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ABSTRACT	

	

A	 diverse	 T	 cell	 repertoire	 is	 a	 critical	 component	 of	 the	 adaptive	 immune	 system,	

providing	 protection	 against	 invading	 pathogens	 and	 neoplastic	 changes,	 relying	 on	 the	

recognition	of	foreign	antigens	and	neoantigen	peptides	by	T	cell	receptors	(TCRs).	However,	the	

statistical	properties	and	function	of	the	T	cell	pool	 in	an	individual,	under	normal	physiological	

conditions,	 are	 poorly	 understood.	 In	 this	 study,	 we	 report	 a	 comprehensive,	 quantitative	

characterization	 of	 the	 T	 cell	 repertoire	 from	 over	 1.9	million	 cells,	 yielding	 over	 200,000	 high	

quality	paired	αβ	sequences	in	5	healthy	human	subjects.	The	dataset	was	obtained	by	leveraging	

recent	 biotechnology	 developments	 in	 deep	 RNA	 sequencing	 of	 lymphocytes	 via	 single-cell	

barcoding	 in	 emulsion.	 We	 report	 non-random	 associations	 and	 non-monogamous	 pairing	

between	 the	 α	 and	 β	 chains,	 lowering	 the	 theoretical	 diversity	 of	 the	 T	 cell	 repertoire,	 and	

increasing	the	frequency	of	public	clones	shared	among	individuals.	T	cell	clone	size	distributions	

closely	 followed	 a	 power	 law,	 with	markedly	 longer	 tails	 for	 CD8+	 cytotoxic	 T	 cells	 than	 CD4+	

helper	T	cells.	Furthermore,	clonality	estimates	based	on	paired	chains	 from	single	T	cells	were	

lower	than	that	from	single	chain	data.	Taken	together,	these	results	highlight	the	importance	of	

sequencing	αβ	pairs	to	accurately	quantify	lymphocyte	receptor	diversity.	
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INTRODUCTION	

	

The	adaptive	 immune	system	of	 jawed	vertebrates	 requires	maintenance	of	a	genetically	

diverse	 T	 cell	 repertoire	 in	 order	 to	 defend	 against	 the	 wide	 spectrum	 of	 potential	 antigens,	

whether	 infectious	or	neoplastic,	 that	 an	 individual	may	encounter	over	 the	 course	of	 their	 life.	

However,	the	statistical	properties	of	the	αβ	T	cell	repertoire	in	healthy	individuals	has	remained	

poorly	characterized,	in	large	part	due	to	the	laborious	task	of	sequencing	single	T	cells	in	a	high	

throughput	fashion.	The	TCR	is	a	heterodimer	consisting	of	one	α	and	one	β	chain,	each	of	which	is	

highly	 variable. The	 germline	 DNA	 sequence	 of	 human	 α	 and	 β	 chains	 resides	 on	 differing	

chromosomes	and	encodes	a	number	of	genes	–	60-70	variable	(V)	and	61	joining	(J)	genes	for	the	

α	 chain,	 and	 52	V,	 13	 J,	 and	 2	 diversity	 (D)	 genes	 for	 the	 β	 chain	 (Fig.	 1A,B).	 The	DNA	of	 each	

differentiated	T	cell	undergoes	a	V(D)J	recombination	 in	the	thymus	-	one	Vα,	 Jα,	Vβ,	Dβ,	and	Jβ	

gene	 are	 selected	 via	 DNA	 splicing	 followed	 by	 random	 repair,	 insertions	 and	 deletions	 at	 the	

splice	sites.	Due	to	this	mechanism,	most	of	the	genetic	variation	of	the	TCR	repertoire	resides	in	

the	complementarity-determining	region	3	(CDR3)	encompassing	the	V(D)J	junction.	The	diversity	

of	the	T	cell	repertoire	is	further	increased	by	the	pairing	of	α	and	β	chains,	potentially	generating	

over	 1015	 distinct	 TCRs1–3.	 Thus,	 an	 understanding	 of	 the	 full	 TCR	 repertoire	 requires	 the	

identification	of	paired	αβ	sequences,	which	has	remained	technically	challenging.		

Most	studies	of	the	T	cell	repertoire	have,	to	date,	focused	on	characterizing	either	the	α	or	

β	chain	diversity	alone	by	bulk	sequencing	methods4–9.	While	convenient	and	cheaper,	subsequent	

clonality	 analyses	 of	 bulk	 sequencing	 data	 necessarily	 invoke	 the	 commonly	made	 assumption	

that	the	β	chain	is	 independent	of	the	concomitant	α	chain10–14,	despite	a	 lack	of	direct	evidence	

supporting	 this	 claim.	 Prior	 experimental	 attempts	 to	 recover	 αβ	 pairs	 involve	 single-cell	

sequencing	in	96-well	plates15,	RT-PCR16–19	or	sequencing	in	emulsion20,	resulting	in	relatively	low	

sample	 sizes	 and	 loss	 of	 rare	 T	 cell	 clones.	 Computational	 methods	 such	 as	 PairSEQ21	 and	
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ALPHABETR22	can	overcome	small	sample	sizes	and	have	a	reported	capacity	of	recovering	up	to	

105	αβ	pairs.	Nevertheless,	due	to	the	probabilistic	nature	of	these	statistical	methods,	detecting	

small	 size	 clones	 still	 remains	 problematic,	 and	 an	 accurate	 description	 of	 the	T	 cell	 repertoire	

within	and	across	individuals	has	remained	elusive.		

Here,	we	analyzed	an	unprecedented	high-throughput	dataset	of	 full-length,	high	quality,	

paired	 αβ	 sequences	 (n=205,950)	 from	 peripheral	 blood	 samples	 of	 5	 healthy	 individuals	 (3	

males,	 2	 females,	 ages	 33-69)	 acquired	 through	 a	 recently	 developed	 microfluidic	 method	 of	

single-cell	RNA	sequencing	in	emulsion	droplets23.	In	brief,	αβ	pairs	were	recovered	by	attaching	

unique	droplet	and	molecular	barcodes	to	the	target	cDNA	from	the	lysed	cells	inside	droplets	(Fig	

1C),	 followed	 by	 recovery	 and	 next	 generation	 sequencing.	 The	 sequenced	T	 cells	were	 further	

stratified	 into	 CD4+	 (n=73,495)	 and	 CD8+	 (n=30,321)	 subtypes	 (Sup	 Table	 1),	 based	 on	 paired	

sequence	tags	introduced	by	labeling	with	DNA-conjugated	antibodies.	All	TCR	sequences	used	in	

this	 study	came	 from	T	cells	expressing	only	one	unique	TCR.	That	 is,	 any	cell	 expressing	more	

than	one	α	or	β	chain,	whether	biological	due	to	violations	of	allelic	exclusion24	or	artifactual	due	

to	multiple	cells	randomly	included	in	a	single	droplet,	were	removed	from	the	final	dataset	(see	

Methods).		
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FIGURE	1.		

T	cell	receptors	(TCRs)	and	high-throughput	single-cell	barcoding	in	emulsion.	

