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Microbial ecosystems are remarkably diverse, stable, and often consist of a balanced mixture of
core and peripheral species. Here we propose a conceptual model exhibiting all these emergent prop-
erties in quantitative agreement with real ecosystem data, specifically species abundance and preva-
lence distributions. Resource competition and metabolic commensalism drive stochastic ecosystem
assembly in our model. We demonstrate that even when supplied with just one resource, ecosystems
can exhibit high diversity, increasing stability, and partial reproducibility between samples.

Natural microbial ecosystems are remarkably diverse,
often harboring hundreds to thousands of coexisting
species in microscopic volumes [1–3]. How do these
ecosystems manage to acquire and maintain such a high
diversity? This so-called ‘paradox of the plankton’ [4] is
especially surprising given that microbes are capable of
rapid exponential growth and fierce competition for nu-
trients. Indeed, the competitive exclusion principle [2, 5]
postulates that the number of species in an ecosystem at
steady cannot exceed the number of available nutrients.

Compounding this puzzle, theoretical studies [6] sug-
gest that highly diverse ecosystems are generally prone
to instabilities. This brings up a second question: how
do naturally-occurring microbial ecosystems manage to
remain relatively stable despite their diversity?

Moreover, ecosystems operating under similar environ-
mental conditions could be rather different from each
other in terms of species composition [3, 7, 8]. This ap-
parent lack of reproducibility does not apply equally to
different organisms. Some species, classified as ‘core’ or
‘keystone’, are detected in most individual ecosystems.
Other ‘peripheral’ species are only observed in a small
fraction of them. Observed species’ prevalence distribu-
tions (the fraction of similar ecosystems a species is de-
tected in) are often U-shaped: their peaks occupied by
these core and peripheral species respectively. We are
thus presented with a third question: what determines
the reproducibility (or lack thereof) of species composi-
tion in microbial ecosystems?

Here, we introduce a conceptual model of a stochasti-
cally assembling microbial ecosystem, which in spite of
its simplicity, addresses and suggests possible solutions
to all three of these long-standing puzzles.

To explain the aforementioned high diversity and poor
reproducibility, previous models have relied on a number
of factors including spatial heterogeneity [5, 9], temporal
and seasonal variations in resource availability [10, 11],
thermodynamic constraints [12], microbial ‘warfare’ and
cooperation via ecological feedbacks [13], and preda-

tion by bacteriophages [14, 15]. In contrast to this,
our model attributes high diversity to metabolic byprod-
ucts secreted by microbes due to incomplete resource-to-
biomass conversion, which could in turn be used by other
species for growth. By its very nature, our model simul-
taneously exhibits (a) high species diversity, (b) gradu-
ally increasing stability, reached after repeated rearrange-
ments, (c) a U-shaped prevalence distribution and (d) a
positive abundance-prevalence correlation.

While our model clearly does not include many of the
previously proposed factors known to affect these fea-
tures, we believe it is a reasonable first order descrip-
tion of some real ecosystems, examples of which include
the human oral microbiome [7], methanogenic bioreac-
tors [16], and anaerobic digesters in wastewater treat-
ment plants [3].

Our model describes a dynamic microbial ecosystem in
which species attempt to populate the environment ex-
ternally supplied with a single resource. We assume that
species can convert only a fraction of consumed resources
into their biomass, while secreting the rest as metabolic
byproducts. These in turn may serve as nutrient sources
for other species in the ecosystem. This allows even one
externally supplied resource to support high ecosystem
diversity purely via byproduct-driven commensal inter-
actions.

New species are constantly introduced to this environ-
ment from some external population. Their survival or
extinction is determined by a simple rule dictated by
competitive exclusion. Because of the commensal rela-
tionship between these species, elimination of just one
species may lead to an ‘extinction avalanche’ in which
multiple species are lost.

We explore how species diversity in microbial ecosys-
tems is established over time. Moreover, by simulating
several instances of ecosystem assembly, we can separate
the set of core (high-prevalence) species from those with
progressively lower prevalence.

