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Abstract

The increasing appreciation for the human gut microbiome potential roles in diagnosis,

treatment, and ultimately prevention of human disease requires an understanding of the tem-

poral variability of the microbial community over the lifespan of an individual. Given the

highly dynamic and complex nature of the human gut microbial community, the ability to

di↵erentiate between the OTUs behavior over time, and specifically, identify and predict the

time-dependent OTUs, is crucial. However, the field has not yet settled upon the degree to

which the microbial composition of the gut at a given time a↵ects the microbial composition

at a later time. Particularly, it has been recently suggested that only a minority of the OTUs

depend on the microbial composition in earlier times. Here, we demonstrate that these earlier

findings are severely biased by the sub-optimality of the statistical approaches used to model

the microbial composition dependency in time. To that end, we introduce MTV-LMM , a

linear mixed model method for the prediction of the microbial community temporal dynamics

based on the community composition at previous time stamps. MTV-LMM thus allows identi-

fying auto-regressive OTUs in time series microbiome datasets, which can be taken to further

analysis of the microbiome trajectory over time. We evaluated the performance of MTV-LMM

on three microbiome time series datasets, and we found that MTV-LMM significantly outper-

forms the existing methods for microbiome time-series modeling. Furthermore, we quantify

the time-dependency of the microbiome in infants and adults and we demonstrate, for the

first time, that a considerable proportion of OTUs has a significant auto-regressive compo-

nent, in both infants and adults, and that time-dependency is a considerably more abundant

phenomenon compared to previous report.
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Introduction

There is an increasing recognition that the human gut microbiome is a contributor to many aspects

of human physiology and health including obesity, non-alcoholic fatty liver disease, inflammatory

diseases, cancer, metabolic diseases, aging, and neurodegenerative disorders [1–14]. This suggests

that the human gut microbiome will play important roles in the diagnosis, treatment, and ulti-

mately prevention of human disease. These applications require an understanding of the temporal

variability of the microbiota over the lifespan of an individual, particularly since we now recognize

that our microbiota is highly dynamic and that these dynamics are linked to ecological resilience

and host health [15–17].

Due to the lack of data and insu�cient methodology, we currently have major gaps in our under-

standing of fundamental issues related to the temporal behavior of the microbiome. Critically, we

currently do not have a clear characterization of how and why our gut microbiome varies in time,

and whether these dynamics are consistent across humans. It is also unclear whether we can define

’stable’ or ’healthy’ dynamics, or rather an unhealthy or abnormal time dynamics behavior, which

could potentially reflect a health condition or an environmental factor a↵ecting the individual, such

as antibiotics exposure or diet. Moreover, the field has not yet settled upon whether gut microbial

community structure varies continuously or whether it jumps between discrete community states,

and whether these states are shared across individuals [18, 19]. Notably, recent work [20] suggests

that human gut microbiome composition is dominated by environmental factors rather than by

host genetics, emphasizing the dynamic nature of this ecosystem.

The need for understanding microbiome temporal dynamics and its interaction with host attributes

have led to a rise in longitudinal studies that record the temporal variation of microbial communities

in a wide range of environments including the human gut microbiome. These time series studies

are enabling increasingly comprehensive analyses of the microbiome over time, which are beginning

to provide insights into fundamental questions about microbiome dynamics [16, 17,21].

One of the most fundamental questions that still remains unanswered, is to what degree the
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bacterial community in the gut is deterministically determined based on its initial composition.

More generally, it is unknown to what degree the microbial composition of the gut at a given

time determines the microbial composition at a later time. Additionally, there is only preliminary

evidence of long-term e↵ects of early life events on the gut microbial community composition, and

it is yet unclear whether these long-term e↵ects traverse through a predefined set of potential

trajectories [21, 22].

In order to answer these questions, it is important to quantify the dependency of the microbiome

community at a given time based on past information. [23,24] . This task has been previously stud-

ied in theoretical settings. Specifically, the Lotka-Volterra models predict changes in community

composition through defined species-species or species-resource interaction terms, and are popular

for describing internal ecological dynamics such as external factors (e.g., diet and host behav-

ior [17]), species-species interactions (e.g., cross-feeding or successional turnover), and host-species

interactions (e.g., immune system regulation or host physiology) [25–27]. Lotka-Volterra models

are deterministic and fairly straight-forward to interpret, but little is known about the relative

importance of these purely autoregressive factors (a stochastic process in which future values are

a weighted sum of past values) in driving gut microbial dynamics.

It has recently been suggested by Gibbons et al. [24] that the human gut microbial community has

two dynamic regimes: auto-regressive and non-autoregressive. The auto-regressive regime includes

operational taxonomic units (OTUs) that are a↵ected by the community composition in previous

time points, while the non auto-regressive regime includes OTUs that are completely stochastic,

i.e, their appearance in a specific time does not depend on the past. Gibbons et al. use sparse

vector autoregressive models (sVAR) [24] in order to cluster the OTUs into these two regimes.

Surprisingly, according to [24], the auto-regressive components of the variance accounted for a

minority of the total community variance. Additionally, Ridenhour et al. [28] suggest modeling the

OTU read counts along time using Poisson-regression in order to infer the temporal interactions

within the microbial community.