A)	Human	germline	DNA	depiction	of	TCR	α	and	β	chains.	V	–	variable	gene;	J	–	junction	gene;	D	–	

diversity	gene;	C	–	constant	region.	B)	Functional	T	cell	receptor	structure.	Colors	correspond	to	

germline	 gene	 notation	 in	 (A).	 C)	 High	 throughput	 single-cell	 barcoding	 in	 emulsion	 platform.	

Single	T	cells	are	encapsulated	in	oil	droplets	at	an	approximate	Poisson	rate	of	0.1	cells/droplet	

to	reduce	the	chance	of	multiple	cells	per	droplet.	This	results	in	~10%	of	droplets	containing	at	

least	1	T	cell,	and	~90%	of	cell	containing	droplets	will	have	only	one	T	cell.	Droplet	barcodes	are	

attached	to	the	5’end	of	α	and	β	sequences,	allowing	the	recovery	of	the	pairs	post-sequencing.	

	

	

	

	

	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2017. ; https://doi.org/10.1101/213462doi: bioRxiv preprint 

https://doi.org/10.1101/213462
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6	

RESULTS	

	

Single	chain	α	or	β	repertoires	are	not	equivalent	to	the	paired	αβ	repertoire.	

First,	we	address	the	assumption	that	every	αβ	pair	 is	unique,	 i.e.	 that	no	α	will	pair	with	

more	than	one	different	β	and	vice	versa10,11.	To	evaluate	potential	discrepancies	between	paired	

and	single	chain	analyses,	we	split	our	paired	αβ-CDR3	dataset	into	separate	α-CDR3	and	β-CDR3	

datasets,	and	compared	clone	size	distributions	of	all	three	groups.	That	is,	 if	we	observe	an	αβ-

CDR3	with	a	clone	size	50,	we	create	corresponding	α-CDR3	and	β-CDR3	clones	of	size	50	each.	It	

is	 important	 to	 note	 here	 that	 each	 sample	 is	 of	 the	 same	 size,	 and	 therefore	 all	 differences	

observed	arise	solely	 from	non-random	αβ	pairings	rather	 than	as	an	artifact	of	varying	sample	

sizes.	 We	 find	 that	 the	 clone	 size	 frequency	 distributions	 of	 both	 single	 and	 paired	 αβ	 chains	

resemble	 heavily	 tailed	 power	 law	 distributions	 characterized	 by	 linear	 behavior	 on	 the	

bilogarithmic	 scale	 (see	 Methods;	 Eq	 1).	 Given	 the	 unique	 αβ	 pairing	 assumption,	 one	 would	

expect	such	analyses	to	result	in	three	identical	distributions.	However,	we	observe	three	distinct	

clone	 size	 distributions	 of	 paired	 αβ-CDR3,	 single	 chain	 α-CDR3,	 and	 single	 chain	 β-CDR3.	 This	

contradicts	the	assumption	of	unique	pairing	and	therefore	is	suggestive	of	a	non-random	process	

driving	αβ	pairing	(Figure	2A,	Sup	Fig.	1).	

We	quantified	 the	differences	 in	 single	vs	paired	αβ	 repertoires	by	 fitting	 the	power	 law	

curve	 and	 estimating	 the	 exponent	 (γ)	 using	 a	 maximum-likelihood	 inference	 approach	 in	

conjunction	with	Newton-Raphson	numerical	optimization	(see	Methods;	Eq	8).	To	avoid	potential	

biases	by	dominant	small	clone	sizes,	we	varied	the	minimum	clone	size	(𝑋"#$)	 in	our	inference	

method.	We	 report	 exponent	 estimates	 corresponding	 to	𝑋"#$	values	 ranging	 between	 1	 and	 5,	

showing	that	(i)	exponent	values	change	with	varying	𝑋"#$;	(ii)	paired	αβ	power	law	exponent	is,	

on	average,	larger	for	𝑋"#$ = 1	than	that	of	single	α	and	β	(Wilcoxon	signed	rank	p-value=2.2×10-

2);	 and	 (iii)	 for	𝑋"#$ > 1,	 the	 differences	 in	 exponent	 diminishes	 (Figure	 2B,	 Sup	 Fig.	 2).	 These	
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results	 suggest	 that	 rare	 clones	 drive	 the	 discrepancies	 between	 the	 three	 distributions.	

Interestingly,	we	observe	a	higher	frequency	of	unique	paired	αβ	clones	as	compared	with	single	

chain	 clones,	 providing	 further	 evidence	 for	 non-monogamous	 pairing	 of	 α	 and	 β	 chains.	

Additionally,	we	counted	how	many	unique	α	chains	each	β	chain	is	paired	to	in	our	dataset,	and	

vice	versa.	Surprisingly,	the	distribution	of	paired	counts	for	both	chains	exhibited	a	similar	power	

law	 distribution	 (Fig.	 2C;	 Sup	 Fig.	 3).	 While	 the	 majority	 of	 chains	 exhibit	 unique	 pairing,	 we	

observe	cases	in	each	subject	where	some	chains	pair	with	a	multiplicity	of	differing	chains.	

	
FIGURE	2.	

Comparison	between	single	chain	and	paired	αβ	repertoires.		

A)	Clone	size	distribution	of	paired	αβ	vs	single	α	and	β	chain	CDR3	sequences.	We	employed	a	

maximum	 likelihood	approach	 to	 infer	 the	best	 fit	 of	 the	power	 law	distribution.	Differences	 in	

repertoires	suggest	non-random	αβ	pairing.	B)	Exponent	values	for	𝑋"#$ ∈ 1,2,3,4,5 ,	where	Xmin	
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is	 a	 minimum	 clone	 size	 used	 in	 estimating	 the	 best	 power	 law	 fit.	 Change	 of	 Xmin	 results	 in	

differing	 exponent	 estimates	 suggesting	 deviations	 from	 a	 power	 law	 behavior	 at	 small	 clone	

sizes.	 Significant	 differences	 in	 exponent	 between	 paired	 αβ	 and	 single	 chain	 repertoires	 are	

observed	at	Xmin=1	(Wilcoxon	signed	rank	p-value=2.2×10-2).	C)	Non-unique	αβ	pairing.	We	count	

the	 number	 of	 unique	 α	 CDR3s	 each	 β	 chain	 paired	 with	 and	 vice	 versa,	 and	 looked	 at	 the	

probability	distribution	of	those	counts.	While	the	majority	of	αβ	pairings	are	unique,	we	observe	

low	frequencies	of	α	and	β	chains	that	pair	with	multiple	unique	β	and	α	chains,	respectively.		

	

	

Non-random	associations	of	gene	usage	across	the	α	and	β	chains	

	 We	next	examined,	whether	associations	between	α	and	β	gene	usage	were	responsible	for	

driving	 the	 differences	 between	 paired	 and	 single	 chain	 repertoires.	 We	 quantified	 the	

associations	 of	 gene	 usage	 between	 α	 and	 β	 chains,	 as	 well	 as	 between	 αβ	 CDR3	 lengths,	 by	

estimating	 mutual	 information	 (MI),	 a	 self-equitable	 measure	 of	 association	 between	 two	

variables25,	using	a	bootstrap	procedure	to	correct	for	finite-sample	biases	(see	Methods;	Eq	14)26.	