The dynamics in our bioreactor-like environment is
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FIG. 1. Ecosystem assembly in the model. (A) The diagram illustrates different phases in the assembly dynamics involving species (yellow
squares) consuming resources (green circles). Sizes are indicative of the steady state abundances and concentrations. Initially, only a single
externally supplied resource (the largest green circle) is available and consumed by a microbe, which in turn secretes β = 2 metabolic byproducts.
New species immigrate into this ecosystem (immigration events marked on the timeline), each using only one resource. Ecosystem establishment
is contingent on the following assembly rule: if the resource affinity λ of the new species is higher than any resident species on its chosen resource,
the immigrant species survives and the resident goes extinct (along with all its dependents). (B) A sample assembly trajectory (in red) of the

ecosystem size (number of species) as a function of time (t, measured in number of immigration attempts) at dilution rate δ = 10−1 days−1. The
gray envelope shows ecosystem sizes over 1,000 assembly trajectories. (C) Extinction size distributions (number of species that go extinct during
a single immigration event) get broader as ecosystem assembly proceeds: t < 101 (blue); 101 < t < 102 (green) and 102 < t < 103 (orange).

fully characterized by the concentrations of individual
resources (metabolites) labeled as C0, C1, ... and the
abundances of all resident microbial species labeled as
B1, B2, .... When we initialize the model, each species
is assigned a single resource it can grow on and β = 2
metabolic byproducts. All resources are randomly se-
lected from a ‘universal chemistry’ of size Nuniv = 5, 000.
This choice is inspired by the total number of metabo-
lites in KEGG’s metabolic database [17]. However, qual-
itatively similar results are obtained for much smaller
values Nuniv, for example, the number of carbon sources
typically utilized by microbes.

The environment is supplied with a single resource (la-
beled 0) at a constant flux φ0. After several attempts,
the first microbial species (labeled 1) capable of utilizing
the resource 0 colonizes the environment. The following
equations determine the dynamical behavior of resource
concentration C0 and microbial abundance B1:

dC0

dt
= φ0 −

λ1C0B1

Y
− δ · C0, (1)

dB1

dt
= λ1C0B1 − δ ·B1, (2)

Here, λ1C0 is the growth rate of the species 1 con-
suming the resource 0 at a rate λ1C0

Y , where Y is the
yield of the biomass conversion process (the number of
microbes per unit concentration of the resource). The
resource affinity λ is assigned by a random draw from a
log-normal distribution such that the logarithm of λ has
mean 0 and variance 1. Note that using a more general
expression for microbial growth as a function of nutri-
ent concentration, e.g. Monod’s law, does not affect our
results.

Our model is based on carefully following the flow of
resources (e.g. carbon) throughout the ecosystem. Dif-
ferent resources could be inter-converted into each other
and into the biomass of microbes. Hence it is conve-
nient to measure all microbial abundances in units of the
resource concentration. We adopt this change of units
for Bi for the rest of this manuscript. Microbial yield is
given by Y = (1 − α) where (1 − α) < 1 represents the
fraction of the consumed resource (e.g. carbon atoms)
successfully converted to biomass. The remainder is se-
creted as two byproducts 1 and 2 getting shares ν1α and
ν2α = (1− ν1)α respectively.

Another interpretation of these equations would ap-
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ply if all processes in the ecosystem were energy-limited
(as opposed to nutrient-limited). In this case, it would
be convenient to measure the concentrations of both re-
sources and microbes in units of the energy density. The
factor (1−α) could then be interpreted as an energy con-
version efficiency. Due to dissipation, in this case it would
be possible for α (the fraction of the incoming energy flux
secreted as byproducts) to be smaller than the leftovers
from biomass conversion. Barring small corrections, the
results of our model would be equally applicable to such
energy-limited ecosystems.

We assume that the concentrations of both microbes
and resources are diluted at the same rate, δ. It is
straightforward to generalize our model to a case where
these dilution rates are in fact different (as is often
the case in batch-fed bioreactors). Throughout this
manuscript we are only interested in the steady state
properties of the system, which can be easily derived from
equations (1) and (2). At steady state, C∗0 and B∗1 are
given by:

C∗0 =
δ

λ1
, (3)

B∗1 =

(
φ0 − δ2

λ1

)
Y

δ
=
φ̃0(1− α)

δ
. (4)

Here, to simplify our notation, we have introduced the
effective flux of a nutrient (adjusted for dilution) which

is given by φ̃0 = φ0 − δ · C∗0 = φ0 − δ2

λ1
. Note that

(a) at steady state resource concentration C∗0 depends
inversely on λ implying that if two species were to com-
pete for the same resource, the one with a higher λ would
drive the resource concentration lower than the other,
thus being the only survivor of the two, and (b) unlike
the steady state nutrient concentration, the steady state
species abundance is largely independent of λ. Indeed λ
only enters this equation via the effective resource flux
which in the limit of low dilution approximates φ0.

