\}. \text{ Any gene } i \in S \text{ will contribute a deletion distance of } 2 \text{ to } d_d(O_1) + d_d(O_2) \text{ if } O \text{ does not contain gene } i. \text{ Any gene } i \in G \text{ but } i \notin S \text{ will contribute a deletion distance of } 1 \text{ to } d_d(O_1) + d_d(O_2) \text{ if } O \text{ either has it or not. Hence, including all genes from } S \text{ in } O \text{ gives us deletion distance: } d_d(O_1) + d_d(O_2) = 4, \text{ which is the minimum deletion distance. On the other hand, if we just want to minimize the split distance, the most naive way is not including any genes in } O. \text{ Then, } R_{el}(O_1) = R_{el}(O_2) = 0, \text{ therefore } d_s(O_1) + d_s(O_2) = 0. \text{ However, if we choose to do it this way, our deletion distance becomes large } (d_d(O_1) + d_d(O_2) = 10). \text{ Apparently, decreasing split distance might increase deletion distance and vice versa.} \]

\[\text{If we focus on minimizing the deletion distance, then } Gene(O) = S, \text{ which means that } O \text{ has to include all genes in } S. \text{ Then, the relevant gene blocks of } O_1, O_2 \text{ to } O \text{ respectively become:} \]

\[\text{Fig 2. A simplified example of ancestral reconstruction using local maximum parsimony.} \]

Consider a tree with structure as in panels A, B, and C. In each panel, 1,2,3 are the extant nodes that are assigned with gene blocks ac, abc, ab respectively, and 4,5 are the inner nodes. The local algorithm traverses the tree bottom-up.

In panel A, node 4, there are 2 best candidates for the gene block reconstruction. However, we chose to not include gene c since \(FREQ_c(4) = .5 \). Hence, node 4 is assigned with gene block ab.

In panel B, at node 5, there are three best candidates. We chose to assign gene block abc to node 5 instead of the other two. The reason is that \(FREQ_c(5) = FREQ_e(5) = 2/3 \) and \(FREQ_o(5) = 1 \) which are greater than .5 threshold.
\[Rel(O_1, O) : b|cd|ef \]
\[Rel(O_2, O) : bc|de|fb|f |f \]

Apparently, the split distance of \(O_1, O_2 \) is \(d_s(O_1, O_2) = |5 - 3| = 2 \). If we remove gene \(f \) from \(Gene(O) \), the relevant gene blocks of the two children to \(u \) become:

\[Rel(O_1, O) : b|cd|e \]
\[Rel(O_2, O) : bc|de|b \]

Hence, by setting our gene block \(O \) as either \(Rel(O_1, O) \) or \(Rel(O_2, O) \), the deletion distance increased by 2 because we excluded gene \(f \) which is in \(S \); however, the split distance also decreased by 2. Therefore, the new deletion distance is \(d_d(O, O_1) + d_d(O, O_2) = 6 \), and the new split distance is \(d_s(O, O_1) + d_s(O, O_2) = 0 \).

Consider another possibility, if we include gene \(g \) in \(Gene(O) \), this will not increase the deletion distance. The relevant gene blocks of the two children to \(u \) become:

\[Rel(O_1, O) : b|cd|ef|g \]
\[Rel(O_2, O) : bc|de|fb|f |f \]

By setting \(O := b|cd|ef|g \), the new split distance is \(d_s(O, O_1) + d_s(O, O_2) = 0 + 1 = 1 \) and the deletion distance is \(d_d(O, O_1) + d_d(O, O_2) = 4 \). Therefore, we achieve a lower aggregate sum of deletion and split distances (5 compared to 6). We can keep on adding, or removing genes that only appear in one taxon. This process requires iterations through all the subsets of the symmetrical difference set \(Gene(O_1) \Delta Gene(O_2) \), which will take exponential time. We therefore provide a heuristic approach that guarantees minimum deletion and duplication distances, but not split distances. See also Figure 3.
Input: T, G, Ω, λ
Result: $\hat{\lambda}$

for gene $g \in G$ do
 for $l \in \text{Leaf}(T)$ do
 if gene $g \in \text{Gene}(\lambda(l))$ then
 $l.gene[g] = \{1\}$
 else
 $l.gene[g] = \{0\}$
 end
 end
 if gene $g \in \text{Dup}(l)$ then
 $l.dup[g] = \{1\}$
 else
 $l.dup[g] = \{0\}$
 end
end

for internal node u when traversing T in post-order do
 Let u_1, u_2 be children of u
 for gene $g \in G$ do
 if $u_1.gene[g] == u_2.gene[g]$ then
 $u.gene[g] = u_1.gene[g]$
 else
 $u.gene[g] = \{0, 1\}$
 end
 if $u_1.dup[g] == u_2.dup[g]$ then
 $u.dup[g] = u_1.dup[g]$
 else
 $u.dup[g] = \{0, 1\}$
 end
 end
end