We	observe	a	consistent	pattern	of	non-zero	MI	between	each	αβ	gene	pair,	with	higher	MI	for	αV-

βV	and	αJ-βV	than	for	αV-βJ	and	αJ-βJ	(Table	1).	 In	comparison,	MI	 for	αCDR3-βCDR3	lengths	 is	

consistently	close	to	zero	in	all	subjects,	suggesting	no	preference	towards	particular	CDR3	length	

combinations.		

Interestingly,	 Subject	 4	 exhibits	 higher	 MI	 for	 all	 gene	 pairs	 as	 well	 as	 CDR3	 lengths	

compared	 to	 other	 subjects.	 This	 suggest	 that	 non-zero	 MI	 values	 could	 be,	 at	 least	 partially,	

driven	by	post-thymic	T	cell	selection	and	proliferation	due	to	the	unusually	large	clones	observed	

in	Subject	4.	MI	for	gene	pairs	is	higher	than	those	of	CDR3	length	pairs,	suggesting	contributions	

beyond	 clonal	 expansions	 to	 the	 observed	 non-random	 associations.	We	 also	 estimated	MI	 for	

gene	pairs	within	the	same	chain,	and	found	MI	higher	than	that	of	gene	pairs	across	the	chains.	
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Furthermore,	 associations	between	V	 and	 J	 genes	of	 the	α	 chain	 are	 stronger	 than	between	 the	

genes	of	 the	β	chain.	This	result	 indicates	 the	possibility	 that	 the	biases	 imposed	on	the	α	chain	

during	VJ	recombination	is	stronger	than	those	during	of	VDJ	rearrangement	in	the	β	chain.	

	 Additional	analyses	of	αβ	gene	pair	usage	frequencies	reveal	specific	gene	pairs	that	seem	

to	be	preferably	selected	during	T	cell	maturation	(Fig.	3A-F).	Gene	usage	analyses	per	individual	

subject	shows	that	some	gene	pair	associations	are	preserved	across	all	subjects,	which	could	not	

be	explained	by	differential	post-thymic	clonal	expansions	(Sup	Fig.	4).	A	heat	map	of	the	αβ	CDR3	

length	usage	shows	no	clear	associations	between	the	chains	(Fig.	3G),	supporting	the	earlier	MI	

calculation.	We	note	a	 singular	clonal	expansion	 in	Subject	4	 individual	CDR3	 length	usage	heat	

map	 driving	 the	MI	 up	 (Sup	 Fig.	 5).	 Furthermore,	 when	 comparing	 each	 gene	 usage	 frequency	

across	subjects,	certain	genes	of	both	chains	tend	to	be	consistently	used	more	often	(Sup	Fig.	6A-

D),	similar	to	what	has	been	reported	in	previous	single	chain	studies27–29.	

	

	

	

	

	

	

	

	

	

	

	

TABLE	1.	

	Mutual	information	(MI)	estimates	between	V(D)J	gene	pairs	within	and	across	αβ	chains,	and	CDR3	

lengths	for	each	subject.	We	 applied	 a	 bootstrapping	 correction	method	 to	 account	 for	 different	

sample	 sizes.	 The	 MI	 estimates	 reveal	 negligible	 associations	 between	 αβ	 CDR3	 lengths,	 with	

	 S1	 S2	 S3	 S4	 S5	
αCDR3-βCDR3	 0.003	 0.009	 0.003	 0.052	 0.011	
αV-βV	 0.014	 0.071	 0.014	 0.242	 0.117	
αV-βJ	 0.003	 0.028	 0.006	 0.131	 0.028	
αJ-βV	 0.012	 0.082	 0.019	 0.239	 0.112	
αJ-βJ	 0.002	 0.038	 0.005	 0.138	 0.030	
αV-βD	 0.0002	 0.007	 0.0004	 0.006	 0.005	
αJ-βD	 0.0006	 0.012	 0.0002	 0.010	 0.005	
αV-	αJ	 0.278	 0.504	 0.289	 0.847	 0.315	
βV-βJ	 0.047	 0.166	 0.055	 0.476	 0.066	
βV-βD	 0.005	 0.065	 0.008	 0.034	 0.015	
βD-βJ	 0.076	 0.091	 0.064	 0.064	 0.061	
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higher	MI	for	Subject	4,	which	could	be	driven	up	by	clonal	expansions.	αβ	gene	pairs,	particularly	

αVβV	and	αJβV,	exhibit	higher	MI	than	that	of	CDR3	lengths	suggesting	that	in	addition	to	clonal	

expansions,	there	may	be	other	unknown	gene	selection	mechanisms	during	T	cell	maturation.	In	

addition,	 MI	 estimates	 of	 gene	 pairs	 within	 the	 chain	 are	 higher	 than	 MI	 across	 the	 chains	

suggesting	further	gene	selection	biases	during	V(D)J	recombination.	
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FIGURE	3.		
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Gene	usage	across	the	αβ	chains	exhibits	non-random	associations.	

A-F)	 αβ	 gene	 usage	 heat	maps	 reveal	 specific	 gene	 pairs	 used	 at	 higher	 frequencies,	which	 are	

largely	responsible	for	the	MI	values	found	in	Table	1.	Genes	are	listed	in	germ	line	order.	G)	αβ	

CDR3	 length	usage	heat	map	reveals	no	preference	 for	specific	CDR3	 length	pairs.	Note	 that	 the	

color	scale	varies	between	each	plot.			

	

CD4+	and	CD8+	T	cell	repertoires	result	in	distinct	clone	size	distributions		

To	 further	 characterize	 and	 compare	 the	 CD4+	 and	 CD8+	 T	 cell	 repertoires	 across	 all	

subjects,	we	quantified	the	clone	size	distributions	of	paired	αβ	CDR3	sequences.	We	report	that	

each	subject	clone	size	 frequency	distribution	closely	 follows	a	power	 law	(Fig.	4A,B)	consistent	

with	 single-chain	 clone	 size	 distributions	 reported	 here	 (Sup	 Fig.	 7)	 and	 previously30–32.	 	 We	

observe	 consistently	 differing	 distributions	 between	CD4+	 (Fig.	 4A)	 and	CD8+	T	 cell	 repertoires	

(Fig.	4B).	The	CD8+	T	cell	repertoire	deviates	from	the	power	law	behavior	at	the	tail	(Sup	Fig.	8).	

We	quantified	the	differences	in	CD4+	vs	CD8+	behavior	by	again	fitting	the	power	law	curve	and	

estimating	 the	 exponent	 γ.	 We	 report	 exponent	 values	 for	𝑋"#$	ranging	 between	 1	 and	 5	 as	

described	above.	Although	observed	CD4+/CD8+	differences	vary	between	individuals	(Sup	Fig.	9),	

we	show	that	the	CD8+	T	cell	exponent	is,	on	average,	smaller	than	that	of	CD4+	T	cells	(Figure	4C;	

Wilcoxon	signed	rank	p-value=2.2×10-4).	This	indicates	the	presence	of	a	heavier	tail	in	the	CD8+	

as	compared	to	the	CD4+	distribution.	Biologically,	this	could	arise	from	a	higher	proliferative	rate	

during	clonal	expansion	of	CD8+	cytotoxic	T	cells	in	an	acute	immune	response	to	a	given	antigen,	

as	compared	with	proliferative	rate	of	the	corresponding	CD4+	T-cell	population.	