We simulate ecosystem assembly in discrete time steps
corresponding to the introduction of a new microbial
species into the ecosystem. We assume that these events
are sufficiently infrequent for the system to reach steady
state between two subsequent immigration attempts. We
measure time in the number of attempted species immi-
grations. As explained before, each species in our model
uses just one resource and consumes it with a randomly
drawn affinity λ. If the resource consumed by a newly
introduced species is available, the outcome can be one
of two possibilities: (a) if said resource is unused by any
other species, the newcomer survives and becomes a resi-
dent, or (b) if said resource is used by a current resident,
the species survives only if it has a larger λ than the
species currently using it.

If the newly introduced species survives, its abundance
at steady state is determined by the same expression as

FIG. 2. Emergent ecological features. (A) Rank-abundance plot
of normalized species abundances in a methanogenic bioreactor [16]
(blue circles) and the human oral microbiome [7] (red circles) and for
comparison, simulated ecosystems from our model (corresponding solid
lines) with α equal to 0.5 and 0.1, respectively. (B) The dilution rate
δ in the chemostat controls the maximal size Nmax of the ecosystem
coexisting on a single externally-supplied resource. Here, α = 0.1 and
β = 2. N approximately agrees with the expression in equation (7).

in equation (4), replaced with the effective flux of the
resource that it consumes. If all byproducts are equally
partitioned, the average effective flux at trophic layer `
will be related to the external resource flux via:

〈φ̃i〉` = φ0

(α
β

)`
− δ2

λ

(
1 +

α

β

)`
. (5)

Note that if a new species survives by competitively
displacing another, it could also lead to the extinction
of any species that directly or indirectly depend on the
latter for byproducts. As ecosystem assembly proceeds,
we observe that the distribution of the extinction size
(the number of species that go extinct during such an
event) gets broader over time (see figure 1(C)).

Over many steps of ecosystem assembly, as species use
and secrete more byproducts, the entire ecosystem as-
sumes a tree-like structure (see figure 1(A) for ecosystem
structure and 1(B) for sample dynamical trajectories).

Moreover, our model ecosystems have two interesting
emergent features. Firstly, species’ steady-state abun-
dances follow a power-law. To see this, note that these
abundances depend on the effective flux of the consumed
resources. Typically, for a species at trophic layer `,

B∗ ≈ 〈φ̃i〉`(1−α)
δ . Now each layer can accommodate β`

species, where β is the number of byproducts per species.
Using this, we can show that N (b), the number of species
with abundance b follows (see supplement [18] for deriva-
tion):

N (B = b) ∼ b−
(

1+ logβ
|logα|+log(α+β)

)
. (6)

In a rank-abundance plot (see figure 2(A)),
species abundances follow a power-law with expo-

nent |logα|+log(α+β)
logβ . For appropriately chosen α, both

this expression and our simulations (solid curves in
figure 2(A)) agree with data from microbial ecosystems
sampled from the human tongue [7] and methanogenic
bioreactors [16] (open circles in figure 2(A)).
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FIG. 3. Reproducibility from repeated assembly. (A) Species
prevalence distributions from several ecosystems stochastically assem-
bled from a common pool of 1, 000 species (here α = 0.1). Shown are
distributions for different times τ in the assembly process (measured in
number of immigration attempts by any one species) : 0.1 (violet) at
which most species have low-prevalence, 1 (green) and 2 (red) for which
we observe a U-shaped distribution (some core species, most periph-
eral). (B) The distribution for intermediate τ (black) matches largely
with that in longitudinally sampled human oral microbiome (tongue)
samples from [7] (gray). (C, D) Normalized species abundance data
correlates positively with species abundance in both (C) simulations
and (D) oral samples.