In this paper, we show that previous studies substantially underestimate the auto-regressive com-
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ponent of the gut microbiome. In order to quantify the dependency of an OTU on past occurrences,

we developed a method, Microbial community Temporal Variability Linear Mixed Model (MTV-

LMM ). Linear mixed models have been heavily used in statistical genetics and in genomics, in

order to estimate the heritability of a trait [29, 30]. The heritability of a trait can be defined as

the amount of variance of the phenotype explained by the genetic information. Analogously and

similar to [20], we define the term time-explainability, which quantifies the overall association be-

tween the microbiome relative abundance in present time and microbiome composition in the past,

after accounting for the association of the individual. Put di↵erently, for each OTU, we quantify

the temporal e↵ect - the e↵ect of the community relative abundance in the previous time points

on the relative abundance in the current time point.

Our approach has a few notable advantages. First, unlike the sVAR model used in Gibbons et al.,

[24], our approach models all the individual hosts simultaneously, thus leveraging the information

across an entire population, while adjusting for the individual’s e↵ect. This provides MTV-LMM

an improved power to detect temporal dependencies, as well as the ability to quantify the dynamics’

consistency across individuals. The Poisson-regression method suggested by Ridenhour et al. [28] is

also utilizing the information from all individuals, but without accounting for the individual’s e↵ect

which can result in an inflated auto-regressive component. Second, MTV-LMM can serve both as

a feature selection method (selecting only the OTUs a↵ected by time) and as a prediction model.

The ability to di↵erentiate between the OTU’s behavior over time, and specifically, choosing the

time-dependent OTUs, is crucial when fitting a time series model in order to study the microbial

community trajectories and specifically, in finding keystone taxa that may be responsible for the

temporal changes. Finally, we demonstrate that MTV-LMM can serve as a standalone prediction

model that outperforms existing prediction methods by an order of magnitude.

We applied MTV-LMM to three datasets of temporal gut microbiome (David et al. [17], Caporaso

et al. [16], and DABIMMUNE [21]). These datasets contain longitudinal relative abundance OTU

data (using 16S rRNA gene sequencing). Our results show that compared to previous approaches,

MTV-LMM has a substantially improved prediction accuracy of the OTU relative abundance levels
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at the next timestamp, indicating that the underlying model used by MTV-LMM better matches

the underlying biology of the gut microbiome. This can provide insights for future extensions of

temporal ecologic models such as the Lotka-Volterra models [31].

Finally, using MTV-LMM we demonstrate that unlike previously thought, a considerable propor-

tion of OTUs have non-negligible auto-regressive components, and that auto-regressiveness is a

spectrum, that is, there are OTUs that are almost deterministically determined by the previous

time points, others that are completely independent of previous time points, and others that have

some, but not full dependency on the previous time points.

Results

A brief description of MTV-LMM We first informally describe the main idea and utility

of MTV-LMM . A more comprehensive description can be found in the Methods. MTV-LMM is

motivated by our assumption that the temporal changes in relative abundance levels, of a specific

OTU j, are a time-homogeneous high-order Markov process. MTV-LMM model the transitions

of this Markov process by fitting a sequential linear mixed model(LMM), in order to predict an

OTU relative abundance level at a given time point, given the previous time points. Intuitively,

the linear mixed model correlates the similarity between the entire microbial community, across

di↵erent timestamps, with the similarity of the OTU abundance levels of the next time points. The

input to MTV-LMM is the microbial community relative abundance at time points {1, . . . , t� 1}

and its output is the prediction of the relative abundance, for each OTU, at time t. In order to

apply linear mixed models, MTV-LMM generates a temporal kinship matrix, which represents the

similarity between every pair of samples across time, where a sample is represented by the vector

of the relative abundances of the OTUs at a given time point for a given individual (see Methods).

When predicting the relative abundance level of a specific OTU j at time t, the model uses both

the global state of the entire microbial community in the last q time points, as well as the relative

abundance levels of OTU j in the previous p time points. p and q are parameters determined by
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the user, or they can be determined using a cross-validation approach; a more formal description

of their role is provided in the Methods.

Model Evaluation. We evaluated the ability of MTV-LMM to capture the auto-regressive

component of the microbial community using real time series data from three di↵erent data sets,

each composed of longitudinal relative abundance OTU data. David et al. (2 adult donors - DA,

DB - average 250-time points per individual), Caporaso et al. (2 adult donors - M3, F4 - average

231-time points per individual) and DIABIMMUNE data set (39 infant donors, average 28-time

points per individual). In these data sets MTV-LMM p and q were estimated, using a training set,

and are ranging between 0� 3 per OTU (see Methods).

We compared the results of MTV-LMM to the approaches that have been used in the past for

temporal microbiome modeling, namely the AR(1) model, the sparse vector auto-regression model

sVAR [24] model, and the ARIMA (1, 0, 0) Poisson-regression [28]. Overall, MTV-LMM ’s predic-

tion accuracy is higher than AR’s (Supplementary Table. 1) and significantly outperforms both

the sVAR method and the Poisson-regression method across all data sets (Fig. 1). Therefore, we

conclude that MTV-LMM has a better fit to the data, and thus MTV-LMM is more suitable to

estimate the auto-regressive component in longitudinal OTU data.