	

Clonality	estimates	differ	between	paired	αβ,	and	single	α	and	β	repertoires	

	 Next	we	estimated	clonal	abundance	of	paired	αβ	and	single	chain	CDR3	sequences	 in	all	

subjects.	We	calculated	 the	clonal	abundance	score	by	 subtracting	normalized	Shannon	entropy	
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from	1	(see	Methods;	Eq	12).	Thus,	the	higher	the	clonal	abundance	score,	the	more	homogeneous	

and	less	diverse	the	sample	is.	Our	samples	exhibit	overall	low	homogeneity,	with	slightly	higher	

scores	 in	 CD8+	 compared	 to	 CD4+	 datasets	 in	 all	 but	 one	 subject	 (Figure	 4D).	 	 In	 addition,	 we	

compared	single	chain	clonality	scores	to	that	of	paired	by	splitting	the	paired	αβ	dataset	into	two	

separate,	 single	chain	datasets.	We	 find	 that	single	chain	clonality	scores	 tend	to	be	higher	 than	

paired,	consistent	with	our	previous	observations	of	distinct	clone	size	distributions	of	paired	and	

single	chain	datasets.	Subject	4	in	particular	exhibits	an	interesting	behavior	where	the	paired	αβ	

CD4+	T	cell	repertoire	clonality	score	is	higher	than	that	of	CD8+.	However,	when	considering	only	

the	single	chain	for	this	subject,	we	observe	the	opposite	behavior	with	CD8+	clonality	higher	than	

that	of	the	CD4+	population.	This	finding	highlights	yet	another	example	whereby	features	of	the	

paired	αβ	TCR	repertoire	cannot	necessarily	be	inferred	from	single	chain	analyses	alone.	

	
FIGURE	4.	

Characterization	and	quantification	of	the	T	cell	repertoire	and	clonality.	

A)	CD4+	and	B)	CD8+	T	cell	repertoires	follow	a	power	law	clone	size	distribution	characterized	by	

linear	 behavior	 on	 a	 bilogarithmic	 scale	 plot.	 The	 power	 law	 distribution	 is	 consistent	 among	
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subjects	 with	 varying	 exponents.	 The	 CD8+	 T	 cell	 repertoire	 exhibits	 higher	 frequency	 of	 large	

clones	compared	to	the	CD4+	T	cell	repertoire.	Maximum	likelihood	estimates	of	the	power	law	are	

displayed	 for	 each	 subject.	 C)	 Estimated	 exponent	 values	 of	 CD4+	 vs.	 CD8+	 T	 cell	 clone	 size	

distributions	 for	𝑋"#$ ∈ 1,2,3,4,5 .	 CD4	 exponents	 are	 significantly	 higher	 than	 CD8	 (Wilcoxon	

signed	rank	p-value=2.2×10-4).	D)	T	cell	repertoire	clonality	estimate	comparison	between	paired	

αβ	and	 single	α	and	β	 chains	 for	 each	 subject.	Estimates	 for	 clonality	 are	higher	 in	 single	 chain	

data	compared	to	paired.		

	

Existence	of	shared	sequences	across	individuals	

	 Given	the	finite,	albeit	large,	number	of	possible	human	αβ	pairs	that	could	be	generated	by	

random	 thymic	 editing	 there	 may	 be	 a	 number	 of	 TCR	 sequences	 that	 are	 shared	 across	

individuals.	 The	 total	 number	 of	 T	 cells	 present	 in	 the	 human	 body	 at	 any	 given	 time	 is	

approximately	 1011	 3,33,	 and	 an	 estimate	 of	 the	 number	 of	 mature	 T	 cells	 released	 into	 the	

periphery	by	the	thymus	over	a	lifetime	(80	years)	is	5x1012	34.	Given	that	this	estimate	constitutes	

only	~3%	of	 all	 double-positive	 thymocytes	produced	 in	 the	 thymus35,	 there	 are	 a	 total	 of	 1014	

productive	V(D)J	recombination	events	over	a	human	lifetime.	Experimental	detection	of	shared	

sequences	is	also	compounded	by	the	fact	that	only	a	tiny	fraction		(10-8)	of	the	total	T	cell	pool	is	

sampled.	We	deduce	that	the	probability	that	any	two	sampled	individuals	in	our	study	share	any	

identical	TCR	sequence	is	approximately	10-7,	given	the	number	of	unique	TCRs	observed	in	each	

subject	(see	Methods,	Eq	10).	This	estimated	probability	suggests	that	we	should	not	observe	any	

shared	sequences	between	individuals	in	our	dataset.	Surprisingly,	we	found	a	total	of	26	shared	

paired	αβ	 sequences	 between	 any	 two	 subjects	 and	 sharing	was	 observed	 across	most	 pairs	 of	

subjects.	In	addition,	after	splitting	the	paired	αβ	dataset	into	two	separate,	single	chain	datasets,	

instead	of	 expected	 shared	26	 single	α	and	β	 sequences,	we	 identified	over	3,600	 shared	α	and	

over	 200	 shared	 β	 chain	 sequences	 between	 any	 two	 individuals.	 Furthermore,	we	 see	 a	 small	
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fraction	of	α	chain	sequences	shared	amongst	all	5	subjects,	while	no	shared	pairs	are	observed	

amongst	all	5	 subjects	 (Figure	5A,	 Sup	Fig.	10C).	After	a	 closer	 look	at	 the	26	 shared	paired	αβ	

sequences	we	found	that	all	5	subjects	share	at	least	one	TCR	with	another	subject	(Figure	5B,	Sup	

Fig.	10D).	This	suggests	that	observation	of	shared	αβ	pairs	 is	a	 truly	biological	phenomenon	as	

opposed	to	a	technical	artifact,	such	as	emulsion	or	sequencing	index	contamination.	

The	presence	of	 these	 shared	TCR	sequences	 strongly	 suggests	 that	V(D)J	 recombination	

and	αβ	pairing	 are	 not	 truly	 random	processes,	 but	 rather	 that	 there	 exist	 strong	 biases	 in	 the	

recombination	machinery	that	are	ultimately	responsible	for	the	generation	of	these	public	clones.	

Furthermore,	as	estimates	for	TCR	diversity	rely	on	the	assumption	of	random	αβ	pairing,	these	

results	 indicate	 that	 the	 actual	 TCR	 repertoire	 may	 be	 less	 diverse	 than	 previously	 estimated.	

From	our	data,	we	estimated	the	effective	number	of	human	TCRs	to	be	~1010,	several	orders	of	

magnitude	lower	than	the	commonly	used	diversity	estimate	of	1015	(see	Methods).	

