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Abstract

The development of software for working with data from population genetics or genetic
epidemiology often requires substantial time spent implementing common procedures.
Pydigree is a cross-platform Python 3 library that contains efficient, user friendly
implementations for many of these common functions, and support for input from
common file formats. Developers can combine the functions and data structures to
rapidly implement programs handling genetic data. Pydigree presents a useful
environment for development of applications for genetic data or rapid prototyping
before reimplementation in a higher-performance language.

Pydigree is freely available under an open source license. Stable sources can be
found in the Python Package Index at https://pypi.python.org/pypi/pydigree/,
and development sources can be downloaded at
https://github.com/jameshicks/pydigree/

1 Introduction

Development of applications and algorithms for genetic datasets requires reimplementing
many basic functions and parsing common file formats. Identifying bugs and accounting
for edge-cases represents a substantial use of developer time. Genetic datasets are often
very large, and inefficient processing can result in lost productivity. A common
implementation of these functions would allow for faster development time, fewer bugs, .
Pydigree is a python framework for genetic datasets that attempts to solve this problem.

The Python programming language is commonly used in bioinformatics, and users
have access to a wide range of libraries for numerical computing, statistics, and machine
learning. While there are python packages that work with genetic data, such as
simuPOP [8], they tend to focus on simulation or specialized functions. Pydigree
provides a general purpose python module containing implementations of common
procedures on datasets of diploid subjects. This allows developers to integrate their
genetics algorithms and simulations with the other python libraries.

2 Features

Pydigree provides a ’pythonic’ environment for creation and manipulation of genetic
data. Entities and common procedures are implemented in an object-oriented fashion,
with a focus on organized selection and manipulation of data. Where possible, functions
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are implemented lazily (deferring computation until the result is required). For common
computationally intensive tasks, functions have been implemented in the C++ or
Cython [1] programming languages. The module provides these data structures and
functions independently, allowing users to combine them as needed in their own
programs.

Pydigree is designed to be extensible and easy to integrate with other programs.
The python ecosystem contains many useful packages for scientific computation, and
pydigree can translate its objects to data structures usable by them. The provided data
structures can be used in python’s language interoperability features, allowing access to
functions written in C/C++ or R.

Users will most commonly interact with three kinds of objects: the individuals
themselves, collections of individuals, and genotypes. Individual represents the set of
genotypes and phenotypes for an individual in the dataset. Population, Pedigree, and
PedigreeCollection are collections of individuals. They provide convenient functions
for selecting certain individuals and batch operations for each individual in the
collection. Additionally, collections can calculate allele frequencies. Population
represents a collection of unrelated individuals. Pedigree is a subclass of Population
and represents a group of individuals connected by a known family structure. It
provides common functions for pedigrees, including kinship and inbreeding coefficients.
PedigreeCollection represents a collection of pedigree objects and can perform batch
operations on them. When genealogies are present, they can be navigated through using
the paths submodule.

The third kind of major object organizes genetic information. The main object here
is Alleles, which carries a haploid chromosome’s set of alleles. The alleles are stored
efficiently and can be queried and sliced like other python objects. For each
chromosome in a population, there is a single ChromosomeTemplate object. This class
organizes the information on each variant site in the chromosome, including allele
frequencies and both physical and genetic positions. When handling data generated
from sequencing experiments problems with memory usage can often arise. Pydigree
provides a data structure, SparseAlleles, which stores only minor alleles. Since the
bulk of variation in the human genome is rare, the sparse container can result in a
substantial reduction in memory use for large datasets.

Pydigree supports file IO in a variety of formats, including VCF [2], PLINK, and
BEAGLE files. GZIP, BZIP2 and LZMA/XZ compressed files are handled seamlessly.
Pedigrees can be input in the popular LINKAGE format used by MERLIN and PLINK,
and genotypes from a separate file may be merged in.