Our estimated fraction of time-explained variance for over 96% of the OTUs are substantially

greater than those reported previously using sVAR [24] and ARIMA Poisson regression [28]. The

MTV-LMM explained, on average, 12.8% of the variance in DIABIMMUNE data set, 12.3% of the

variance in Caporaso et al. (2011) and 10.4% David el al. In contrast, sVAR and ARIMA Poisson

regression explained on average only 1.783% and 1.95% of the variance in DIABIMMUNE data

set respectively, 0.58% and 1.5% of the variance in Caporaso et al. (2011), and 0.28% and 0.4% of

the variance in David el al.

Time-explainability as a measure of the auto-regressive component in the microbial

community. In order to address the fundamental questions regarding the gut microbiota tem-
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Figure 1. Superior prediction accuracy (R2) and auto-regressive detection in MTV-LMM . The
MTV-LMM predictions are in red, the predictions of the ’sVAR’ and ’ARIMA Poisson-regression’
methods are in green and blue respectively.

poral variation, we quantify its auto-regressive component. Namely, we quantify to what degree

the relative abundance of di↵erent OTUs can be inferred based on the microbiome at previous

time points. In statistical genetics, the fraction of phenotypic variance explained by genetic factors

is called heritability and is typically evaluated under an LMM framework [29]. Intuitively, linear

mixed models estimate heritability by measuring the correlation between the genetic similarity

and the phenotypic similarity of pairs of individuals. MTV-LMM can be used to define an analo-

gous concept that we term time-explainability, which corresponds to the fraction of OTU variance

explained by the microbiome in previous time points. Similarly to the concept of heritability,

in time-explainability, the linear mixed models measure the correlation between the similarity of

the entire microbial community across di↵erent time points and di↵erent individuals, with the

abundance of the OTU levels at the next time points (see Methods for details).

We next estimated the time-explainability of the OTUs in each data set, using the parameters q =

1, p = 0. The resulting model, including only the e↵ect of the microbial community, corresponds

to the formula: OTU
t

= microbiome community(t�1) + individual e↵ect(t�1) + unknown e↵ects.

Notably, time-explainability can be estimated fairly accurately, with an average 95% exact CI

width of 23.7%, across all di↵erent time-explainability levels and across all data sets (Methods).

Our analysis identified a large portion of the OTUs examined with a statistically significant time-
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Figure 2. Time-explinability distribution in the DIABIMMUNE infant data set (left) and David
et al. adult data set (right). The average time-explainability (denoted by a dashed line) in
DIABIMMUNE cohort is 0.23 and in David et al. 0.14.

explainability component across data sets. Specifically, we found that over 85% of the OTUs

included in the temporal kinship matrix are significantly explained by the time-explainability

component, with estimated time-explainability average levels of 23% in the DIABIMMUNE infant

data set (sd = 15%), 21% in Caporaso et al. (2011) data set (sd = 15%) and 14% in David

el al. (sd = 10%) (Fig. 2, Supplementary Fig. 7). Notably, the time-explainability estimates,

across data sets, are highly correlated to the fraction of variance explained by the predictions R2

(Supplementary Fig. 8).

Non-autoregressive dynamics contain taxonomic structure. We aggregated the MTV-

LMM time-explainability by the taxonomic order level, and found that in some orders (non-

autoregressive orders) all OTUs are non auto-regressive, while in other orders mixed orders we

observe the presence of both auto-regressive and non auto-regressive OTUs (Fig. 3), where an

auto-regressive OTU is defined as one having a statistically significant positive time-explainability

component.

Particularly, in the DIABIMMUNE infant data set, there are 7, 244 OTUs which are divided into

55 di↵erent orders. However, the OTUs recognized by MTV-LMM as auto-regressive (1387 out of

7244) are represented in only 19 orders out of the 55. The remaining 36 orders do not include any
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Figure 3. Di↵erential time-explainability aggregated by the taxonomic level ’order’ across all
data sets. The x-axis is the order among the auto-regressive OTUs across all data sets. In the tow
row, the y-axis is the average time-explainability and in the bottom row, the y-axis is the order
proportion in log scale.

auto-regressive OTUs. Unlike the auto-regressive dynamics, these non-autoregressive dynamics

carry a strong taxonomic signal (P-value = 0), that may indicate a niche/habitat filtering. This

observation is consistent with the findings of Gibbons et al. [24], who found a strong phylogenetic

structure in the non-autoregressive dynamics in the adult microbiome. We validated this finding

using the adult microbiome data sets (Supplementary).

Notably, across all data sets, there is no significant correlation between the order dominance

(number of OTUs in the order) and the magnitude of its time-explainability component (median

r = 0.12). For example, in the DIABIMMUNE data set, the proportion of auto-regressive OTUs

within the 19 mixed orders varies between 2% and 75%, where the average is approximately 20%. In

the most dominant order (representing 68% of the OTUs), ’Clostridiales’, approximately 20% of the

OTUs are auto-regressive and the average time-explainability is 23%. In the second most dominant

order, ’Bacteroidales’, approximately 35% of the OTUs are auto-regressive and the average time-

explainability is 31%. Surprisingly, in the rare order ’Bifidobacteriales’, approximately 75% of the

OTUs are auto-regressive, and the average time-explainability is 19% (Fig. 3).