	 Earlier	studies	reported	existing	biases	in	gene	usage	across	individuals	at	a	single	

chain	level3,	which	we	also	observe	in	our	dataset	(Sup	Fig.	6).	The	existence	of	shared	paired	αβ	

sequences	suggests	that	biases	prevail	at	the	paired	level	as	well.	That	is,	certain	αβ	gene	pairs	are	

observed	more	often	then	others,	contributing	to	the	reduction	of	TCR	diversity	and	increasing	the	

probability	 of	 producing	 identical	 sequences	 in	different	 individuals.	 It	 has	been	 suggested	 that	

public	 clones	 should	 be	 abundant	 within	 a	 single	 individual,	 that	 is,	 specific	 TCRs	 that	 are	

copiously	produced	in	any	one	individual	are	more	likely	to	be	shared	across	individuals36.	To	test	

this	claim,	we	looked	into	the	clone	sizes	of	all	the	shared	sequences	and	found	that	there	is	not	an	

over	representation	of	large	clone	sizes.	In	fact,	most	of	the	shared	sequences	are	of	clone	size	1	

(Figure	5C),	and	the	distribution	follows	a	power	law,	albeit	with	a	sparse	number	of	clone	sizes.	

This	 also	 eliminates	 the	 possibility	 that	 observed	 shared	 αβ	 pairs	 are	 due	 to	 emulsion	

contamination	by	largely	expanded	clones.	
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Furthermore,	 to	 understand	 the	 probability	 of	 detecting	 identical	 sequences	 in	 the	 same	

individual,	we	performed	a	simulation	experiment	in	which	we	generated	one	million	sequences	

with	 the	 clone	 size	 distribution	 following	 the	 same	 empirical	 power	 law	we	 obtained	 from	 the	

experimental	data	(Fig.	5D).	We	then	randomly	subsampled	fractions	from	the	distribution	twice	

and	 calculated	 the	 number	 of	 sequences	 shared	 between	 the	 two	 subsamples.	 The	 simulation	

shows	 that	 even	when	 subsampling	 from	 an	 identical	 distribution	 twice,	 the	 number	 of	 shared	

sequences	that	could	be	found	decreases	rapidly	(Fig.	5E).	This	agrees	with	our	experimental	data	

in	 that	 we	 observe	 very	 low	 fractions	 of	 shared	 sequences	 between	 the	 two	 experimental	

replicates	of	each	subject	(Sup	Fig.	10A,	B).		
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FIGURE	5.	

Shared	sequences.		

A)	Fractions	of	shared	paired	αβ	CDR3,	α	chain	CDR3	and	β	chain	CDR3	sequences	among	subjects.	

B)	Heat	map	of	shared	paired	αβ	CDR3	fractions	by	each	subject	pair.	Specifically,	 the	heat	map	
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represents	a	fraction	of	αβ	CDR3	sequences	of	subject	on	the	x-axis	present	in	the	subject	on	the	y-

axis.	 C)	 Clone	 size	 distribution	 of	 the	 26	 shared	 αβ	 CDR3s	 in	 each	 subject	 they	 are	 found.	 D)	

Simulated	 power	 law	 distribution	 (n=106)	 resembling	 the	 T	 cell	 repertoire	 observed	 from	 the	

experimental	data.	Simulation	was	performed	by	creating	a	probability	mass	function	(pmf)	where	

exponent	γ=3,	and	maximum	clone	size=700,	and	than	randomly	sampling	from	pmf	generating	a	

noisy	power	law	distribution.	E)	Fractions	of	shared	sequences	observed	between	two	equal	sized	

sub-samples	randomly	sampled	from	the	generated	power	law	distribution	(D).	Rapid	decrease	in	

the	number	of	shared	sequences	is	observed	when	down-sampling.	

	

DISCUSSION	

To	 our	 knowledge,	 we	 present	 here	 the	 largest	 reported	 dataset	 of	 paired	 αβ	 TCR	

sequences	 to	 date,	 encompassing	 more	 than	 200,000	 high-confidence	 paired	 receptors	 drawn	

from	 the	peripheral	blood	of	 five	healthy	 individuals.	A	 critical	 finding	of	 this	 report	 is	 that	 the	

paired	αβ	TCR	 repertoire	 cannot	necessarily	be	directly	 inferred	by	observing	 the	 repertoire	of	

one	 chain	 alone.	 That	 is,	 while	 single-chain	 bulk	 sequencing	 provides	 valuable	 information	

regarding	 the	 TCR	 repertoire,	 it	 is	 not	 equivalent	 to	 the	 paired	 repertoire	 and	 does	 not	 fully	

capture	TCR	diversity.	The	importance	of	αβ	pairing	is	underscored	by	previous	structural	studies	

showing	that	receptor-antigen	binding	is	the	result	of	α	and	β	peptide	chain	working	in	concert.	

For	example,	substituting	a	few	amino	acids	in	the	antigen	binding	site	of	the	α	chain	could	either	

completely	 abolish37	 or	 strengthen38	 antigen	 binding.	 Furthermore,	 TCRs	 with	 identical	 β	 but	

different	α	chains	can	have	altered	antigen-MHC	binding	modes39.		

We	demonstrated	that	that	T	cell	clone	size	distribution	of	every	subject	exhibits	a	power	

law	behavior	with	heavier	tails	of	CD8+	T	cell	distribution	compared	to	CD4+,	 likely	the	result	of	

higher	 proliferative	 activity	 of	 CD8+	 compared	 to	 CD4+	 T	 cells.	While	 this	 has	 been	 previously	
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observed	at	a	single	chain	level30–32,	we	believe	it	to	be	the	first	confirmation	of	this	finding	with	

paired	αβ	TCRs	in	a	high	throughput	fashion.		

We	next	assessed	the	association	between	paired	α	and	β	chains,	 finding	strong	evidence	

for	non-random	and	non-monogamous	pairings.	More	 specifically,	 non-zero	mutual	 information	

between	the	two	chains	suggests	that	there	may	be	substantial	biases	in	gene	usage	during	T	cell	

maturation	as	well	as	post-thymic	selection.	We	speculate,	that	early	associations	between	the	α	

and	 β	 chains	 likely	 emerge	 due	 to	 structural	 hindering	 during	 protein	 folding	 and	 selection	

processes	in	the	thymus.	We	also	observe	associations	between	genes	used	within	the	same	chain.	

It	has	been	shown	in	mice	that	germline	βV	genes	contain	distinct	promoter	sequences	resulting	in	

varying	levels	of	transcription,	which	could	bias	βV	choice	during	recombination40.	Furthermore,	

certain	 enhancer	 elements,	 although	 in	 the	 TCRδ	 system,	 were	 found,	 that	 regulate	 chromatin	

accessibility	during	V(D)J	recombination	influencing	gene	selection.	

