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 35	
Summary: 36	
 37	

• High throughput amplicon sequencing (HTAS) of conserved DNA regions is a powerful 38	
technique to characterize biological communities from environmental samples. Recently, 39	
spike-in mock communities have been used to measure accuracy of sequencing 40	
platforms and data analysis pipelines. The fungal internal transcribed spacer (ITS) 41	
region is difficult to sequence due to its variability (length and sequence divergence) 42	
across the fungal kingdom. 43	

• To assess the ability of sequencing platforms and data processing pipelines using fungal 44	
ITS amplicons, we created two ITS spike-in control mock communities composed of 45	
single copy plasmid DNA: a biological mock community (BioMock), consisting of cloned 46	
ITS sequences, and a synthetic mock community (SynMock), consisting of non-47	
biological ITS-like sequences.  48	

• Using these spike-in controls we show that pre-clustering steps for variable length 49	
amplicons are critically important and a major source of bias is attributed to initial PCR 50	
reactions. These data suggest HTAS read abundances are not representative of starting 51	
values.  52	

• We developed AMPtk (amplicon toolkit), a versatile software solution equipped to deal 53	
with variable length amplicons featuring a method to quality filter HTAS data based on 54	
spike-in controls. While we describe herein a non-biological (synthetic) mock community 55	
for ITS sequences, the concept can be widely applied to any HTAS dataset. 56	

 57	
  58	
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Introduction: 59	
High-throughput amplicon sequencing (HTAS) is a powerful tool that is frequently used 60	

for examining community composition of environmental samples. HTAS has proven to be a 61	
robust and cost-effective solution due to the ability to multiplex hundreds of samples on a single 62	
next-generation sequencing (NGS) run. However, HTAS output from environmental samples 63	
requires careful interpretation and appropriate and consistent use of positive and negative 64	
controls	(Nguyen et al., 2015). One of the major challenges in HTAS is to differentiate 65	
sequencing error versus real biological sequence variation. Considerable progress has been 66	
made in the last several years through improved quality of sequencing results through 67	
manufacturer upgrades to reagents as well as improved quality filtering and “clustering” 68	
algorithms. While most algorithm development in HTAS is focused on the prokaryotic 69	
microbiome, using the 16S subunit of the rRNA array (e.g. QIIME	(Caporaso et al., 2010), 70	
Mothur	(Schloss et al., 2009), UPARSE	(Edgar, 2013), DADA2	(Callahan et al., 2016)), many of 71	
these same tools have been adopted for use with other groups of organisms, such as fungi. 72	

The internal transcribed spacer (ITS) region of the rRNA array has emerged as the 73	
molecular barcode for examining fungal communities in environmental samples (Schoch et al., 74	
2012). The ITS region is multi-copy and thus easily amplifiable via PCR even from 75	
environmental samples with low quantities of fungal DNA. The ITS region consists of two 76	
subunits, ITS1 and ITS2, and is generally conserved within a species yet possess enough 77	
variability to differentiate between species in many taxonomic groups. Because of its 78	
widespread use, several public databases are rich with reference fungal ITS sequences 79	
(Schoch et al., 2012). However, there are several properties of the fungal ITS region that are 80	
potentially problematic for HTAS that include: i) fungi have variable cell wall properties making 81	
DNA extraction efficiency unequal for different taxa and/or cell types (hyphae, fruiting bodies, 82	
spores, etc)	(Vesty et al., 2017), ii) the number of nuclei per cell is variable between taxa (Roper 83	
et al., 2011), iii) the number of copies of the rRNA array are different between taxa and in some 84	
cases isolates of the same taxa (Ganley & Kobayashi, 2007), iv) a single isolate can have 85	
multiple ITS sequences (intragenomic variability; (Simon & Weiss, 2008; Lindner & Banik, 86	
2011), v) the ITS region is highly variable in length, vi) ITS sequences vary in GC content, and 87	
vii) there are a variable number of homopolymer repeats. Additionally, current read lengths of 88	
next-generation sequencing platforms (Illumina Miseq currently covers ~ 500 bp (2 x 300) and 89	
Ion Torrent is 450 bp) are not long enough to cover the entire length of the ITS region, which is 90	
typically longer than 500 bp. However, conserved priming sites exist to amplify either the ITS1 91	
region or the ITS2 region, which has been shown to be sufficient for taxonomic identification. 92	
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While several studies have used the ITS1 region for HTAS, the ITS1 region contains introns in 93	
some taxa and thus to avoid potential bias it has been suggested that ITS2 region should be the 94	
preferred region for fungi (Taylor et al., 2016) (Figure 1A).  95	

Sequencing error is a known problem across NGS platforms used for HTAS. To address 96	
issues with sequencing error and reliability of results from HTAS, it has become increasingly 97	
common practice to use spiked-in “mock” community samples as positive controls for the 98	
parameterization and optimization of experimental workflows and data processing. Spike-in 99	
mock community controls for fungal ITS have been used (e.g., Amend et al., 2010; Tonge et al., 100	
2014; Nguyen et al., 2015; Taylor et al., 2016; De Filippis et al., 2017), and have consisted of 101	
fungal genomic DNA (gDNA) extracted from tissue from fruiting bodies, cultures, or spores of a 102	
number of taxa which are then (usually) combined in equimolar amounts. Mock communities 103	
composed of fungal gDNA from fruiting bodies, spores, and/or hyphae provide a measure of 104	
success of extraction, PCR, and sequencing and thus are useful in the HTAS workflow. 105	
However, such mock communities are of limited value if used to validate/parameterize data 106	
processing workflows due to intrinsic properties of the ITS region mentioned previously (variable 107	
copy number, intraspecific variation, variable length, etc.). Therefore, there is a need for fungal 108	
ITS spike-in control mock communities that function to validate laboratory experimental design, 109	
validate data processing steps, and compare results between sequencing runs and platforms. 110	

HTAS is cost-effective due to the ability to massively multiplex environmental samples 111	
on a single sequencing run. This process depends on the attachment of a unique sequence 112	
identifier (referred to as a barcode, an index, or a tag, depending on sequencing platform) to 113	
each piece of DNA to be sequenced. In recent years, “index-bleed (“index hopping”, “tag 114	
jumping”, “barcode jumping”, “tag switching”, or “barcode switching”) has been noted to occur 115	
on Roche 454 platforms as well as Illumina platforms (Kircher et al., 2011; Carlsen et al., 2012; 116	
Degnan & Ochman, 2012; Philippe et al., 2015; Schnell et al., 2015). Index-bleed can lead to 117	
over-estimation of diversity in environmental samples (Philippe et al., 2015; Schnell et al., 2015) 118	
and mis-assignment of sequences to samples. It has been noted that spike-in mock 119	
communities may be useful to help detect index-bleed, and subsequent filters may be applied 120	
for use with the HTAS pipeline of choice (Degnan & Ochman, 2012; Philippe et al., 2015). 121	