As an example of the MTV-LMM ability to di↵erentiate auto-regressive from non-auto-regressive
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OTUs within the same order, we examined the ’Burkholderiales’, a relatively rare order (less then

2% of the OTUs in the data), with 76 OTUs overall, where only 19 of which were recognized

as auto-regressive by MTV-LMM . Indeed, by examining the temporal behavior of each non-auto

regressive OTU in this order, we witnessed abrupt changes in the OTU abundance over time, while

the maximal number of consecutive time points, in which the relative abundance was > 0 is very

small. On the other hand, in the auto-regressive OTUs, we witnessed a consistent behavior over

time, while the maximal number of consecutive time points, in which the relative abundance was

positive is well over 10 (Supplementary Fig. 9).

Next, we analyzed the adult microbiome (Caporaso et al. and David et al.) and observed that the

temporal presence-absence patterns of the OTUs, when divided into families based on the family

taxonomic level, are highly associated with the auto-regressive component. Specifically, we found

a significant linear correlation between the time-explainability and the family time-prevalence,

defined as the median number of time points in which the family OTUs are present (r = 0.74, 0.41

respectively). This correlation was not as strong in the DIABIMMUNE infant data set (r = 0.19),

which exhibit a higher variance in time-prevalence within families, emphasizing the di↵erences

between the relatively stable adult microbiome versus the developing microbiome of an infant.

Notably, the auto-regressive OTUs, across data sets, are significantly more prevalent over time, in

comparison to the non auto-regressive OTUs (p-value < 10�16).

Communities with high temporal changes in alpha-diversity are prone to a higher auto-

regressive component In our previous analysis, we found that the fraction of auto-regressive

OTUs varies across di↵erent data sets. In order to shed light on the underlying factors that may

lead to temporal dependencies, we compared the auto-regressive components across the di↵erent

data sets by examining the number of auto-regressive OTUs, the time-explainability of each OTU

and the correlation with the measured relative abundance. We find a positive correlation be-

tween the time-explainability and the first derivative of the alpha-diversity over time. Specifically,

communities with high temporal changes in alpha-diversity are prone to a higher auto-regressive

component.
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Figure 4. Black lines show the Shannon ’e↵ective number of species’ N
eff

(a measure of alpha
diversity) for each data set. The red dashed lines show the average N

eff

for each data set. The
average N

eff

is between 26 � 45 across the time series, which is high enough that compositional
e↵ects are expected to be negligible [32].

The DIABIMMUNE data set, which is fundamentally di↵erent from the other data sets, since it

measures the development of the gut microbial community in infants, is characterized by significant

temporal changes in alpha-diversity and its estimated time-explainability average levels are 23%.

On the other hand, the David et al. data presented with a relatively stable alpha-diversity along

time, and with estimated time-explainability average levels of 14%. These findings corroborate and

further emphasize the strength of the MTV-LMM method in detecting the auto-regressive OTUs.

The auto-regressive component of an adult versus an infant microbiome . The col-

onization of the human gut begins at birth and is characterized by a succession of microbial

consortia [33–36], where the diversity and richness of the microbiota reach adult levels in early

childhood. A longitudinal observational study has recently been used to show that infant gut

microbiota begins transitioning towards adult communities after weaning [37], implying that one

of the most dominant factors associated with temporal variation in an infant microbiome is time.

This observation is validated using our infant longitudinal data set (DIABIMMUNE) by apply-

ing PCA on the temporal kinship matrix (Fig. 5). Our analysis reveals that the first principal

component (accounting for 26% of the overall variability) is associated with time. Specifically,

there is a clear clustering of the time samples from the first six months of an infant’s life and the
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Figure 5. The first two PCs of the temporal kinship matrix color coded by individual (left) and
by time - before and after six months (right) in the DIABIMMUNE data (39 infant donors).

rest of the time samples (months 7 � 36) which can be correlated to weaning. As expected, we

find a strong auto-regressive component in an infant microbiome, which is highly associated with

temporal variation across individuals. Using MTV-LMM we utilized the high similarity between

infants over time, and simultaneously quantify the auto-regressive component in their microbiome.

In contrast to the infant microbiome, the adult microbiome is considered relatively stable [16,38],

with considerable variation in the constituents of the microbial community between individuals.

Specifically, it was previously suggested that each individual adult has a unique gut microbial

signature [39–41], which is a↵ected, among others factors, by environmental factors [20] and host

lifestyle (i.e., antibiotics consumption, high-fat diets [17] etc.). In addition, [17] showed that over

the course of one year, di↵erences between individuals were much larger than variation within

individuals. This observation was validated in our adult data sets (David et al. and Caporaso

et al.) using the same PCA of the temporal kinship matrix which reveals that the first principal

component, that accounts for 61, 43% of the overall variability respectively, is associated with the

individual’s identity (Fig. 6, Supplementary Fig. 5).