Most	 unexpected	 finding	 we	 report	 here	 is	 the	 observed	 26	 shared	 paired	 αβ	 CDR3	

sequences	between	any	two	individuals.	Given	the	estimated	theoretical	diversity	of	1015	unique	

TCRs,	and	given	the	small	sample	size	that	could	be	obtained	experimentally	compared	to	the	full	

population	of	1011	T	cells	in	the	human	body,	we	would	expect	to	observe	no	TCR	sharing	among	

individuals.	Note	 that	V(D)J	 recombination	occurs	prior	 to	 any	 thymic	or	post-thymus	 selection	

and	assuming	the	randomness	of	this	process	the	existence	of	shared	sequences	is	possible	only	

by	chance.	Therefore,	since	 the	probability	of	TCR	sharing	between	 individuals	 in	our	dataset	 is	

10-7,	 the	 existence	 of	 26	 shared	 paired	 αβ	 CDR3	 suggests	 that	 (i)	 the	 total	 diversity	 of	 TCRs	 is	

smaller	 than	1015;	 (ii)	V(D)J	 recombination	 is	 not	 a	 random	process	 and	unknown	mechanisms	

must	influence	gene	selection	as	well	as	insertion	and	deletion	content	during	T	cell	maturation	in	

the	thymus.	

Finally,	to	address	clinical	implications	of	our	study,	one	may	question	whether	differences	

in	 paired	 vs.	 single	 chain	 repertoires	 appear	 only	 due	 to	 rare	 clones.	 If	 the	 T	 cell	 sample	 is	
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collected	in	a	targeted	way,	for	example	from	the	tumor	tissue,	and	thus	only	expanded	clones	are	

captured,	sequencing	only	the	β	CDR3	could	be	enough	to	acquire	accurate	clonality	estimates	and	

changes.	We	argue,	however,	that	since	we	find	some	β	chains	that	pair	with	multiple	α	chains	and	

vice	versa,	single	chain	measurements	limits	our	ability	to	accurately	quantify	T	cell	clonality	and	

changes.	The	differences	in	clonality	measure	when	comparing	paired	vs	single	chain	repertoire	is	

of	 importance	in	recent	cancer	immunotherapy	studies	where	the	effectiveness	of	the	treatment	

can	be	determined	by	tracking	T	cell	clonal	changes	41–44.	Further	studies,	looking	into	paired	αβ	T	

cell	repertoire	from	tumor	tissues	are	essential	for	making	sure	that	accurate	clonality	measures	

are	acquired	 in	such	cases.	Moreover,	our	public	clone	analysis	directly	shows	that	one	can	 find	

hundreds	 of	 shared	 β	 and	 thousands	 of	 shared	 α	 chains	 among	 individuals	 with	 only	 a	 small	

fraction	of	those	truly	representing	shared	αβ	TCRs.		

In	 conclusion,	 our	 results	 stress	 the	 importance	 of	 sequencing	 αβ	 pairs	 to	 accurately	

describe	 and	 understand	 T	 cell	 diversity	 by	 emphasizing	 the	 discrepancies	 between	 single	 and	

paired	 αβ	 chain	 repertoires.	 Not	 only	 do	 these	 findings	 have	 important	 implications	 for	

understanding	 the	 basic	 biology	 that	 underlie	 the	 generation	 and	 maintenance	 of	 the	 TCR	

repertoire,	 but	 also	 could	 be	 particularly	 critical	 for	 developing	 successful	 immunotherapeutic	

approaches	and	correctly	assessing	patient	response	to	treatment.	
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METHODS	

	

	

Data	Collection	

	

PBMC	samples	from	5	healthy	donors	(three	males	and	two	females,	ages	33-69)	were	used	

in	our	analysis,	 and	were	 collected,	processed	and	 sequenced	as	described	 in	Briggs	et	al,	 2017	

Bioarxiv1	(see	Sup	Table	1).	Briefly,	approximately	3.2×105	viable	T	cells	were	isolated	from	each	

subject	PBMC	sample	(Pan	T	Cell	Isolation	Kit,	Miltenyi	Biotec)	and	their	T	cell	receptor	α	and	β	

cDNA	was	captured	in	emulsion	at	a	single	cell	level.	For	Subject	5,	approximately	9.1×105	viable	

cells	were	isolated	and	encapsulated	in	emulsion	(EasySep	HLA	Total	Lymphocyte	Enrichment	Kit,	

Stemcell	 Technologies),	 of	 which	 approximately	 75%	 (6.8×105)	 were	 CD3+	 T	 cells.	 Note	 that	

Subject	5	dataset	was	collected	at	a	different	time,	separately	from	Subjects	1-4.	To	optimize	the	

number	of	droplets	with	1	cell,	an	encapsulation	Poisson	rate	of	0.1	cells/droplet	was	used.	This	

resulted	 in	 encapsulation	 of	 approximately	 1.9×105	 single	T	 cells.	 Specific	 reverse	 transcription	

primers	 were	 used	 to	 target	 T	 cell	 receptor	 α	 and	 β	 chains	 along	 with	 the	 addition	 of	 unique	

molecular	 identifiers.	 The	 resulting	 cDNAs	were	 then	 subjected	 to	 emulsion	 PCR,	 during	which	

they	anneal	 to	amplified	droplet	barcode	strands	resulting	 in	a	DNA	product	 containing	droplet	

barcode,	molecular	identifier	and	a	target	sequence.	The	rate	of	droplet	barcoding	was	tuned	to	a	

Poisson	rate	of	1	barcode	template/droplet.	After	emulsion	RT	and	PCR,	the	emulsion	was	broken	

and	the	products	were	purified	and	subjected	to	target	enrichment	PCR,	where	primers	specific	to	

constant	 regions	 of	 T	 cell	 receptors	 and	 to	 the	 droplet	 barcode	 constant	 sequence	 were	 used.	

Sequencing	libraries	from	each	emulsion	were	uniquely	tagged	with	Illumina	index	sequences	for	

multiplexed	next-generation	sequencing.	The	full-length	TCR	variable	cDNA	was	then	sequenced	

on	Illumina	MiSeq	(paired-end	325+300	bp).	The	final	raw	sequence	FastQ	files	contained	cDNA	

sequences	with	their	corresponding	droplet	and	molecular	barcodes,	the	counts	of	observations	of	
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each	sequence	and	whether	the	sequence	is	an	α	or	a	β	chain.	In	addition,	we	received	a	separate	

file	of	each	droplet	barcode	and	whether	it	corresponds	to	CD4	or	CD8	T	cell	type	determined	by	

DNA	barcode-conjugated	antibody	staining.	Two	replicate	emulsions	were	run	for	each	subject.		

A	 Poisson	 rate	 of	 1	 barcode	 per	 droplet	 results	 in	 approximately	 40%	of	 cell-containing	

droplets	containing	more	than	one	unique	droplet	barcode.	This	will	modify	clone	size	counts	for	

small	clone	sizes	and	will	have	negligent	effects	on	clone	sizes	>3.	However,	this	caveat	does	not	

affect	 our	 conclusions	 of	 any	 analyses	 described	 here.	When	 comparing	 paired	 vs	 single	 chain	

repertoires,	both	come	from	the	same	dataset.	Thus,	clone	size	inaccuracies	will	be	identical	and	

will	have	no	impact	on	the	comparisons.	When	comparing	CD4	vs.	CD8,	the	differences	between	

the	two	are	driven	by	 large	clones	that	are	unaffected	by	the	caveat.	The	remaining	analyses	do	

not	take	clone	sizes	into	account	at	all.	