In this study, we generated a biological mock community (BioMock) composed of cloned 122	
ITS sequences (single insert plasmids) from a diverse set of fungal taxa. We show how this 123	
BioMock can be used to parameterize a data processing workflow. Subsequently, we found that 124	
current “off-the-shelf” software solutions performed poorly with our BioMock community of 125	
fungal ITS sequences and thus developed AMPtk (amplicon toolkit), which produces improved 126	
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results of variable length amplicons from HTAS. We demonstrate that read abundances are an 127	
unreliable proxy for measuring relative abundances in fungal communities on both Illumina and 128	
Ion Torrent sequencing platforms. Accurate measurement of index-bleed between samples can 129	
be accomplished by the use of a non-biological synthetic spike-in mock community consisting of 130	
ITS-like sequences (SynMock). Finally, we show how AMPtk paired with SynMock can be used 131	
to quality filter HTAS data by detecting and mitigating the effects of index-bleed among 132	
multiplexed samples.  133	

 134	
Materials and Methods: 135	
Biological mock community (BioMock) 136	

To construct the Biomock we selected 26 identified fungal cultures (Supplementary 137	
Table S1) from the Center for Forest Mycology Research (CFMR) culture collection (US Forest 138	
Service, Madison, Wisconsin). These cultures were purposefully chosen to represent a 139	
taxonomic range of fungi, including paralogs, fungi with GC rich ITS regions, a variety of ITS 140	
lengths, and fungi with a variety of homopolymers in the ITS region. To measure the sensitivity 141	
of our bioinformatics approach, we also included two ITS sequences from Leptoporus mollis that 142	
were isolated from the same culture as an example of intragenomic variation in the fungal ITS 143	
region. These two sequences are more than 3% divergent (95.9% identical) and thus would 144	
typically represent separate operational taxonomic units (OTUs) in a clustering pipeline, despite 145	
being from the same fungal isolate. All cultures were grown on cellophane on malt extract agar, 146	
and DNA was extracted from pure cultures following (Lindner & Banik, 2008). Following 147	
extraction, the genomic DNA was PCR amplified using the fungal ITS specific primers ITS-1F 148	
(Gardes & Bruns, 1993) and ITS4	(White et al., 1990). The PCR products were then cloned and 149	
Sanger sequenced using the ITS1-F primer following the protocol in (Lindner & Banik, 2011). 150	
Sequence identifications were verified via BLAST search and two clones of each isolate were 151	
selected and cultured in liquid LB (Luria-Bertani) media and incubated at 37 C for 24 hours. 152	
Plasmids were purified from the cultures in LB media using standard alkaline lysis. These 153	
plasmids will hereafter be termed “purified plasmids”. The purified plasmids were then Sanger 154	
sequenced with vector primers T7 and SP6 to verify the insertion of a single copy of the 155	
appropriate ITS fragment. We subsequently quantified the purified plasmid DNA concentration 156	
using a Qubit® 2.0 fluorometer and DNA concentrations were equilibrated to 10 nM using DNA-157	
free molecular grade water. Following equilibration, 5 μl of each purified plasmid were combined 158	
to make an equimolar “biological mock” community of single-copy purified plasmids (BioMock).  159	
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PCR has known biases, which are related to different sequence characteristics and are 160	
hard to predict in mixed DNA communities of unknown composition. To illustrate the impact of 161	
initial PCR bias on the number of reads obtained from each member of a mixed DNA 162	
community, we generated individual HTAS-compatible PCR products from each Biomock 163	
plasmid which were subsequently mixed (post-PCR) in an equimolar ratio. This was 164	
accomplished by PCR amplifying each individual plasmid with the same barcoded primer set. 165	
PCR products were purified using E-gel® CloneWell™ 0.8% SYBR® Safe agarose gels 166	
(ThermoFisher), quantified using a Qubit® 2.0 fluorometer, and combined into an equimolar 167	
mixture post-amplification. This post-PCR combined mock community can be used to examine 168	
sequencing error on NGS platforms. 169	

 170	
Non-biological mock community (SynMock) 171	
 We used the well-annotated ribosomal RNA (rRNA) sequence from Saccharomyces 172	
cerevisiae as a starting point to design ITS-like synthetic sequences. The ITS adjacent regions 173	
of small subunit (SSU) and large subunit (LSU) of S. cerevisiae were chosen as anchoring 174	
points because of the presence of conserved priming sites ITS1/ITS1-F and ITS4. A 5.8S 175	
sequence was designed using S. cerevisiae as a base but nucleotides were altered so it would 176	
be compatible with several primers in the 5.8S region, including ITS2, ITS3, and fITS7. Random 177	
sequences were generated with constrained GC content and sequence length for the ITS1 and 178	
ITS2 regions. Twelve unique sequences were synthesized (Genescript) and cloned into pUC57 179	
harboring ampicillin resistance. The SynMock sequences and the script to produce them are 180	
available in the OSF repository ((https://osf.io/4xd9r/) as well as packaged into AMPtk 181	
distributions. Each plasmid was purified by alkaline lysis, quantified, and an equimolar mixture 182	
was created as a template for HTAS library prep.  183	
 184	
Preparation of HTAS libraries and NGS Sequencing 185	
 HTAS libraries were generated using a proofreading polymerase, Pfx50 (ThermoFisher), 186	
and thermocycler conditions were as follows: initial denaturation of 94°C for 3 min, followed by 187	
11 cycles of [94°C for 30 sec, 60°C for 30 sec (drop 0.5°C per cycle), 68°C for 1 min], then 26 188	
cycles of [94°C for 30 sec, 55°C for 30 sec, and 68°C for 1 min], with a final extension of 68°C 189	
for 7 minutes. PCR products were cleaned using either E-gel® CloneWell™ 0.8% SYBR® Safe 190	
agarose gels (Life Technologies) or Zymo Select-a-size spin columns (Zymo Research). All 191	
DNA was quantified using a Qubit® 2.0 fluorometer with the high-sensitivity DNA quantification 192	
kit (Life Technologies).  193	
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A single step PCR reaction was used to create Ion Torrent compatible sequencing 194	
libraries, and primers were designed according to manufacturer’s recommendations. Briefly, the 195	
forward primer was composed of the Ion A adapter sequence, followed by the Ion key signal 196	
sequence, a unique Ion Xpress Barcode sequence (10-12 bp), a single base-pair linker (A), 197	
followed by the fITS7 primer (Ihrmark et al., 2012). The reverse primer was composed of the Ion 198	
trP1 adapter sequence followed by the conserved ITS4 primer (White et al., 1990). Sequencing 199	
on the Ion Torrent PGM was done according to manufacturer’s recommendations using an Ion 200	
PGM™ Hi-Q™ OT2 Kit, an Ion PGM™ Hi-Q™ Sequencing Kit, an Ion PGM™ sequencing chip 201	
(316v2 or 318v2), and raw data were processed with the Ion Torrent Suite v5.0.3 with the “--202	
disable-all-filters” flag given to the BaseCaller. Libraries for Illumina MiSeq were generated by a 203	
two-step dual indexing strategy. All samples were PCR amplified with Illumina-fITS7 and 204	
Illumina-ITS4 primers. PCR products were cleaned and then dual-barcoded using an 8 cycle 205	
PCR reaction using the Illumina Nextera Kit and subsequently sequenced using 2 x 300 bp 206	
sequencing kit on the Illumina MiSeq at the University of Wisconsin Biotechnology Center DNA 207	
Sequencing Facility. All primers utilized in this study are available via the OSF repository 208	
(https://osf.io/4xd9r/).  209	
 210	
Data processing using AMPtk  211	
 AMPtk is publically available at https://github.com/nextgenusfs/amptk. All primary data 212	
and data analysis done in this manuscript is available via the Open Science Framework 213	
(https://osf.io/4xd9r/). AMPtk is written in Python and relies on several modules: edlib	(Šošic & 214	
Šikic, 2017), biopython	(Cock et al., 2009), biom-format	(McDonald et al., 2012), pandas	215	
(McKinney),	numpy	(van der Walt et al., 2011), and matplotlib modules	(Hunter, 2007). External 216	