Using MTV-LMM we observe that despite the large similarity along time within adult individu-

als, there is also a non-negligible auto-regressive component in the adult microbiome, where its

mechanism is potentially cognate between individuals. The fraction of variance explained by time

across individuals can range from 6% up to 79%. These results shed more light on the temporal

behavior of OTUs in adults since as opposed to the temporal behavior in infants that was known
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Figure 6. The first two PCs of the temporal kinship matrix color coded by individual in the
adults data sets (a) Caporaso et al. (2 adult donors) (b) David et al. (2 adult donors).

to be highly a↵ected by time, to the best of our knowledge, prior to this work in adults there was

no evidence for a significant auto-regressive component.

Methods

The MTV-LMM Algorithm. MTV-LMM uses a linear mixed model (see [42] for a detailed

review), a natural extension of standard linear regression, for the prediction of time series data.

We describe the technical details of the linear mixed models below.

We assume that the relative abundance levels of a specific OTU j at time point t depend on a

linear combination of the relative abundance levels of the OTUs in the microbial community at

previous time points. We further assume that the temporal changes in relative abundance levels,

of a specific OTU j, are a time-homogeneous high-order Markov process. We model the transitions

of this Markov process using a linear mixed model, where we fit the p previous time points of OTU

j as fixed e↵ects and the q previous time points of all other OTUs as random e↵ects. p and q are

the temporal parameters of the model.

For simplicity of exposition, we present the generative linear mixed model that motivates the

approach taken in MTV-LMM in two steps. In the first step we model the time series for each

OTU in one individual host. In the second step we extend our model to N individuals, while
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accounting for the hosts’ e↵ect.

We first describe the model assuming there is only one individual. We assume that the relative-

abundance levels of m OTUs, denoted as the microbial community, have been measured at T time

points. We get as input an m⇥ T matrix M , where M
jt

represents the relative-abundance levels

of OTU j at time point t. Let yj = (M
j,p+1, . . . ,MjT

)t be a (T � p)⇥ 1 vector of OTU j relative

abundance, across T � p time points starting at time point p+ 1 and ending at time point T . Let

Xj be a (T �p)⇥ (p+1) matrix of p covariates, comprised of an intercept vector as well as the first

p time lags of OTU j (i.e., the relative abundance of OTU j in the p time stamps prior to the one

predicted). Formally, for k = 1 we have Xj

tk

= 1, and for p+ 1 � k > 1 we have Xj

tk

= M
j,t�k+1.

For simplicity of exposition and to minimize the notation complexity, we assume for now that

p = 1. Let W be an (T � q)⇥ q ·m standardized relative abundance matrix, representing the first

q time lags of the microbial community. For simplicity of exposition we describe the model in the

case q = 1, and then W
tj

= M
jt

(in the more general case, we have W
tj

= Mdj/qe,t�(j mod q)).

With these notations, we assume the following linear model:

yj = Xj�j +Wuj + ✏j , (1)

where uj and ✏j are independent random variables distributed as u ⇠ N(0
m

,�2
u

jI
m

) and ✏j ⇠

N(0
T�1,�2

✏

jI
T�1). The parameters of the model are �j (fixed e↵ects), �2

u

j , and �2
✏

j .

We note that environmental factors known to be correlated with OTU relative abundance levels

(i.e., diet, antibiotic usage [17,20]) can be added to the model as fixed linear e↵ects (i.e., added to

the matrix Xj).

Since the relative abundance levels are highly variable across di↵erent OTUs, this model is not

going to perform well in practice. Intuitively, we would like capture the information as to whether

an OTU is present or absent, or potentially introduce a few levels (i.e., high abundance, medium,

and low). We use the quantiles of each OTU to transform the matrix M into a matrix M̃ , where
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M̃
jt

2 {0, 1, 2} depending whether the abundance level is low (below 25% quantile), medium,

or high (above 75% quantile). We subsequently replace the matrix W by a matrix W̃ , which is

constructed analogously to W , but using M̃ instead of M . Thus, our model can now be described

as

yj = Xj�j + W̃uj + ✏j (2)

So far, we described the model assuming we have time series data from one individual. We next

extend the model to the case where time series data is available from multiple individuals. In

this case, we assume that the relative-abundance levels of m OTUs, denoted as the microbial

community, have been measured at T time points across N individuals. We assume the input

consists of N matrices, M1, . . . ,MN , where matrix M
i

corresponds to individual i, and it is of size

m⇥T . Therefore, the outcome vector yj is now is now an n⇥1 vector. For example, when I describe

the dimensions of ✏
j

, composed of N blocks, where n = (T � 1)N , where block i corresponds to

the time points of individual i. Formally, yj
k

= Mdk/(T�1)e
j,(k mod (T�1)). Similarly, we define Xj and W̃

as block matrices, with N di↵erent blocks, where each block correspond to individual i.