3 Simulation

Pydigree contains functions for the simulation of both pedigrees and population-based
datasets by a forward-time strategy. An initial population or pool of chromosomes can
be iterated forward in time by mating randomly chosen members and using their
offspring for the next generation. Genealogical history for each individual in a
generation can be retained. Existing datasets can be used as initial chromosomes for
simulation, randomly generated .

When intermediate genotypes do not need to be realized (e.g. no effects of selection
or assortative mating), datasets can be generated rapidly. Instead of genotypes,
individuals carry references to segments on a chromosome in the initial generation. This
has two main advantages. First, it reduces the amount of time is spent allocating and
copying haplotypes between individuals. Second, true haplotype phase and
identity-by-descent states are known through the simulation. This has a variety of
possible uses, including simulating pedigrees constrained by inheritance patterns or
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testing methods for detecting IBD segments from genotypes. Once generation
advancement is complete, genotypes are assigned to the founder generation and all other
genotypes are resolved by their references to founder individuals.

3.1 Simulation of quantitative genetic models

Pydigree allows for simulated phenotypes to be generated from genotypes. Each allele
can be given additive and dominance effects, collected in the class
QuantitativeTraitArchitecture. At the end of simulation, this class combines the
effects of all specified alleles to give the overall genetic effect. If a dichotomous trait is
required, a threshold can be specified such that phenotypes above it are marked
affected. The sum of the effects can be rescaled and combined with noise to give the
trait a specified heritability. QuantitativeTraitArchitecture can optionally
randomly select a set of markers or add extra dummy chromosomes to simulate the
effect of polygenes on the trait. Additionally, this model can incorporate the effects of
specified environmental exposures.

4 Included statistics and algorithms

Estimation of variance components is common in both genetic epidemiology and animal
breeding. This is generally done via the linear mixed effects model (LMM). Pydigree
implements an LMM that seamlessly integrates with the other objects. The
MixedModel class can utilize outcome variables fixed predictors from collections of
Individual objects. Random effects are specified by RandomEffect objects and allow
for arbitrary incidence and covariance matrices. The model can be fit for maximum
likelihood or restricted maximum likelihood using expectation-maximization [3] or
Newton-like optimization methods. When using Newton-like methods, Newton-Raphson,
Fisher Scoring [7], and Average-Information [4] methods are available. Math is done
internally by the optimized linear algebra routines in the numpy [9] and scipy [5]
software packages. To compare models a likelihood-ratio test is provided.

Identifying genome regions shared identical-by-descent (IBD) using genotype data is
an increasingly common operation on populations. Pydigree provides a submodule, sgs,
which uses the insight of Kong et al. [6], that IBD regions between a pair of individuals
can not contain opposite homozygote genotype pairs. SGSAnalysis attempts to find
these shared genome segments by calculating identity-by-state (IBS) across each
chromosome and finds regions that do not have any IBS=0 genotype pairs. The
algorithm used allows for user-defined acceptable rates of genotyping errors and
genotype missingness.

Hidden Markov models (HMMs) are used in many algorithms for computational
biology. Pydigree provides two implementations: a standard HMM, and a ’genotype
HMM’ which can vary its emission probabilities across observations (e.g. for alleles with
different frequencies). Hidden states can be resolved by maximum likelihood
(forwards-backwards algorithm) or maximum a posteriori (Viterbi decoding) methods.

5 Conclusion

Pydigree provides a useful and user-friendly development environment for genetic
software. Pydigree also provides several programs as part of its installation. These
scripts perform common tasks like kinship and inbreeding coefficient calculation
(kinship.py), variance component estimation (polygenic.py), and forward time
simulation of pedigree datasets (simulate pedigree data.py). While useful for their
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own purposes they also provide an example of how to use the pydigree library for
common tasks.

Pydigree is available for download under an the open source Apache 2.0 license.
Stable versions can be found at in the Python Package Index at
https://pypi.python.org/pypi/pydigree/. Source code and developmental versions
can be found at https://github.com/jameshicks/pydigree/.
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