dependencies are USEARCH v9.1.13	(Edgar, 2010) or greater and VSEARCH v2.2.0	(Rognes 217	
et al., 2016) or greater. In order to run the DADA2	(Callahan et al., 2016) method R is required 218	
along with the shortRead	(Morgan et al., 2009) and DADA2 packages. The major steps for 219	
processing HTAS data are broken down into i) pre-processing reads, ii) clustering into OTUs, iii) 220	
filtering OTU table, and iv) assigning taxonomy. 221	
 222	
Pre-processing reads – Data structures from Roche 454 and Ion Torrent are similar where 223	
reads are in a single file and have a unique barcode at the 5’ end of the read followed by the 224	
gene-specific priming site; therefore, AMPtk processes reads from these two platforms very 225	
similarly. As a preliminary quality control step, only reads that have a valid barcode and forward 226	
primer are retained. Next, reverse primer sequences are removed and reads are trimmed to a 227	
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user-defined maximum length. Data from Illumina is processed differently because reads are 228	
most often paired-end reads and most sequencing centers provide users with de-multiplexed by 229	
sample paired-end data (i.e. output of ‘bcl2fastq’). AMPtk first merges the paired end reads 230	
using USEARCH or VSEARCH, phiX spike-in control is removed with USEARCH, forward and 231	
reverse primers are removed if found, and all data are combined into a single file. Pre-232	
processing reads in AMPtk from any of the sequencing platforms results in a single output file 233	
that is compatible with all downstream steps. 234	
 235	
Clustering reads into OTUs – AMPtk is capable of running several different clustering algorithms 236	
including UPARSE, DADA2, UNOISE2, UNOISE3, and reference-based clustering. The 237	
algorithms all start with quality filtering using expected errors trimming and are modified slightly 238	
in AMPtk to build OTU tables using the original de-multiplexed data; therefore read counts 239	
represent what was in the sample prior to quality filtering. This is an important distinction, as 240	
expected errors quality trimming	(Edgar & Flyvbjerg, 2015) can be rather stringent if long read 241	
lengths are used and the amplicons are of variable length. 242	
 243	
Index-bleed filtering of OTU tables – Filtering in AMPtk works optimally when a spike-in mock 244	
community is sequenced in the dataset. While by default AMPtk is setup to work with the 245	
SynMock described herein, any spike-in mock community can be used. AMPtk identifies which 246	
OTUs belong to the mock community and calculate index-bleed of that mock community into 247	
other samples as well as bleed into the mock community from samples. This calculated index-248	
bleed percentage is then used to filter the OTU table. Filtering is done on a per OTU basis, such 249	
that read counts in each OTU that are below the index-bleed threshold are set to zero as they 250	
fall within the range of data that could be attributed to index-bleed. 251	
 252	
Assigning taxonomy - AMPtk is pre-configured with databases for fungal ITS, fungal LSU, 253	
arthropod mtCO1, and prokaryotic 16S; however custom databases are easily created with the 254	
‘amptk database’ command. Several tools are available for taxonomy assignment in AMPtk 255	
including remote blast of the NCBI nt database, RDP Classifier	(Wang et al., 2007), global 256	
alignment to a custom sequence database, UTAX Classifier (RC Edgar, 257	
http://drive5.com/usearch/manual9.2/cmd_utax.html), and the SINTAX Classifier	(Edgar, 2016). 258	
The default method for taxonomy assignment in AMPtk is a “hybrid” approach that uses 259	
classification from global alignment, UTAX, and SINTAX. The best taxonomy is then chosen as 260	
follows: i) if global alignment percent identity is > 97% then the top hit is retained, ii) if global 261	
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alignment percent identity is < 97%, then the best confidence score from UTAX or SINTAX is 262	
used, iii) if there is disagreement between taxonomy levels assigned by each method then a 263	
least common ancestor (LCA) approach is utilized to generate a conservative estimate of 264	
taxonomy. AMPtk also can take a QIIME-like mapping file that can contain all the metadata 265	
associated with the HTAS study; the output is then a multi-fasta file containing taxonomy in the 266	
headers, a classic OTU table with taxonomy appended, and a BIOM file incorporating the OTU 267	
table, taxonomy, and metadata. The BIOM output of AMPtk is compatible with several 268	
downstream statistical and visualization software packages such as PhyloSeq	(McMurdie & 269	
Holmes, 2013).  270	
 271	
Accessory scripts in AMPtk - AMPtk has several additional features that will aid the user in 272	
analyzing HTAS data. For instance, AMPtk contains a script that will prepare data for 273	
submission to the NCBI SRA archive by formatting it properly and outputting a ready-to-submit 274	
SRA submission file. The FunGuild (Nguyen et al., 2016) package which assigns OTUs to an 275	
annotated database of functional guilds is also incorporated directly into AMPtk. Additionally, 276	
users can draw a heatmap of an OTU table as well as summarize taxonomy in a stacked 277	
histogram.  278	
 279	
Results: 280	
In silico analysis of the fungal ITS region 281	
 To gain baseline data on potential amplicons of the ITS1 or ITS2 regions, the ITS1 and 282	
ITS2 regions were extracted using priming sites specific for each region (ITS1: ITS1-F and 283	
ITS2; ITS2: fITS7 and ITS4) from the UNITE+INSD v7.2 database	(Abarenkov et al., 2010) 284	
consisting of 736,375 ITS sequences. For comparison, the commonly sequenced V3-V4 region 285	
was extracted from prokaryotic 16S sequences from the Silva v128 database	(Quast et al., 286	
2013). A length histogram for each dataset as well as summary statistics were generated 287	
(Figure 1B; Table 1), indicating that all three of these molecular barcodes have an average 288	
length of ~ 250 bp (Table1); however, there was considerable variation in the lengths of the ITS 289	
region in comparison to the V3/V4 region of 16S (Figure 1B). Stretches of homopolymer 290	
sequences can also be problematic for some NGS platforms (454 and PGM), and thus the 291	
number of sequences in this dataset that contained homopolymer stretches greater than 6 292	
nucleotides were calculated (Table 1). Given the small percentage of ITS1 and ITS2 regions 293	
that are greater than 450 bp (the current upper limit of the Ion Torrent PGM platform), the 294	
number of taxa in the reference database that are unlikely to sequence on the Ion Torrent due 295	
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to amplicon length is relatively small (Table 1). Illumina MiSeq is now capable of paired end 300 296	
bp read lengths (2 x 300); however, reads need to overlap for proper processing in NGS 297	
software platforms and thus a ~ 500 bp size limit would also be able to sequence most taxa in 298	
the reference database. 299	
 300	
Table 1. Summary statistics of the fungal ITS molecular barcode in comparison to bacterial 16S. 301	
Region Num 