for inner node $u \in V(T)$ do
 for gene $g \in G$ do
 if $1 \in u.gene[g]$ then
 $\text{Gene}(u).add(g)$
 end
 if $1 \in u.dup[g]$ then
 $\text{Dup}(u).add(g)$
 end
 end
end

for internal node u when traversing T in post-order do
 Let u_1 be a u’s child, $O_1 := \lambda(u_1)$
 Let $U_{IG} := \text{set()}$
 for gene block $b \in \text{GeneBlock}(O_1)$ do
 for gene g in b do
 if $g \notin \text{initial gene}$ then
 Remove gene g from b
 end
 end
 $U_{IG} = U_{IG} \cup b$
 end
 $\hat{\lambda}(u) := U_{IG}$ for gene $g \in \text{Gene}(u)$ do
 if $g \notin \text{Dup}(u)$ then
 Remove the duplicated of g from $\hat{\lambda}(u)$
 end
 end
end
Return $\hat{\lambda}$;

Algorithm 2: Global approach
Example: reference operon abc

5
3
2
1
4
{ } 5
3
2
1
4

A B
b , c
5
3
2
1
4
5
3
2
1
4
C D
{ }b , c
{ }b , c
{ }b , c

Bottom-up phase:

Top-down phase:

Fig 3. A simplified example of ancestral reconstruction using the global algorithm.

In each panel, 1,2,3 are the extant nodes that are assigned with gene blocks abc, bc,∅ respectively. The global algorithm traverses the tree bottom-up and top-down.

In bottom up phase, the algorithm constructs the set of genes for the inner nodes (4,5). In panel A, at node 4, the set of genes is \{b,c\} since 2,3 do not share any common genes. In panel B, at node 5, the set of genes is \{b,c\} because 1,4 share genes b,c.

In the top-down phase, the gene block is constructed for each inner node. In panel B, the gene block bc is assigned to node 5 using the set of genes of node 5 and the gene block of node 1. We assign gene block bc to node 4 because of its set of genes and gene block in node 2.

Results and Discussion

We used E. coli and B. subtilis genomes as gold standards for deriving operons from Gram negative and Gram positive bacteria, respectively. The reason we chose these two species is that they both have well-annotated
genomes, including experimentally verified and functionally annotated operons. We applied our method to
groups of Gram-negative and Gram-negative bacteria, using the operons experimentally identified in *E. coli*
K-12 and *B. subtilis* str. 168 for each group, respectively.

Operons from *Escherichia coli*

We chose *E. coli* as a representative of proteobacteria, a major group of Gram-negative bacteria. Our
selection resulted in a set of proteobacteria species comprising three *ε*-proteobacteria, six *α*-proteobacteria,
seven *β*-proteobacteria and 17 *γ*-proteobacteria, including the reference species *E. coli*. These taxa included
two *γ*-proteobacteria insect endosymbionts: *Buchnera aphidicola* and *Candidatus Blochmania*. These two
species have unusually small genomes due to their endosymbiotic nature, and display massive gene loss.
We reconstructed ancestors for the following operons from *E. coli* (described below): *atpIBEFHAGD* and
paaABCDEFGHIJK.

Fig 4. A phylomatrix of gene block *atpIBEFHAGDC*. Each matrix cell depicts the degree of relative
conservation of the event between any two species. Blue is more conserved, red is less conserved.
Squares, left to right: conservation of deletions, duplications, and splits. The value in the matrix is a
z-score, calculated as in [15]. As can be seen, a deletion may have happened only in the common
ancestor of the *ε*-proteobacteria), few splits (right square) events, and no duplications events in the
pairwise comparison of this gene block, showing a high conservation for all event types. Reproduced
from [15] under Creative Common CC-BY-NC 4.0. license. A downloadable higher resolution image is
available in https://github.com/nguyenngochuy91/Ancestral-Blocks-Reconstruction/blob/master/images/Fig4.pdf

atpIBEFHAGDC. The *atpIBEFHAGDC* operon codes for *F*$_1$*F*$_o$-ATPase, which catalyzes the synthesis
of ATP from ADP and inorganic phosphate [18]. ATP synthase is composed of two fractions: *F*$_1$ and *F*$_o$ [19].
The *F*$_1$ fraction contains the catalytic sites and its proteins are coded by five genes (*atpA, atpC, atpD, atpG, *atphH*) [19]. The *F*$_o$ complex constitutes the proton channel and its proteins are coded by three genes *atpF*,
atpE, atpB, atpI is a non-essential regulatory gene. Figure 4 shows the high degree of conservation of this operon.
Fig 6. Ancestral reconstruction of operon *atpIBEFHAGDC* using the global optimization approach.