Secondly, the dilution rate δ sets a limit to the number
of species in the ecosystem. This happens when the re-
source flux (as in equation (5)) at the bottom-most layer
`max becomes negative. We can show that the number
of species in the ecosystem Nmax (proportional to β`max)
follows (see supplement [18] for derivation):

Nmax(δ) ∼ δ−
(

2logβ
|logα|+log(α+β)

)
. (7)

For β = 2 and α = 0.1, this expression (black solid line
in figure 2(B)) approximates our simulated ecosystems
(red solid line in figure 2(B)). Note that this expression
provides an upper bound to the number of species. It
assumes both equal partitioning of all byproducts and
equal λs for all species.

We now attempt to understand the reproducibility of
species composition in similar ecosystems. Given many
stochastically assembled ecosystems, we can assign each
species a ‘prevalence’, i.e. the frequency with which it is
observed in one such ecosystem. We want to understand
what determines this prevalence.

For this, we first generate a ‘species pool’: we run one
instance of ecosystem assembly as described above, where
over time new species immigrate and attempt to colonize
the ecosystem. We add each (even transiently) successful
colonizer to our species pool, and continue till our pool
has 1, 000 species. where each species utilizes one re-
source at a rate λ (picked randomly as described above)

and secretes two metabolic byproducts as a result of in-
complete resource-to-biomass conversion.

With this pool, we simulate several instances of
stochastic ecosystem assembly. For each instance, we re-
peat the aforementioned assembly dynamics under iden-
tical initial conditions (i.e. we start with no microbes and
just one resource 0 supplied at flux φ0). Species attempt
to colonize each ecosystem from the pool randomly (with
replacement), with the assumption that each species has
the same average immigration rate.

The assembly process runs for a fixed time period τ .
τ = 1 corresponds to every species attempted immi-
gration just once over the assembly process on average,
whereas τ = 2 corresponds to every species introduced
twice. We repeat our simulations for τ = { 1

10 , 1, 2}.
After collecting several ecosystems for each τ , we plot

the distribution of species prevalence — the fraction of
randomly assembled ecosystems in which a species is
present (see figure 3(A)). We observe that the shape of
this distribution depends on τ , as follows:

For small values of τ (in figure 3(A), we show τ = 0.1
in violet), the distribution is dominated by small preva-
lence values. This indicates that — for this time period
τ — no species are core, i.e. none of them are found
in almost all ecosystem instances. Instead, we find that
each species is found at most in a small fraction of them.
This makes sense, since at low τ , the stochastic species
colonization dominates, and there is hardly any time for
species interactions to stabilize parts of the assembling
ecosystem.

For higher values of τ (in figure 3(A), we show τ = 1 in
green and τ = 2 in red), the distribution is ‘U-shaped’,
i.e. most species are either core (found in most ecosys-
tem instances) or peripheral (found in a small fraction
of them). This can be explained as follows: as assem-
bly proceeds, species from the pool which use high-flux
resources with high resource affinity end up surviving
with a high probability. These form the high-prevalence
portion of the U-shape. Next, after some delay many
other species from the pool that depend on these species
at the top trophic layer can successfully colonize these
ecosystems. However, stochastic colonization continues
to dominate in lowest trophic layers and contributes to
the low-prevalence portion of the U-shape. Interestingly,
such a U-shaped prevalence distribution is also observed
in many real microbial communities: such as longitudi-
nal samples of the human oral microbiome [7] (see the
gray distribution in figure 3(B); the model prediction is
shown in black for comparison) and anaerobic digesters
in wastewater treatment plants [3].

Moreover, both real ecosystems are characterized by a
positive correlation between the prevalence of a species
among different samples and their relative abundance in
those samples, i.e. species that were found often tend
to also dominate their respective communities in abun-
dance (see the scatter plot in figure 3(D) for oral mi-
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crobiome and figure 2(b) in [3] for wastewater plants).
This observation is also captured well by our model:
high-prevalence species tend to be be consumers of re-
sources with high effective flux. Since this flux deter-
mines steady-state species abundances, our model repro-
duces this behavior over several orders of magnitude (see
model prediction in figure 3(C)).