Seqs 
Avg Length (bp) % HP1 > 6 % HP1 > 8 % > 450 bp 

ITS Full Length 696 704 488 55.07% 8.66% - 
ITS1 685 399 247 36.58% 5.60% 3.27% 
ITS2 535 200 264 44.19% 5.54% 0.83% 
16S (V3/V4) 627 247 253 23.74% 1.02% - 
1 HP: homopolymer stretches 302	

	303	
Figure 1. The fungal internal transcribed spacer (ITS) region of the rRNA array is highly variable 304	
in length. (A) A schematic of the rRNA array highlights the conserved priming sites commonly 305	
used to amplify either the ITS1 or ITS2 region. (B) Size distribution of full length ITS (blue), ITS1 306	
(green), ITS2 (red) sequences in the UNITE v7.2 curated databases shown in comparison to the 307	
bacterial 16S V3/V4 amplicon from the Silva v128 database. Current sequencing technologies 308	
do not have read lengths long enough to capture full-length ITS sequences, and thus ITS1 or 309	
ITS2 regions are used for fungal environmental community analysis. 16S V3/V4 in yellow; ITS 310	
full length in blue, ITS2 in red, and ITS1 in green.  311	
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Creation of a representative artificial fungal mock community (BioMock) 312	
Given the results from analysis of the UNITE datasets, we set out to create a 313	

representative ITS mock community to be used as a spike-in sequencing control to determine 314	
the quantitative nature of ITS HTAS and to measure the performance between the commonly 315	
used Illumina MiSeq platform versus the Ion Torrent PGM. To circumvent the problematic 316	
issues associated with the ITS region, we reasoned that cloned ITS sequences in plasmid form 317	
would allow for accurate quantification and pooling, thus providing a means to test the accuracy 318	
of the sequencer platforms and data processing workflows. Therefore, we cloned known ITS 319	
sequences from 26 cultures from the CFMR culture collection that varied in length (237 bp to 320	
548 bp), ranged in GC content (43.8% - 68.4%), and contained sequences with homopolymer 321	
stretches with one sequence containing two 9 bp stretches (Figure 4). These plasmids were 322	
combined into a BioMock and BioMock-standards as described in materials and methods 323	
section. The value of the BioMock-standards is that the library was combined after PCR, and 324	
thus the standards are free from PCR-induced artifacts that may arise from PCR of a mixed 325	
community. 326	

 327	
Existing data processing workflows perform poorly with fungal ITS sequences 328	
 Clustering amplicons into operational taxonomic units (OTUs) is common practice in 329	
molecular ecology and there are many software solutions/algorithms (such as QIIME (Caporaso 330	
et al., 2010), UPARSE (Edgar, 2013), Mothur (Schloss et al., 2009), and DADA2 (Callahan et 331	
al., 2016)) that have been developed to deal appropriately with errors associated with next-332	
generation sequencing platforms. Many studies using 16S amplicon data have focused on 333	
comparing clustering methods (Edgar, 2013; Callahan et al., 2016), while others have focused 334	
on quality filtering reads prior to clustering (Edgar & Flyvbjerg, 2015). Therefore, we chose not 335	
to compare the different software algorithms here, but will briefly mention that when we did run 336	
our data through QIIME, the number of OTUs was highly over-estimated and the error rates 337	
were very high (Table S2). We were unable to run our data through Mothur due to the inability to 338	
do a multiple sequence alignment and subsequent distance matrix of the ITS region. The best 339	
performing clustering pipeline was UPARSE; however there were several issues with how the 340	
reads were pre-processed and quality filtered that lead to suboptimal results (Table S3 and 341	
Table S4). It is important to note that all of these software solutions have been built with 16S 342	
amplicons in mind and several have been optimized for Illumina data.  343	

The major difference in 16S amplicons versus those of ITS1/ITS2 is that the lengths of 344	
16S amplicons are nearly identical, while ITS1/ITS2 amplicons vary in length (Figure 1B). This 345	
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distinguishing feature makes ITS sequences from diverse taxa impossible to align (Schoch et 346	
al., 2012) and thus represents a major limitation in data processing. To illustrate the importance 347	
of properly pre-processing ITS data, we clustered using UPARSE the ITS1 and ITS2 regions 348	
using the UNITE reference database (Figure 2). Using the full length ITS1/ITS2 sequences as a 349	
benchmark, we then explored the outcome of trimming/truncating the sequences to different 350	
length thresholds, a common practice in OTU clustering pipelines. The UPARSE algorithm uses 351	
global alignment and as such terminal mismatches count in the alignment (as opposed to local 352	
alignment where terminal mismatches are ignored); thus the UPARSE pipeline expects that 353	
reads are truncated to a set length. UPARSE achieves this by truncating all reads to a set 354	
length threshold and discards reads that are shorter than the length threshold. Therefore real 355	
ITS sequences are discarded (Figure 2). We then came up with two potential solutions to fix this 356	
unintended outcome: i) truncate reads that were longer than the threshold and keep all shorter 357	
reads (full length), and ii) truncate longer reads and pad the shorter reads with N’s out to the 358	
length threshold (padding). Using the UNITE v7.2 database of curated sequences (general 359	
release June 28th, 2017) as input, both “full-length” and “padding” improved UPARSE results 360	
with the “full length” method recovering more than 99% of the expected OTUs (Figure 2).  361	
  362	
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	363	
Figure 2. Pre-processing ITS sequences is critically important to accurately recover OTUs using 364	
the curated UNITE v7.2 reference database. ITS1 and ITS2 sequences were extracted from the 365	
UNITE v7.2 general fasta release database using ‘AMPtk database’. Identical sequences were 366	
collapsed (dereplication) and remaining sequences were clustering using UPARSE 367	
(‘cluster_otus) to generate the total number of UPARSE OTUs expected for the ITS1 and ITS2 368	
regions. The data was then processed to five different lengths (150, 200, 250, 300, and 350 bp) 369	
and then clustered (UPARSE ‘cluster_otus’) using i) default UPARSE truncation (longer 370	
sequences are truncated and shorter sequences are discarded), ii) padding with ambiguous 371	
bases (longer sequences truncated and shorter sequences padded with N’s to length 372	
threshold), and iii) full-length sequences (longer sequences are truncated and shorter 373	
sequences are retained if reverse primer is found). Full-length and padding pre-processing 374	
sequences outperforms default UPARSE truncation.  375	