When applied to multiple individuals, Model (2) may overfit to the individual e↵ects, e.g., due

to the host genetics. In other words, since our goal is to model the changes in time, we need

to condition these changes in time on the individual e↵ects, that are unwanted confounders for

our purposes. We therefore construct a matrix H by randomly permuting the rows of each block

matrix i in W̃ , where the permutation is conducted only within the same individual. Formally, we

apply permutation ⇡
i

2 S
T�1 on the rows of each block matrix i, M i, corresponding to individual

i, where S
T�1 is the set of all permutations of (T � 1) elements. In each ⇡

i

, we are simultaneously

permuting the entire microbial community. Hence, matrix H corresponds to the data of each one

of the individuals, but with no information about the time (since the data was shu✏ed across the

di↵erent time stamps). With this addition, our final model is given by

yj = Xj�j + W̃uj +Hr + ✏j , (3)
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where uj ⇠ N(0
m

,�2
u

jI
m

) and ✏j ⇠ N(0
n

,�2
✏

jI
n

), and r ⇠ N(0
m

,�2
r

I
m

). It is easy to verify that

an equivalent mathematical representation of model 3 can be given by

yj ⇠ N(Xj�j ,�2
AR

jK1 + �2
ind

K2 + �2
✏

jI), (4)

where �2
AR

j = m�2
u

j , K1 = 1
m

W̃W̃T , �2
ind

= m�2
r

, K2 = 1
m

HHT . We will refer to K1 as the

temporal kinship matrix, or the temporal relationship matrix.

We note that for the simplicity of exposition we assumed so far that each sample has the same

number of time points T , however in practice the number of samples may vary between the di↵erent

individuals. It is easy to extend the above model to the case where individual i has T
i

time points,

however the notations become cumbersome; the implementation of MTV-LMM , however takes

into account a variable number of time points across the di↵erent individuals.

Once the distribution of yj is specified, one can proceed to estimate the fixed e↵ects �j and the

variance of the random e↵ects using maximum likelihood approaches. Specifically, the common

approach for estimating variance components is known as restricted maximum likelihood (REML).

We followed the procedure described in the GCTA software package [43], originally developed for

genotype data, and adjusted it for the OTU data. GCTA implements the REML method via the

average information (AI) algorithm.

Time-explainability We define the term ’time-explainability’, denoted as �, to be the variance

of a specific OTU relative abundance explained by the microbial community in the previous time

points. Formally, for OTU j we define

�j =
�2
AR

j

�2
AR

j + �2
ind

+ �2
✏

j

The time-explainability was estimated using GCTA, using the temporal kinship matrix. Confidence

intervals were computed using FIESTA [44]. In order to measure the accuracy of time-explainability

estimation, the average confidence interval width was estimated by computing the confidence
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interval widths for all auto-regressive OTUs and averaging the results. Additionally, we adjust the

time-explainability P-values for multiple comparisons using the ’Benjamini-Hochberg’ method [45].

Best linear Unbiased Predictor We now turn to the task of predicting yj
t

using the OTU

relative abundance in time t� 1 (or more generally in the last few time points). Using our model

notation, we are given xj and w̃, the covariates associated with a newly observed time point t

in OTU j, we would like to predict yj
t

with the greatest possible accuracy. For a simple linear

regression model, the answer is simply taking the covariate vector x and multiplying it by the

estimated coe�cients �̂ : ŷj
t

= xT �̂. This practice yields unbiased estimates. However, when

attempting prediction in the linear mixed model case, things are not so simple. One could adopt

the same approach, but since the e↵ects of the random components are not directly estimated, the

vector of covariates w̃ will not contribute directly to the predicted value of yj
t

, and will only a↵ect

the variance of the prediction, resulting in an unbiased but ine�cient estimate. Instead, one can

use the correlation between the realized values of W̃u, to attempt a better guess at the realization

of w̃u for the new sample. This is achieved by computing the distribution of the outcome of

the new sample conditional on the full dataset, by using the following property of the multivariate

normal distribution. Assume we sampled t�1 time points from OTU j, but the relative abundance

level for next time point t, yj
t

, is unknown. The conditional distribution of yj
t

given the relative

abundance levels at all previous time points, yj , is given by:

yj
t

|yj ⇠ N(xT�j + ⌃
t,�t

⌃�1
�t,�t

(yj �Xj�j),⌃
t,�t

⌃�1
�t,�t

⌃�t,t

), (5)

where ⌃ = W̃W̃T�2
u

j+HHT�2
r

+I�2
✏

j and positive/negative indices indicate the extraction/removal

of rows or columns, respectively. Intuitively, we use information from the previous time points that

have a high correlation with the new time point, to improve its prediction accuracy. The practice of

using the conditional distribution is known as BLUP (Best linear Unbiased Predictor). Therefore,

MTV-LMM could be used to learn OTU e↵ects in a discovery set (OTU table at time points

1, . . . , t̃), and subsequently use these learned OTU e↵ects to predict the temporal-community

contribution in the next time point (OTU j at t̃+ 1). In our experiments, the initial t̃ was set to

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 2, 2017. ; https://doi.org/10.1101/212993doi: bioRxiv preprint 

https://doi.org/10.1101/212993


19

be approximately 1/3 of the time series length in each data set.