Figures 5 and 6 show ancestral reconstruction using the local and global maximum parsimony algorithms, respectively. Both local and global reconstructions show a consistency of having orthoblocks *atpACDGH* and *atpBF* in the most common ancestors for different Gram negative bacteria. This finding agrees with the long-standing hypothesis that F_o and the F_1 fractions have evolved separately, with the respective fractions having homologs in the hexameric DNA helicases and with flagellar motor complexes. Although we find the
gene \textit{atpI} in several species, the reconstruction predicts that \textit{atpI} is not in the same cluster with other genes. As stated, \textit{atpI} is probably not an essential component of the \(F_1F_o\) ATPase [20]. Another interesting finding is the duplication of \textit{atpF} in \(\epsilon\)-proteobacteria which appears to predate their common ancestor. Note that all genes exist as a gene block even in the endosymbionts \textit{Blochmannia} and \textit{B. aphidicola}.

The \(\epsilon, \alpha, \beta, \) and \(\gamma\)-proteobacteria species all have a conserved intact \(F_1\) complex (coded by the \textit{atpACDGH} cluster), which predates their common ancestor. The genes included in the \(F_o\) complex in \textit{epsilon}-proteobacteria (gene products \textit{atpB, atpE, atpF}) not in the same cluster as the genes making up \(F_1\). Furthermore, it is unclear whether the gene split that is only found in \(\epsilon\)-proteobacteria is a split that predates the least common ancestor with the other proteobacteria clades, or whether it is a split introduced in the \(\epsilon\)-proteobacteria. From the reconstructions provided, the scenario appears to be the latter. Conversely, this observation may also be a result of the small number of species studied here. The species in the \(\epsilon\) and \(\alpha\)-proteobacteria display a known duplication of gene \textit{atpF}. \textit{atpF}' appears as a sister group to \textit{atpF} [21].

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Fig7.pdf}
\caption{Gene block \textit{paaABCDEFGHJK} phylomatrices, each show the degree of relative conservation of the event between any two species. Left to right: deletions, duplications, splits. Blue to red scale is high-to-low conservation in \textit{z-score} [15]. A downloadable higher resolution figure is available in https://github.com/nguyennochuy91/Ancestral-Blocks-Reconstruction/blob/master/images/Fig7.pdf}
\end{figure}
Fig 8. Ancestral gene block reconstruction of `paaABCDEFGHIJK` using the local reconstruction approach. Asterisks in front of species names indicate that a minimal orthoblock (which should consist of two or more proximal genes that are orthologs to genes in the reference operon) was not found.
Fig 9. Ancestral gene block reconstruction of operon paaABCDEFGHIJK using the global reconstruction approach.

paaABCDEFGHIJK. The operon paaABCDEFGHIJK codes for genes involved in the catabolism of phenylacetate [22]. The ability to catabolize phenylacetate varies greatly between proteobacterial species, and even among different *E. coli* K-12 strains. In contrast with atpABCDEFG operon which is highly conserved through many species, the operon paaABCDEFGHIJK is only found in full complement as an operon in some *E. coli* K-12 strains and some *Pseudomonas putida* strains. It is shown to be much less conserved (Figure 7). However, certain orthoblocks appear to be conserved, providing partial functionality. The orthoblock paaABCDE is found in three *Bordetella* species and also in *Bradyrhizobium diazoefficiens*. The products of paaA, paaB, paaC and paaE make up the subunits of the 1,2-phenylacetyl-CoA epoxidase, and paaD is hypothesized to form an iron-sulfur cluster with the product of paaE [23]. We did not find
orthologs in the endosymbionts _B. aphidicola_ and _Blochmannia_.

In both the local and global reconstructions (Figure 8 and Figure 9 respectively), only the ancestor of the _Bordetella_ species have a combination of *paaABC* complex with *paaE*. It appears that only this combination has full activity [23]. In addition, the global approach only predicts gene blocks for the ancestors of α and most of γ-proteobacteria. Only the common ancestor of the _Bordetella_ genus contains the cluster *paaABCE*. It has been confirmed that this cluster of genes is identical to those of _E. coli_ [24]. In both approaches, gene *paaF* and *paaG* are not found to be in the same gene blocks, hence the ancestors are most likely missing the hydratase-isomerase complex. The *paaJ* thiolase catalyzes two steps in the phenylacetate catabolism [25,27]. In addition, *paaH* is the NAD\(^+\)-dependent 3-hydroxyadipyl-CoA dehydrogenase involved in phenylacetate catabolism [25]. Therefore, it makes sense that *paaJ* and *paaH* appear in most of the ancestral nodes that have gene blocks.