  376	

Due to the intrinsic nature of the variable length ITS amplicons, we needed a data 377	
processing solution that would be flexible enough to maintain the full length of the reads, trim 378	
reads without data loss, prepare sequencing reads for downstream clustering algorithms, and 379	
support all major NGS platforms. Using the BioMock artificial communities as a means to 380	
validate the results of all data processing steps, we wrote a flexible series of scripts for 381	
processing Illumina, Ion Torrent, as well as Roche 454 data that are packaged into AMPtk 382	
(amplicon tool kit). A flow diagram of AMPtk is illustrated in Figure 3 and a more thorough 383	
description of AMPtk is provided in the material and methods section. A manual for AMPtk is 384	
available at http://amptk.readthedocs.io/en/latest/. After data is pre-processed with AMPtk via a 385	
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platform specific method, AMPtk then functions as a wrapper for several popular algorithms 386	
including UPARSE, DADA2, UNOISE2, and UNOISE3. All data presented in this manuscript 387	
were processed with AMPtk v1.0.1. 388	

 389	

	390	
Figure 3. Overview of the commands in AMPtk. AMPtk is built to be compatible with multiple 391	
sequencing platforms as well as contains several clustering algorithms.  392	

 393	
Read abundances do not represent community abundances: PCR introduces bias 394	

Next-generation sequencing platforms are quantitative if the library to be sequenced is 395	
unbiased, as is typically the case with RNA-sequencing and whole genome sequencing library 396	
prep protocols. However, PCR of mixed communities has long been shown to introduce bias in 397	
next-generation sequencing workflows (Aird et al., 2011; Pinto & Raskin, 2012; Kebschull & 398	
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Zador, 2015). For HTAS this is an important caveat, as molecular ecologists are interested in 399	
diversity metrics of environmental communities as well as their relative abundance. Through the 400	
use of mock communities, several studies have pointed out that read abundance from fungal 401	
HTAS are not representative of relative biological abundance	(Amend et al., 2010; De Filippis et 402	
al., 2017). However, it was recently reported that for a fungal ITS mock community of 8 403	
members, abundances were meaningful (Taylor et al., 2016) and many studies continue to use 404	
abundance-based metrics to analyze HTAS, without giving any consideration to 405	
presence/absence-based metrics. We reasoned we could investigate this issue using the ITS 406	
BioMock artificial community, which would not suffer from bias associated with DNA extraction, 407	
ITS copy numbers, and intraspecific variation. We compared the relative read abundances of 408	
BioMock-standards to 3 different combinations of BioMock on both the Ion Torrent PGM and 409	
Illumina MiSeq platforms (Figure 4). The BioMock-standards consist of an equimolar mixture of 410	
26 PCR products, while the BioMock communities consist of an equimolar mixture of 23 single-411	
copy plasmids. These data show that even in an extreme example of an equally mixed 412	
community of cloned ITS sequences, read abundance does not represent actual abundance in 413	
the mock community (Figure 4). The majority of the bias is introduced at the initial PCR step, as 414	
the pre-PCR combined BioMock-standards result in a more equal distribution of reads, albeit not 415	
a perfect distribution. We also tested PCR conditions, DNA concentrations, and sample 416	
reproducibility on the Ion Torrent PGM (Supplemental Figure S1). While the bias via PCR is 417	
consistent between sequencing platforms, there is no obvious correlation between length of the 418	
read, GC content, nor stretches of homopolymers affecting efficient PCR amplification. For 419	
example, Wolfiporia dilatophya (mock11) contains no homopolymer stretches larger than 5, has 420	
GC distribution of 54.6%, and is near the median in length, yet it does not PCR amplify well in 421	
the BioMock community (Figure 4). These data also show a size limitation in the Ion Torrent 422	
PGM workflow, as Wolfiporia cocos (mock 26) sequences very poorly due to its long ITS2 423	
region (Figure 5). Three members of the original 26 members of the BioMock community were 424	
dropped (mock24, mock25, mock26) due to persistent problems getting them to 425	
amplify/sequence in repeated HTAS on the Ion Torrent platform (Supplemental Figure S1).  426	
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	427	
Figure 4. Read abundance is an unreliable proxy for actual abundance within a mixed 428	
community. Using an equimolar mixture of cloned ITS sequences in plasmid form (MockA, 429	
MockB1, MockB2) in comparison to equimolar mixture of individual PCR products (Stds) 430	
illustrates that the initial PCR reaction during library preparation heavily biases the read 431	
abundance obtained after sequencing on both the Ion Torrent PGM and Illumina MiSeq 432	
platforms. While read abundances are unreliable, all members of the mock community were 433	
recovered. MockA represents a 1:16,000 dilution and MockB1/MockB2 are replicates of a 434	
1:32,000 dilution of the BioMock community. The Ion Torrent PGM platform has a length 435	
threshold of approximately 450 bp; therefore longer amplicons like Wolfiporia cocos ITS2 436	
sequence very poorly.  437	