	

	

Data	Processing	

	

	 The	 raw	 sequencing	 data	 from	 two	 experimental	 replicates	 per	 subject	 were	 pooled	

together	before	data	processing	and	 all	 the	 sequences	with	occurrence	of	 one	 (CONSCOUNT=1)	

were	removed.	Then,	read	alignment	of	TCR	α	and	β	sequences	was	performed	using	Mixcr	2.2.12.	

Default	settings	were	used	during	alignment	and	the	following	information	was	acquired:	best	V,	

(D),	 J	 hits,	 nucleotide	 sequences	 and	 lengths,	 and	 amino	 acid	 sequences	 and	 lengths	 of	 CDR1,	

CDR2,	CDR3,	FR1,	FR2,	FR3	and	FR4	regions.	 If	alignment	 failed	 for	any	of	 the	sequences,	 those	

sequences	were	dropped	by	the	software	and	did	not	appear	 in	the	output	file.	 In	addition,	only	

productive	 sequences,	 those	 that	 contained	 a	 stop	 codon	 only	 in	 the	 FR4	 region,	were	 kept	 for	

subsequent	analyses.		
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	 Our	aim	was	 to	have	a	 final	dataset	where	one	droplet	barcode	was	associated	with	one	

sequence.	However,	in	the	raw	FastQ	files,	some	droplet	barcodes	appeared	more	than	once.	The	

next	 steps	 of	 data	 processing	 involved	 identifying	 those	 droplets	 and	 collapsing	 them	 into	 one.	

Sometimes,	 the	 repeating	droplets	were	associated	with	 identical	 sequence.	 In	 those	 cases	 such	

rows	were	collapsed	into	one,	and	occurrences	of	the	sequences	were	added.	In	a	few	cases,	the	

same	 droplet	 barcode	 corresponded	 to	more	 than	 one	 TCR	 sequence.	 However,	 some	 of	 those	

sequences	differed	only	by	one	nucleotide,	which	could	be	due	to	sequencing	error.	We	performed	

clonality	 analysis	 with	 Mixcr	 to	 find	 those	 clonotypes	 that	 differ	 by	 only	 one	 nucleotide.	 The	

resulting	 identical	 clonotypes	 were	 collapsed	 into	 one	 as	 if	 they	 were	 identical	 sequences	 and	

their	 counts	 were	 added.	 The	 correct	 sequence	 was	 considered	 the	 one	 with	 the	 highest	 read	

count.	However,	 some	droplet	barcodes	 that	were	associated	with	more	 than	one	sequence	still	

remained	and	were	thus	removed	from	the	dataset.	This	could	be	due	to	multiple	cells	per	droplet	

or	allelic	 inclusion.	The	remaining	one	droplet-one	sequence	samples	were	further	processed	by	

finding	αβ	pairs	via	the	barcode	droplet	and	finally,	the	dataset	were	split	by	CD4/CD8	type	(Sup	

Table	1).	

	

Power	Law	curve	fitting	

	

	 Inferring	 power	 law	 exponents	 from	 empirical	 data	 is	 known	 to	 be	 non-trivial	 due	 to	

severe	 biases	 incurred	 by	 linear	 regression	 on	 bilogarithmic	 scales3.	 To	 fit	 the	 power	 law	

distributions	and	to	accurately	infer	the	power	law	exponent	we	employed	a	maximum	likelihood	

framework	with	an	iterative	numerical	optimization	method	(Newton-Raphson).			

In	general,	the	power	law	probability	distribution	of	clone	sizes	with	exponent	𝛾	is	formally	

described	by	equation	1,		
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𝑝 𝑐	 	𝛾) = 	
𝑐34

𝜁(𝛾),														(1)	

where	c	is	the	clone	size,	and	

𝜁 𝛾 = 	
1
14 +	

1
24 +	

1
34 +

1
44 + ⋯ =	

1
𝑛4

:

$;<

	.									 2 	

			

	

Equation	2	is	the	Reimann	zeta	function	that	ensures	that	the	probability	distribution	is	correctly	

normalized,	i.e.	 𝑝(𝑐:
>;< 	𝛾 = 1.	Equation	1	was	further	generalized	by	including	a	choice	of	xmin	

and	xmax	values,	specifying	a	minimum	and	maximum	clone	size,	respectively	(equations	3	and	4).	

In	 our	 analyses,	 xmax	is	 always	 set	 to	∞,	while	 xmin	is	 varied	 from	1	 to	5	 to	 show	 changes	 in	 the	

inferred	exponents	given	the	xmin	for	each	condition,	and	observe	changes	 in	 the	behavior	of	 the	

power	 law	curves.	Note	that	Equation	4	 is	equivalent	 to	 the	Reimann	zeta	 function	when	xmin=1	

and	xmax=∞,		

	

	

𝑝 𝑐	 	𝛾) = 	
𝑐34

𝛧(𝛾, 𝑥"#$, 𝑥	"AB)
	,													(3)	

where	

	

𝛧 𝛾, 𝑥"#$, 𝑥	"AB = 	
1

𝑥"#$4
+	

1
(1 + 𝑥"#$)4

+	
1

(2 + 𝑥"#$)4
+

1
(3 + 𝑥"#$)4

+ ⋯ =	
1
𝑛4

BCDE

$;BCFG

.									 4 	

	

Once	the	data	is	selected	within	the	range	of	xmin	and	xmax	it	consists	of	N	numerical	values	

{x1,	 x2,	 x3,	…	 ,xN}	where	 xi	 is	 the	 clone	 size	 of	TCR	 sequence	 i.	We	derive	 the	 likelihood	 l	 of	 the	

relevant	dataset	{x1,	x2,	x3,	…	,xN},	

	

𝑙 = 𝑝 𝑑𝑎𝑡𝑎	 	𝛾)	

																															= 	𝑝 𝑥< 𝛾 𝑝 𝑥L 𝛾 …𝑝 𝑥N 𝛾 	
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								= 	 𝑝 𝑥# 𝛾
N

#;<
	

																																													=
𝑥#
34

𝑍 𝛾, 𝑥"#$, 𝑥"AB

N

#;<
,													(5)	

	

	

followed	by	the	log-likelihood	L,	which	is	computationally	more	manageable	

	

																																																																																𝐿 = ln 𝑙		

																													= ln
𝑥#
34

𝑍 𝛾, 𝑥"#$, 𝑥"AB

N

#;<
	

																																																		= 	 (ln 𝑥#
34

N

#;<
− ln 𝑍 𝛾, 𝑥"#$, 𝑥"AB )	

																																																																									= −𝑁	ln	𝑍 𝛾, 𝑥"#$, 𝑥"AB − 	𝛾	 ln 𝑥#
N

#;<
.										(6)	

	

	

To	 infer	 the	 exponent	𝛾	we	 maximize	 L,	 i.e.	VW
V4
= 0.	 Carrying	 out	 this	 derivative	 gives	 us	 the	

following	maximum	likelihood	equation	where	Z’	denotes	differentiation	of	Z	with	respect	to	𝛾,	

	

𝑍′ 𝛾, 𝑥"#$, 𝑥"AB
𝑍 𝛾, 𝑥"#$, 𝑥"AB

= −
1
𝑁 ln 𝑥#

N

#;<

.										(7)	

	

To	obtain	the	value	of	exponent	𝛾	we	solve	𝐹 𝛾 = 0,	where	

	

𝐹 𝛾 =
𝑍′ 𝛾, 𝑥"#$, 𝑥"AB
𝑍 𝛾, 𝑥"#$, 𝑥"AB

+	
1
𝑁 ln 𝑥#

N

#;<

= 0.										(8)	

	

This	 transcendental	 equation	 is	 impossible	 to	 solve	 analytically,	 therefore	 we	 use	 an	 iterative	

numerical	optimization	procedure	(Newton-Raphson)	to	solve	for	𝛾.		