To summarize, high species diversity is routinely ob-
served in microbial ecosystems and the reasons behind
this remain a puzzle to microbiologists, ecologists and
evolutionary biologists alike [1–3]. Central to this puzzle
is the competitive exclusion principle [5], which specifies
an upper bound on the number of species that can coexist
on a given number of resources. For microbial ecosystems
in particular, past studies have suggested that facilitation
via metabolic byproducts may help alleviate such bounds
[19]. In this study, we present a conceptual model of a
microbial ecosystem which demonstrates some ecological
consequences of metabolic facilitation — all of which are
borne well by data from real ecosystems.

In our model, every microbial species is a consumer
of a single resource, which — when utilized for growth
— results in the formation of several metabolic byprod-
ucts which may themselves be used as resources by other
species. Initially, we supply the ecosystem with one ex-
ternal resource at a constant flux. Over time, new species
stochastically immigrate and attempt to colonize this
ecosystem, their success being determined by competi-
tive exclusion [5]. Both microbes and resources in our
model are diluted at a fixed rate δ.

Despite its simplicity, this model can generate sur-
prisingly rich ecological behaviors. Specifically, we find
that we can tune ecosystem diversity merely by control-
ling δ, that we can reproduce species abundance dis-
tributions for real microbial communities sampled from
the human oral microbiome and methanogenic bioreac-
tors, and through repeated assembly, we can capture
both the U-shaped prevalence distributions and a posi-
tive abundance-prevalence correlation regularly observed
in these ecosystems.

What distinguishes our model from previous
‘consumer-resource’ [10, 20, 21] approaches? Firstly,
we explicitly model energy conservation in the form of
incomplete resource-to-biomass conversion and generate
metabolic byproducts from what remains. Secondly, we
can explicitly handle species abundances to explain why
they scale according to a power-law. Finally, we can
generate and explain species’ prevalence distributions
from many microbial communities by simulating several
stochastic assemblies.

Data from microbial ecosystems in different environ-
ments corroborate the overarching predictions of this
model, namely: human oral microbiome samples [7], soil
communities [8], wastewater treatment plants [3], and
methanogenic bioreactors [16]. Interestingly, the oral
data we use is from the human tongue, which is believed

to be assembled in a specific temporal order, i.e. late-
colonizing species depend on the ones that came before
them [22]. This is very similar to the mechanism behind
our simulations.

Note that in the model here we make the assumption
that each microbe can use only one resource. In reality,
microbes can typically use multiple resources for growth.
However, extending our model to allow each microbe to
consume more than one resource involves several choices.
First, one needs to decide if a microbe would consume
resources in parallel or sequentially (both cases are ob-
served in real microbes). Second, one may envisage trade-
offs between resource affinity for any single resource and
the number of resources. One extreme limit of this trade-
off in which the sum of affinities always adds up to the
same number has been recently modeled in [23]. Finally,
one needs to distinguish between different ‘kinds’ of re-
sources, e.g. sources of C, N, P, S, Ca, essential vitamins,
etc. [24, 25]. In this case, microbes can function as as
logical AND gates, i.e. they would have to monopolize a
resource of each kind to survive. Moreover, given sev-
eral resources of each kind, they could also function as
OR gates, i.e. choosing any one of each kind. This choice
would imply microbes as Boolean logic expressions, their
survival being determined by whether the expression en-
coded in their genome is satisfied by their environment.

Comparing all these options remains beyond the scope
of the present study. However, we are currently consid-
ering alternative models which incorporate all of these
choices.
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SUPPLEMENTAL MATERIAL

DERIVATION FOR SPECIES ABUNDANCE DISTRIBUTION

Consider a tree-like ecosystem in a bioreactor as in our model. At steady state, species abundances depend on
their effective fluxes corresponding to their consumed resources as in equation (4) in the main text. Consider also the
layered arrangement of the ecosystem. Given this, for a species at layer ` in the tree, its steady-state abundance b is

approximately given by 〈φ̃i〉`(1−α)
δ . In the limit of low dilution δ, we can write b roughly as:

logb ∼ logφ0 − ` · (|logα|+log(α+ β)) + log(1− α) + logδ

∼ κ− (|logα|+log(α+ β)) · `,
(S1)

where κ is a constant. Now, note that that each layer can accommodate β` species, where β is the number of
byproducts per species. To first order, when we ask for the number of species N (B > b) with abundance greater than
a certain value b, we are asking for species at layer numbers lower than `max. Inverting equation (S1), we can write
this number as follows:

N (B > b) ∼ 1 + β + β2 + ...+ β`max ∼ β`max+1

β − 1

= elogβ
[

κ−b
|logα|+log(α+β)

]
= κ′ · b−

[
logβ

|logα|+log(α+β)

]
,

(S2)

where κ′ is another constant independent of b. From this cumulative distribution, the normalized species abundance
distribution will thus be:

N (B = b) ∼ b−
(

1+ logβ
|logα|+log(α+β)

)
(S3)

DERIVATION FOR ECOSYSTEM CAPACITY

We wish to derive the number of species that the ecosystem can accommodate at steady state given a constant
dilution rate δ. Note that species cannot survive at steady state unless their steady state abundance is positive. For
this to be the case, at the bottom-most layer in the ecosystem `max, the resource flux for any consumer species with
resource affinity λ must be positive. Using the expression in equation (5) of the main text, this implies that the
following relation must hold at `max:

φ0

(α
β

)`
max

=
δ2

λ

(
1 +

α

β

)`max

=⇒ `max =
logφ0 + logλ− 2logδ

|logα|+log(α+ β)
.

(S4)

Now, the number of species in the ecosystem Nmax of the order of β`max+1

β−1 = β`max · β
β−1 :

Nmax(δ) ∼ elogβ·
(

logφ0+logλ−2logδ

|logα|+log(α+β)

)
∼ δ−

(
2logβ

|logα|+log(α+β)

)
.

(S5)

RAREFACTION CURVES

Typically surveys of microbial ecosystems also involve measuring ‘rarefaction curves’, i.e. the number of species
observed or detected over the process of sampling several similar ecosystems. Since in our model we performed
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repeated stochastic assemblies of ecosystems, we can also demonstrate rarefaction curves similar to those observed
in the aforementioned surveys. We show below an example of these curves from our model ecosystems in both
linear-linear (left) and log-log (right) forms.

FIG. S1. The rarefaction curve, that is to say, the total number, Nobs(n), of distinct species observed plotted as a function
of the number of samples n. Left and right panels show it in linear and logarithmic coordinates respectively. The gray area
reflects the variability with respect to the order in which ecosystems are sampled. The red line is the prediction of the Eq. (S6)
based on empirically observed prevalences fi of individual species in the pool. The dashed line is set to Npool = 1000, which is
the upper bound of Nobs(n).

We can show that the species’ prevalence distributions we discuss in the main text are related to these rarefaction
curves. Consider a species pool with Npool species, each species i with an associated prevalence fi.

Here fi represents the frequency with which this species is found in a particular ecosystem sample. We wish to
derive Nobs(n), the number of species observed or detected after taking n ecosystem samples.

The probability that after n sampling events, a particular species has not been detected is (1 − fi)n. Hence, the
chance that it is detected at the nth sampling event is 1− (1− fi)n. Summing over all species in the pool, we get the
desired expression for Nobs(n):

Nobs(n) =

Npool∑
i=1

[
1− (1− fi)n

]
. (S6)

This expression matches our simulated rarefaction curves quite well (the red solid line indicates the expression
using species prevalences and the gray envelope indicates results from several simulated ecosystem samples). In our
simulations, Npool = 1, 000.

Additionally, note that in case the prevalences fis are sufficiently dense, we may consider only the prevalence
distribution P(f) instead of this discrete sum. In this case, we get the following integral expression over species
prevalences f :

Nobs(n) = Npool ·
∫ 1

0

P(f) · (1− e−nf )df. (S7)

A practical way to compute it from a known prevalence distribution is to first take a derivative of Nobs(n) with
respect to n given by:

dNobs(n)

dn
= Npool ·

∫ 1

0

f · P(f) · e−nfdf, (S8)

and then integrate the result over n. Note that dNobs(n)
dn ' Nobs(n+ 1)−Nobs(n); in other words, the number of new

species detected when the number of samples is increased from n to n+ 1. Hence, it stands to reason that it should
systematically decrease with n as equation (S8) suggests.
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