 In HTAS experiments, considerable effort is made to try to sequence to an equal depth 438	
for each sample. However, in practice this rarely works perfectly and thus a typical HTAS 439	
dataset has a 2-4X range in number of reads per sample. The depth of sequence range for the 440	
HTAS runs presented here is within a range of 2X for each run and the smallest number of 441	
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reads per sample in any of our sequencing runs was nearly 60,000 (Supplemental Table S5). 442	
Unequal sequencing depth has been used as rationale for explaining the lack of correlation 443	
between read abundance and actual abundance. Therefore, random subsampling of reads in 444	
each sample prior to clustering (also called rarefying) has been widely used in the literature, 445	
despite a compelling statistical argument that this method is flawed (McMurdie & Holmes, 446	
2014). Randomly subsampling reads for each sample using our BioMock community yielded 447	
nearly identical results (Supplemental Figure S2). Sequencing depth has been shown to be an 448	
important variable for HTAS experiments (Smith & Peay, 2014), therefore we typically employ a 449	
5,000 reads per sample cutoff when processing environmental datasets.  450	
 451	
A non-biological (synthetic) mock community to measure index-bleed among samples 452	
 Index-bleed is a phenomenon that has been described on Roche 454 platform (Carlsen 453	
et al., 2012) as well as Illumina platforms (Kircher et al., 2012; Wright & Vetsigian, 2016). A 454	
consensus on a mechanism of index-bleed during the sequencing run has yet to be reached. 455	
Index-bleed is a significant challenge to overcome as sample crossover has the potential to 456	
over-estimate diversity and lead to inaccurate representations of microbial communities, 457	
especially considering that read abundance is an unreliable proxy for biological abundance 458	
(Figure 4). Using our BioMock sequencing results, we also discovered this phenomenon on both 459	
Ion Torrent and Illumina platforms. We calculated the rate of index-bleed in our BioMock Ion 460	
Torrent sequencing run to be 0.033% and on Illumina MiSeq between 0.233% and 0.264%. We 461	
also confirmed that index-bleed was happening on the Illumina flow-cell by re-running a subset 462	
of samples that had shown high index-bleed on different flowcell that did not contain the 463	
BioMock (Supplemental Figure S3). One problem that we noticed in measuring index-bleed 464	
using a mock community of actual ITS sequences (BioMock) was that these same taxa in the 465	
mock community could be present in environmental samples, which would lead to inaccurate 466	
estimation of index-bleed. In our environmental data, it was likely that at least one of the 467	
BioMock members was present in several of the environmental samples, suggesting the 468	
calculated index-bleed could be over-estimated. To overcome this problem, we designed a non-469	
biological (synthetic) mock community composed of ITS-like sequences that contained 470	
conserved priming sites (SSU and LSU regions), ITS1 region, 5.8S region, and an ITS2 region 471	
(Figure 6). We designed the ITS1 and ITS2 portions of the sequences to be non-biological; that 472	
is, no similar sequences are known to occur in nature (based on searches of known databases 473	
and based on the infinitesimally low probability that a randomly generated sequence would 474	
match something found in nature) and therefore these non-biological sequences can be used to 475	
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accurately track index-bleed in HTAS studies. Using the summary statistics from the analysis of 476	
the UNITE reference database for guidance, we also varied the length, GC content, and 477	
homopolymer stretches to be representative of real ITS sequences. 478	

	479	
Figure 5. Schematic drawing of the 12-member non-biological synthetic mock community 480	
(SynMock). Conserved priming sites for either ITS1 or ITS2 amplicons are retained for 481	
versatility. The length distribution, GC content, and homopolymer stretches are representative of 482	
curated public databases, however, the sequences are non-biological and thus not found in 483	
nature.  484	

The SynMock was tested as a spike-in control on both the Ion Torrent and Illumina 485	
MiSeq platforms. The raw data were processed using AMPtk and clustered using UPARSE. 486	
These data illustrate that the synthetic sequences are able to be processed simultaneously with 487	
real ITS sequences and provide a way to track the level of index-bleed between multiplexed 488	
samples (Figure 6). The increased benefit of being able to track the SynMock sequences as 489	
they “bleed” out of the sample allows for a more accurate measurement of index-bleed. Using 490	
default Illumina de-multiplexing (allowing 1 mismatch in the index sequence), index-bleed using 491	
the SynMock community was 0.072% (Figure 6C). To determine if allowing mismatches in the 492	
index reads was increasing index-bleed, we reprocessed the data with 0 mismatches and found 493	
that index-bleed was reduced to 0.046%. While index-bleed was reduced by nearly half, the 494	
tradeoff was that 0 mismatches resulted in approximately 10% fewer reads. For most datasets, 495	
a loss of 10% of the sequencing reads should not be problematic, especially if the benefit is to 496	
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reduce index-bleed in the data. We noted that in our Illumina dual-indexing library prep that 497	
there was increased index-bleed on samples that had a shared reverse index (i7), suggesting 498	
that errors are increased at later stages of an Illumina sequencing run (Figure 6B). A similar 499	
pattern was observed with Ion Torrent PGM data, although not as drastic. Allowing 1 mismatch 500	
in the barcode resulted in 0.167% index-bleed while allowing 0 mismatches in the barcode 501	
resulted in 0.156% index-bleed (Figure 6C). While these data would suggest that index-bleed is 502	
perhaps higher in Ion Torrent PGM datasets, we have subsequently used the SynMock on more 503	
than 10 different HTAS Ion Torrent PGM experiments and have since seen much lower levels of 504	
index-bleed, occasionally approaching 0% index-bleed.  505	

Many environmental samples can contain hundreds of taxa and thus a legitimate 506	
concern is that the 12 member SynMock community does not represent a realistic community in 507	
terms of diversity in a sample. To test if the SynMock was able to be recovered in a more 508	
complex community, we mixed SynMock together with two environmental samples that had 509	
more than 200 OTUs in previous sequencing runs. These mixed samples show that SynMock 510	
could be recovered from a complex community and the sequences behave like real ITS 511	
sequences (Figure 6A). While many studies have set a read count threshold to filter “noisy” data 512	
from OTU tables, this threshold has been typically selected arbitrarily, i.e. OTUs with read 513	
counts less than 100 or less than 10% of the total, etc. Use of the SynMock spike-in control 514	
allowed for data driven thresholds to be measured and moreover for the ability to filter the OTU 515	
table based on the calculated index-bleed. The AMPtk filter command calculates index-bleed by 516	
mapping the OTUs to the mock community and then provides a way to filter the OTU table 517	
based on this calculated value. AMPtk filters across each OTU in the table such that difficult to 518	
sequence or “low abundance” OTUs are not indiscriminately dropped. Taken together, these 519	
data illustrate the utility of a non-biological mock community in parameterizing data processing 520	
steps and importantly providing a method in AMPtk to reduce index-bleed from HTAS datasets. 521	
AMPtk provides an easy to use method to accurately process variable length amplicons, cluster 522	
them into OTUs or denoise sequences, generate an OTU table, filter the OTU table for index-523	
bleed, and assign taxonomy.  524	
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	525	
Figure 6. Index-bleed or sample mis-assignment occurs on both Ion Torrent PGM and Illumina 526	
Miseq. (A) Read counts from the SynMock community run on the Ion Torrent PGM platform. 527	
SynMock reads can be found in environmental samples and reads from the environmental 528	
samples are found in the SynMock sample. The data were processed allowing 0 mismatches in 529	
the barcode sequence and there is no clear pattern to index-bleed on the Ion Torrent PGM 530	
platform. (B) Data processed on the Illumina MiSeq (2x300) allowing 0 mismatches in the index 531	
reads show index-bleed in and out of the SynMock sample. Samples that share an index (i5 or 532	
i7) show an increase in index-bleed. (C) Index-bleed between samples can be tracked using the 533	
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SynMock spike-in control, where AMPtk will measure both index-bleed into the SynMock as well 534	
as index-bleed into other samples. These calculated values are then used by AMPtk to filter an 535	
OTU table to remove read counts that fall below the index-bleed threshold. Index-bleed is 536	
reduced if 0 mismatches are allowed in the barcode/index sequence, however, this is still not 537	
sufficient to reduce all index-bleed.  538	