Prediction accuracy The predictive ability of a model is commonly assessed using the pre-

diction error variance, PEV = V ar(yj � ŷj). The proportional reduction in relative abundance

variance accounted for by the predictions (referred to as R2 in this paper) can be quantified using

R2 =
V ar(yj)� V ar(ŷj)

V ar(yj)
=

Cov(yj , ŷj)2

V ar(yj)V ar(ŷj)

Model selection Given that the model presented in equation (3) can be extended to any arbi-

trary p and q, we tested four di↵erent variations of this model: 1. p = 0 and q = 1 (no fixed e↵ect,

one random e↵ect based on 1-time lag), 2. p = 1 and q = 1 (one fixed e↵ect based on 1-time lag,

one random e↵ect based on 1-time lag), 3. p = 0 and q = 3 (no fixed e↵ect, one random e↵ect

based on 3-time lags) and 4. p = 1 and q = 3 (one fixed e↵ect based on 1-time lag, one random

e↵ect based on 3-time lags).

We divide each data set to three parts - train, validation, and test, where each part is approximately

1/3 of the time series (sequentially). We train all four models presented above and use the validation

set to select a model for each OTU j based on the highest correlation with the real relative

abundance. We then compute sequential out-of-sample predictions on the test set with the selected

model.

Phylogenetic analysis We performed the following phylogenetic analysis. First, in order to

test the hypothesis that both auto-regressive and non auto-regressive dynamics carry a taxonomic

signal, we fitted a linear mixed model, where the kinship matrix is the phylogenetic distance

between pairs of OTUs and the outcomes are the time-explainability measurements for each OTU.

Second, in order to test the hypothesis that only non auto-regressive dynamics carry a taxonomic

signal, we conducted a permutation test by shu✏ing the order ’labels’ of all the OTUs, over

100, 000 iterations, where in each iteration we counted the number of non auto-regressive orders.
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We calculated an exact P-value for each data set. Lastly, we defined ’time-prevalence’ as the

median number of time points in which the OTU is present and calculate the linear correlation

between the time-explainability and the time-prevalence within each taxonomic rank ’family’.

Alpha diversity measures To measure the alpha diversity, we used Shannon-Wiener index,

which is defined as H = �
P

p
j

ln(p
j

), where p
j

is the proportional abundance of species j.

Shannon-Wiener index accounts for both abundance and evenness of the species present. Addi-

tionally, we computed the ’e↵ective number of species’ (also known as true diversity), the number

of equally-common species required to give a particular value of an index. The ’e↵ective number

of species’ associated with a specific Shannon-Wiener index 0a0 is equal to exp(a).

Preliminary OTU screening according to temporal presence-absence patterns. For

the calculation of the temporal kinship matrix we included OTUs using the following inclusion

criteria. OTU was included if it was present in at least 0.05% of the time points (removes dominant

zero abundance OTUs). In David et al. data we included 1051 (out of 2804), in Caporaso et al.

data we 922 (out of 3436) and in the DIABIMMUNE data we included 1440 (out of 7244) OTUs.

Methods comparison We compared MTV-LMM to two existing methods: sVAR suggested

by [24] and Poisson regression suggested by [28]. In the sVAR method, we followed the procedure

described in [24], while running the model and computing the prediction for each individual sepa-

rately. We then computed an aggregated prediction accuracy score for each OTU, by averaging the

prediction accuracy of each individual, using the OTUs the ’survived’ the preliminary screening as

described above. In the Poisson regression method, we followed the procedure described in [28],

while running the model for all the individuals simultaneously and calculating prediction accuracy

for each OTU. We used the OTUs that ’survived’ the screening suggested in [28] (eliminating any

OTUs in the data for which there were a small number (< 6) of average reads per sample). In

both models, the train set was 0.67 of the data and the test set was the remaining 0.33 of the data.

In both cases we used the code supplied by the authors.
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Data sets. We evaluated the performance of MTV-LMM using three data sets collected using

16S rRNA gene sequencing. All data sets are publicly available. The first data set was collected

and studied by David et al. (2014) [17] (2 adult donors). The next data set was collected and

studied by Caporaso et al. (2011) [16] (2 adult donors). The third data set was collected by

the ’DIABIMMUNE’ project and studied by Yassour et al. (2016 [21] (39 infant donors). In

order to compare across studies and reduce technical variance between studies, closed reference

Operational Taxonomic Units (OTUs) were clustered at 99% identity against the Greengenes

database v.135/8 [46]. Open reference OTU picking was also run [47], in order to look for non-

database OTUs that might contribute substantially to community dynamics. Time series OTU

tables were normalized by random sub-sampling to contain 10, 000 reads per sample.

David et al. (2014) data set [17]. Stool samples from 2 healthy American adults were collected

(donor A = DA and donor B = DB). DA collected gut microbiota samples between days 0 and

364 of the study (total 311 samples). DB primarily collected gut microbiota samples between

study days 0 and 252 (total 180 samples). The V4 region of the 16S ribosomal RNA gene subunit

was used to identify bacteria in a culture-independent manner. DNA was amplified using custom

barcoded primers and sequenced with paired-end 100 bp reads on an Illumina GAIIx according to a

previously published protocol [48]. ’OTU picking’ and ’quality control’ were performed essentially

as described [17]. In this work, we used the OTUs shared across donors (2, 804 OTUs).