	

Non-unique	αβ	pairing	
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	 Quality	 control	 measures	 were	 taken	 to	 ensure	 that	 observed	 non-unique	 αβ	 pairing	

reflects	 a	 biological	 phenomenon	 rather	 than	 technical	 artifacts.	 To	 eliminate	 the	 possibility	 of	

observing	 such	 pairs	 due	 to	 sequencing	 errors,	 we	 treated	 CDR3	 sequences	 with	 Hamming	

distance	1	as	 identical.	To	 reduce	 the	possibility	of	 an	artifact	due	 to	 contamination	 from	other	

droplets	by	RNA	coming	from	a	hugely	expanded	clone,	we	removed	the	non-unique	chain	count	1	

from	the	plots	in	Figure	2C	and	Supplementary	Figure	3.	

	

Shared	sequences	

We	express	f,	the	probability	of	observing	no	shared	TCRs	between	two	individuals	A	and	

B,	given	the	number	of	unique	TCRs	seen	in	each	subject,	as	

	

𝑓 ≡ 𝑝 0	𝑠ℎ𝑎𝑟𝑒𝑑	𝑇𝐶𝑅𝑠 	

																																=
(𝑁f − 𝑁g)! (𝑁f − 𝑁i)!
𝑁f! (𝑁f − 𝑁g − 𝑁i)!

,										(9)	

	

where	 NT	 is	 the	 theoretical	 TCR	 diversity,	 and	 NA	 and	 NB	 are	 total	 number	 of	 unique	 TCRs	

observed	 in	 individuals	 A	 and	 B	 respectively.	 Given	 the	 following	 approximations,	 (i)	𝑙𝑛𝑁! 	≈

𝑁𝑙𝑛𝑁 − 𝑁,	when	𝑁	is	large	and	(ii)	𝑙𝑛(1 − 𝑥) ≈ 𝑥,	when	𝑥	is	small,	it	can	be	shown	that	equation	9	

simplifies	and	the	probability	of	observing	any	shared	TCR	between	two	individuals	is	

	

𝑝 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑠ℎ𝑎𝑟𝑒𝑑	𝑇𝐶𝑅𝑠 = 1 − 𝑓	

																																																																																											= 1 −	𝑒3
LNoNp
Nq .										(10)			

	

In	our	subjects,	we	observe	on	average	~40,000	unique	TCRs	per	 individual,	and	assuming	 that	

NT~1015,	we	find	𝑝 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑠ℎ𝑎𝑟𝑒𝑑	𝑇𝐶𝑅𝑠 ≈ 103r.	From	equation	(10)	we	can	also	estimate	the	

effective	theoretical	diversity	NT	directly	from	our	data.		
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𝑁f
stt = LNoNp

uv w
x
																	(11)	

Given	that	subject	5,	sequenced	in	a	different	batch	from	the	rest,	only	shared	TCR	sequences	with	

one	 other	 subject,	we	 estimate	 the	 effective	NT	 to	 be	~1010,	 several	 orders	 of	magnitude	 lower	

than	the	commonly	used	estimate	of	1015.	

	

Clonality	

	

Clonality	 measure	 is	 a	 clonal	 abundance	 score	 used	 to	 quantify	 how	 homogeneous	 the	

sampled	 T	 cell	 population	 is.	 The	 score	 of	 1	means	 that	 every	 T	 cell	 in	 the	 population	 has	 an	

identical	TCR,	while	a	 score	of	0	means	 that	every	T	 cell	has	a	different	TCR.	Higher	 scores	are	

normally	 observed	 in	 cancer	 patients	 that	 have	 an	 active	 immune	 response	 in	 TILs4.	 Clonality	

score	is	calculated	by	subtracting	normalized	Shannon	entropy	from	1,	

𝐶𝑙𝑜𝑛𝑎𝑙𝑖𝑡𝑦	𝑆𝑐𝑜𝑟𝑒 = 1 +
1

𝑙𝑜𝑔L	𝑛
𝑝#𝑙𝑜𝑔L𝑝#,

#

								(12)	

	

where	n	 is	 sample	size	and	pi	is	a	 frequency	of	clone	 i.	The	clonality	score	 is	normalized	 to	 take	

into	account	different	sample	sizes	in	each	subject.	

	

	

Mutual	Information	

	

To	infer	associations	of	gene	usage	between	the	alpha	and	the	beta	chains	we	estimated	mutual	

information	(MI)	5,	

	

𝑀𝐼 𝑋; 𝑌 = 𝑝 𝑥, 𝑦 log
𝑝 𝑥, 𝑦
𝑝 𝑥)𝑝(𝑦 ,

�∈�B∈�

										(13)	

where	X	and	Y	denote	the	gene	variables	in	the	α	and	β	chain.	
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However,	 limited	 sample	 sizes	 could	 bias	MI	 estimation	 towards	 non-zero	 values.	 The	 true	MI	

could	 only	 be	 estimated	 when	 sample	 size	 is	 infinity,	 and	 corrections	 to	 the	 frequentist-based	

estimate	 of	MI	 scale	 as	 powers	 of	 1/N	where	 N	 is	 the	 sample	 size.	 Therefore,	 we	 perform	 the	

correction	that	allows	us	to	better	estimate	the	true	MI6,	

	

𝑀𝐼s��#"A�sV = 𝑀𝐼���s + 𝑏𝑖𝑎𝑠	

																																																																					= 𝑀𝐼���s +
𝑎
𝑁 +

𝑏
𝑁L +

𝑐
𝑁� +⋯,									(14)	

	

where	 a,	 b,	 c	 are	 constants.	 To	 estimate	 the	 true	MI,	we	 carried	 out	 a	 bootstrap	 approach:	we	

randomly	 selected	 a	 fraction	 of	 sequences	 from	 the	 whole	 dataset	 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∈

[0.1	,0.15, 0.2, …	, 1] 	and	calculated	MIestimated	 for	each	new	sample	size	N.	MItrue	was	determined	

by	 fitting	 the	 second	 order	 polynomial	 curve	 from	 the	 function	𝐹 <
N

= 𝑏 <
N�

+ 𝑎 <
N
+

𝑀𝐼���s	and	estimating	𝐹(0).		

	

Code	

All	 data	 analysis	 code	 is	 available	 as	 iPython	 Notebook	 at:	

https://github.com/AtwalLab/TCRrepertoire-Manuscript	

All	 data	 quality	 control	 and	 analysis	 code	 is	 available	 in	 Python/bash	 scripts	 at:	

https://github.com/AtwalLab/TCRrepertoire-Manuscript/tree/Scripts	
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