 539	
Discussion 540	
 HTAS studies have the goal of measuring environmental diversity; however, there are 541	
technical limitations that need to be understood in order to reach justifiable conclusions. Mock 542	
communities and negative controls have been shown to have great utility for HTAS studies, and 543	
expanding upon this concept, we present a non-biological synthetic mock community of ITS-like 544	
sequences for use as a technical spike-in control for fungal biodiversity studies. Additionally, we 545	
describe AMPtk, a software tool kit for analyzing variable length amplicons such as the fungal 546	
ITS1 or ITS2 molecular barcodes. These two tools can be coupled together to validate data 547	
processing pipelines and reduce index-bleed from OTU tables prior to downstream community 548	
ecology analyses. The concept of a non-biological synthetic spike-in control can be expanded to 549	
many different genes and organisms, including 16S for microbiome studies.  550	
 The ITS region is widely used as a molecular barcode in fungal biodiversity studies as it 551	
is easy to amplify and public reference databases are robust. However, HTAS with the ITS 552	
region presents some unique challenges due to variability in sequence characteristics such as 553	
length and copy number. Most HTAS software development and optimization has been focused 554	
on the 16S molecular barcode, a region that is near uniform in length across prokaryotic taxa. 555	
Thus, there is a need for a software solution that can more accurately account for variable 556	
length amplicons. We developed a single-copy mock community based on cloned ITS 557	
sequences as a tool to validate and compare different NGS platforms and data processing 558	
pipelines. Using an artificial single-copy mock community of cloned ITS sequences in plasmids 559	
(BioMock), we determined that the core clustering/denoising algorithms work for variable length 560	
amplicons; however, pre-processing techniques widely used for uniform length amplicons 561	
introduce significant error into the pipelines. Simplifying the pre-processing of sequencing reads 562	
(i.e., identifying unique sequence barcodes, forward/reverse primers, and trimming reads to a 563	
uniform length without data loss) resulted in large improvement in downstream OTU clustering. 564	
The pre-processing of reads prior to quality filtering is critical for variable length amplicons and 565	
is implemented in AMPtk.  566	
 Proper pre-processing of variable length amplicons improves clustering results 567	
substantially. However, the BioMock results illustrated that read abundances obtained from 568	
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HTAS are not a reliable proxy for inferring biological relative abundance. These data do support 569	
use of presence/absence (binary) metrics as we were able to recover all members of our mock 570	
community, even when they were spiked into a diverse environmental sample. We identified the 571	
initial PCR reaction (library construction) as the major source of read number bias, a conclusion 572	
consistent with the literature	(Polz & Cavanaugh, 1998; Wu et al., 2010; Jusino et al., 2017). To 573	
reduce PCR artifacts for any assay it is generally accepted that one should use the fewest 574	
cycles possible, the most concentrated DNA possible, and it has been suggested to use a 575	
proofreading polymerase (Oliver et al., 2015). We have tested DNA concentration and PCR 576	
cycle numbers for HTAS library generation and subsequent sequencing on the Ion Torrent PGM 577	
platform, and our results were consistent with these general guidelines (Supplemental Figure 578	
S1). However, following these guidelines is not sufficient to reduce the bias in read abundance 579	
from a mixed community from PCR. The Ion Torrent PGM platform currently has an amplicon 580	
size limit of ~ 450 bp, and thus some very large ITS sequences are difficult to sequence. 581	
However, there are only a small number of known ITS1 or ITS2 sequences that are longer than 582	
450 bp (Table 1) and therefore either platform, Ion Torrent or MiSeq, provided similar results 583	
under the conditions tested.  584	
 Index-bleed has recently been acknowledged by Illumina (https://tinyurl.com/illumina-585	
hopping), although they limit their acknowledgement to a new flow cell on the HiSeq and 586	
NovaSeq platforms. Several studies have shown that older instruments/flowcells have also 587	
shown index-bleed, albeit at a much lower rate (Kircher et al., 2012; Wright & Vetsigian, 2016) 588	
and index-bleed has been identified on Roche 454 (Carlsen et al., 2012). Here we report a low 589	
rate of index-bleed on both Ion Torrent and Illumina MiSeq platforms. While the effective rate of 590	
index-bleed is low (< 0.2%), coupled with the fact that read number is not a reliable proxy of 591	
community abundance, index-bleed in datasets being analyzed by presence-absence metrics is 592	
a problematic scenario. To identify and combat index-bleed, we created a non-biological 593	
synthetic mock community (SynMock) of ITS-like sequences that behave like real ITS 594	
sequences during the HTAS workflow. Because the SynMock sequences are not known to 595	
occur in nature, they can be effectively used to measure index-bleed in a sequencing run. A 596	
similar approach was recently described for 16S amplicons using synthesized oligonucleotides 597	
(Kim et al., 2017). We propose that HTAS studies of fungal ITS communities should employ 598	
SynMock or a similar non-biological mock community as a technical control. Additional controls 599	
such as a biological mock community of mixed fruiting bodies, spores, hyphae, etc. of taxa of 600	
interest are also useful if the experiment is designed to identify the prevalence of particular taxa. 601	
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 The bioinformatics pipeline presented here, AMPtk, was developed to specifically 602	
address the quality issues that we have identified by using spike-in mock communities and to 603	
provide the scientific community with a necessary tool to study fungal community diversity. 604	
AMPtk is a flexible solution that can be used to study other regions used in HTAS, such as 605	
mitochondrial cytochrome oxidase 1 (mtCO1) of insects and the large subunit (LSU) of the 606	
rRNA array. The goal of AMPtk is to reduce data processing to a few simple steps and to 607	
improve the output of HTAS studies. Due to the inherent properties of HTAS and the ITS 608	
molecular barcode, we take the position that studies of this nature should be used as a 609	
preliminary survey of which taxa present in an ecosystem and that inferring relative abundance 610	
from read numbers should be considered cautiously. To understand relative abundance of 611	
particular taxa in a community, additional independent assays such as taxa specific qPCR or 612	
digital PCR are warranted. 613	
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Supplemental Figures 773	