Caporaso et al. (2011) data set [16]. Two healthy American adults, one male (M3) and one female

(F4), were sampled daily at three body sites (gut (feces), mouth, and skin (left and right palms)).

M3 was sampled for 15 months (total 332 samples) and F4 for 6 months (total 131 samples).

Variable region 4 (V4) of 16S rRNA genes present in each community sample were amplified by

PCR and subjected to multiplex sequencing on an Illumina Genome Analyzer IIx according to a

previously published protocol [48]. ’OTU picking’ and ’quality control’ were performed essentially

as described [16]. In this work, we used the OTUs shared across donors (3, 436 OTUs).

DIABIMMUNE data set [21]. Monthly stool samples from 39 Finnish children aged 2 to 36 months

(total of 1101 samples). To analyze the composition of the microbial communities in this cohort,
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DNA from stool samples was isolated and amplified and sequenced the V4 region of the 16S rRNA

gene. Sequences were sorted into operational taxonomic units (OTUs). 16S rRNA gene sequencing

was performed essentially as previously described in [21]. In this work, we used all the OTUs in

the sample (7, 244 OTUs).

Discussion

We have presented MTV-LMM , a method for the analysis and modeling of time series microbial

community data. MTV-LMM can be used to predict the relative abundance levels of OTUs in the

future, and it can be used to assess the time-explainability of each of the OTUs, i.e., how much

of the variability of the OTU relative abundance levels can be explained based on the past micro-

biome community structure. The time-explainability can be critical for selecting auto-regressive

OTUs that are essential to our understanding of the microbiome behavior in longitudinal studies.

Particularly, such OTUs could be used to characterize temporal trajectories of the microbiome

community. This provides a stepping stone towards better understanding of basic ecology mi-

crobial community temporal dynamics as well as the use of microbiome data as a detection and

diagnostic tool in various fields.

We have demonstrated that MTV-LMM significantly outperforms existing approaches for temporal

modeling of the microbiome, both in terms of its prediction accuracy, as well as in its ability

to identify time-dependent OTUs. We hypothesize that this improved performance stems from

the fact that unlike previous approaches, MTV-LMM leverages the information across an entire

population, while adjusting for the individual’s e↵ect. In addition, MTV-LMM uses linear mixed

models which have been shown to be useful in other genomic contexts (particularly in genetics).

MTV-LMM is a flexible and computationally e�cient tool, which can be easily adapted by re-

searchers in order to select the core time-dependent OTUs, quantify their temporal e↵ect given the

microbial community and predict their future relative abundance. MTV-LMM can also be used to
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estimate the strength of ecological interactions within the microbial community.

Using MTV-LMM we have demonstrated that auto-regressiveness is a spectrum, where some OTUs

are almost deterministically determined by the community previous time points, others that have

some, but not full dependency on the previous time points and lastly, some OTUs that are com-

pletely independent of previous time points. We further show that these auto-regressive char-

acterization is highly related to alpha diversity and to the phylogenetic structure of the OTUs.

Specifically, the phylogenetic orders harboring the auto-regressive OTUs are of mixed nature, con-

taining both auto-regressive and non-autoregressive OTUs in di↵ering proportions (Fig. 3). The

ability of MTV-LMM to di↵erentiate between OTUs within the same order is crucial in finding

keystone taxa that may be responsible for the temporal changes observed in the di↵erent data sets.

By applying MTV-LMM to three datasets of temporal gut microbiome [16,17,21], we found that,

unlike previously thought, a considerable proportion of OTUs have a non-negligible auto-regressive

component, in both infants and adults. For the adult microbiome our results provide such evidence

for the first time, and as we show previous approaches miss this observation as they underestimate

the time-explainability of the OTUs. This highlights the sensitivity of our method and its ability

to cope with both developing and stable datasets, as well as opens the possibility for microbiome

prediction and potential manipulation in adult individuals.

As shown in the results section (Fig. 5), when applying PCA on the temporal kinship matrix in

the infants’ dataset, our analysis revealed a clear clustering separating the time samples from the

first six months of an infant’s life from the rest of the time samples (7-36 months). We infer that a

major dietary change was the cause for this temporal clustering, most likely weaning. Indeed, our

results correspond to a recent longitudinal observational study showing that infant gut microbiota

begins transitioning towards adult communities after weaning, roughly at the age of six months [37].

Furthermore, our results are in agreement with the ones presented by [22] in relation to dietary

e↵ects, which validates the ability of MTV-LMM to detect the relevant OTUs a↵ected by dietary

changes in the developing microbiome.
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It is important to realize that the time-explainability of a given OTU may strongly depend on the

density of the sampling. For example, if the microbiome is sampled every two months as opposed

to every month, the time-explainability may be reduced since more noise is added over time. The

instrumental novelty of our method is the statistical power gained from the overall community

behavior, as well as all the individuals in the sample, for the purpose of predicting a specific OTU

temporal behavior . This suggests that internal interactions within the microbiome are of major

importance in modulating individual microbes behaviour over time.
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