The results from the study of these operons have provided some interesting and valuable understanding of the evolution of the gene blocks. Specifically, we see the formation of functional intermediate forms both in a highly conserved gene block *atpIBEFHAGDC* and the less conserved gene block based on the operon *paaABCDEFGHIJK*. Also, in both cases, the global approach performs better in term of minimizing events. For brevity, we only provide the global ancestral reconstruction henceforth.

Operons from _Bacillus subtilis_

B. subtilis is a Gram-positive, spore forming bacterium commonly found in soil, and is also a normal gut commensal in humans. It is a model organism for Gram-positive spore forming bacteria, and as such its genome of about 4,450 genes is well annotated. Here we used ROAGUE to reconstruct the ancestors of two _B. subtilis_ gene blocks across 33 species. We selected species from the order _Bacillales_ using PDA. Species from the following families were selected: _Bacillaceae_ (including the reference organism _B. subtilis_), _Staphylococcae_: macrococcus and staphylococcus, _Alicyclobacillaceae_, _Listeriaceae_ and _Planococcaceae_.

CC-BY 4.0 International license

Copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.

Fig 10. Ancestral reconstruction of lepA-hemN-hrcA-grpE-dnaKJ-yqeTUV.
Fig 11. Ancestral reconstruction of mmgABCDE-yqiQ.

lepA-hemN-hrcA-grpE-dnaK-dnaJ-prmA-yqeU-rimO. Gene block lepA-hemN-hrcA-grpE-dnaK-dnaJ-prmA-yqeU-rimO facilitates the heat shock response in *B. subtilis* and the gene block hrcA-grpE-dnaK-dnaJ was the first identified heat shock operon within *Bacillus spp* [28]. The four genes hrcA, grpE, dnaK, dnaJ (e,c,b,a in Figure 10) form a tetracistronic structure, which is essential to the heat shock response role [29]. The four genes are proximal in all the species examined, and form the core of the orthoblock.
Overall, this operon is quite conserved, and the ancestral reconstructions are highly similar to the reference operon.

mmgABCDE-prpB. The operon *mmgABCDE-prpB* is expressed during endosporulation [30]. Subunit *mmgABC*’s breakdown of fatty acids is a mean for attaining energy to drive the cell’s preparation for dormancy [31]. Hence, it is reasonable to see that the common ancestor has this subunit. In addition, gene *mmgD* and gene *prpB/yqiQ* are predicted to be proximal. Several studies predicted that gene *mmgD*, *prpB*, and *prpD* encode the proteins of the putative methylcitrate shunt [32]. However, they did not specify if deletion mutations might contribute to a defect of the functionality. See Figure 11.

Conclusions

The evolution of operons offer us a tractable model for the evolution of complexity. Understanding how simple units of genes may converge into an operon can lead us to a better understanding of complexity in general. We developed a method for the reconstruction of ancestral gene blocks using maximum parsimony. Using this method we provide several examples of ancestral gene block reconstructions based on reference operons in *E. coli* and *B. subtilis*. A few interesting observations emerge regarding conservation and ancestry of operons. It appears that essentiality (the trait of being essential to life) and the formation of a protein complex are the main drivers for gene block conservation. This is most apparent in the *atp* operon coding for *F1*F*-atpase* in proteobacteria. There are few evolutionary events identified in the *atp* operon ancestry. The ribose transporter block also seems to preserve the core ribose transporter (*rbsABC*), while not the ribose phosphorylation genes *rbsD* and *rbsK*. ROAGUE also highlights intermediate functional forms of the orthoblocks, as we see in the pattern of conservation in *paaABCDEFGHIJK*.

Our study does not account for horizontal gene transfer, which is a major driver in operon evolution [9,14]. Detecting horizontal gene transfer is typically done by looking for conservation of genes and gene structures between distant OTUs, and for anomalous codon usage [33]. Our method opens up a new way of HGT detection, by reconciling a species tree with an operon tree, in the same way that phylogenomic analyses do for gene trees and species trees [34], which would be an interesting future development for this study. In addition, the gene order in a gene block is ignored. While the relationship between gene organization and expression in operons is not well understood, it is clear from several studies that gene order does have an effect on expression and on the functionality of the operon in general (e.g. [35,37]). Adding the parameters of horizontal gene transfer, gene order preservation, or both to ROAGUE would be highly valuable. We invite the community to contribute to ROAGUE, as well as use the tool for identifying orthologous gene blocks,
and reconstructing their ancestry.

Acknowledgments

This work was funded, in part, by a National Science Foundation ABI-1551363 grant awarded to IF, and National Science Foundation grant ECC-1617626 awarded to OE.
References