	774	
Figure S1. Read abundances do not correlate with actual abundances even when DNA 775	
concentration is high and PCR cycles are low. Creating libraries of the equimolar BioMock 776	
community by varying PCR cycles and DNA concentrations for sequencing on the Ion Torrent 777	
PGM did little to change read abundances. However, these data are consistent with traditional 778	
recommendations to use as few PCR cycles as possible during library prep.  779	
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	782	
Figure S2. Random subsampling reads for each sample does not improve accuracy of read 783	
abundances. Each sample was randomly sub-sampled to 100,000 reads using ‘amptk sample’ 784	
and then reads were mapped to the BioMock community. Chi-square test for each of these 785	
BioMock samples was significant (p < 0.001), indicating the read abundances are not equally 786	
distributed. 787	
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	789	
Figure S3. Index-bleed on Illumina MiSeq occurs during the sequencing run and is not a result 790	
of contamination. Sequencing the BioMock on Illumina MiSeq resulted in elevated levels of 791	
apparent index-bleed during our first run. To rule out that this was a result of contamination 792	
during library prep/cleanup, the same libraries were sequenced on a second run in the absence 793	
of any of the BioMock samples. The index-bleed discovered in the first run then disappeared, 794	
however, one of the BioMock members (mock3) was actually found in these environmental 795	
samples.  796	
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Supplemental Tables 803	
 804	
Table S1. Cultures from the CFMR culture collection used to construct the BioMock community. 805	
Species Voucher ID Mock ID ITS2 

Length % GC GenBank 
Accession 

Phialocephala fusca FP-170182 mock1 237 68.35% KU668953 
Ascomycete sp. FP-170235 mock2 238 50.84% KU668968 
Phialocephala lagerbergii FP-170134 mock3 238 58.82% KU668951 
Helotiales sp RF10JR mock4 239 57.32% KU668958 
Aspergillus candidus RF1JR mock5 260 65.77% KU668969 
Bjerkandera adusta RF3JR mock6 281 51.25% KU668970 
Laetiporus caribensis GDL-1 mock7 283 52.65% KU668960 
Trametes gibbosa RF5JR mock8 288 50.00% KU668971 
Laetiporus gilbertsonii OR-2 mock9 290 54.14% KU668967 
Gloeporus pannocinctus MR5-1 mock10 292 43.84% KU668965 
Wolfiporia dilatohypha FP-72162 mock11 293 54.61% KU668959 
Schizopora sp. FP-170198 mock12 293 48.12% KU668955 
Fomitopsis ochracea FP-170231 mock13 295 44.07% KU668957 
Laetiporus cermeioporus L34-2 mock14 296 54.73% KU668963 
Phanerochaete laevis RF9JR mock15 300 47.67% KU668973 
Laetiporus cincinnatus DA-37 mock16 302 53.97% KU668950 
Punctularia strigosozonata RF7JR mock17 303 53.14% KU668972 
Phellinus cinereus IN4-1 mock18 314 49.68% KU668962 
Antrodiella semisupina MR-3 mock19 315 43.81% KU668966 
Leptoporus mollis TJV-93-174 mock20 315 45.40% KU668975 
Leptoporus mollis 2 RLG-7163 mock21 315 45.08% KU668974 
Mortierellales sp FP-170186 mock22 353 45.04% KU668954 
Laetiporus persicinus HHB-9564 mock23 379 51.19% KU668961 
Penicillium nothofagi FP-170215 mock24 260 66.15% KU668956 
Metapochonia suchlasporia FP-170177 mock25 291 64.60% KU668952 
Wolfiporia cocos MD-275 mock26 548 59.67% KU668964 

 806	
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 808	
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Table S2. OTU clustering results using default QIIME pre-processing of reads. 814	

Platform Clustering 
method Reads Total 

OTUs 

Mock 
OTUs 

(n = 12) 

Error Rate 
(mismatches / total) 

Ion Torrent PGM 
(400 bp) 

UCLUST 2 562 316 97 175 1 347 3.760% 
USEARCH 2 562 316 9 812 560 4.237% 
SWARM 2 562 316 276 403 225 3.517% 
UPARSE 2 562 316 1 609 82 1.100% 

      

Illumina Miseq  
(2 x 300) 
 

UCLUST 15 696 636 122 802 528 0.131% 
USEARCH 15 696 636 9 785 545 4.694% 
SWARM 15 696 636 614 133 165 4.447% 
UPARSE 15 696 636 2 483 38 0.077% 

 815	
 816	
Table S3. Expected errors quality trimming removes most errors from Ion Torrent PGM data 817	
using 12 member SynMock community.1 818	

Method Aligned 
reads 

Subst. 
errors 

Indel 
errors 

UPARSE 
OTUs 

OTUs 
(chimera filtered) 

No Qual Filter 67 185 0.237% 0.342% 26 21 

Cutadapt -q 25 73 092 0.152% 0.222% 28 26 

Seqtk (Phred) 75 535 0.204% 0.314% 83 79 

Sickle –q 25 71 221 0.098% 0.087% 31 30 

Exp. Errors < 1 35 810 0.078% 0.100% 18 14 
1 Total of 78,525 reads from the SynMock Ion Torrent PGM run demuxed with AMPtk. 819	
 820	
Table S4. Expected errors quality trimming removes most errors from Illumina MiSeq data using 821	
12 member SynMock community.1 822	
Method Aligned 

reads 
Subst. 
errors 

Indel 
errors 

UPARSE 
OTUs 

OTUs  
(chimera filtered) 

No Qual Filter 1 081 931 0.333% 0.006% 44 27 

Cutadapt -q 25 1 148 274 0.253% 0.007% 361 337 

Seqtk (Phred) 1 115 657 0.316% 0.007% 173 150 

Sickle 1 153 190 0.166% 0.006% 304 285 

Exp. Errors < 1 961 458 0.094% 0.006% 45 27 
1 Total of 1,167,662 reads from the SynMock Illumina MiSeq run demuxed with AMPtk. 823	
 824	
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Table S5. Summary statistics for the HTAS runs used in this study.  825	

Run Platform Total 
Reads 

Valid 
Reads 

Num 
Samples 

Range reads per 
sample 

Total 
UPARSE 

OTUs 

Mock 
Community 

Mock 
Calculated 
Error Rate 

Index-
Bleed 

Mock3 Ion Torrent PGM 4,332,502 3,029,824 19 107,416 - 217,372 1,010 BioMock 0.086% 0.033% 
Mock4a Illumina Miseq 5,668,955 5,661,700 20 237,035 - 334,455 1,778 BioMock 0.019% 0.264% 
Mock4b Illumina Miseq 659,738 658,730 4 145,405 - 191,095 477 None NA NA 
Mock4c Illumina Miseq 6,103,680 6,096,296 20 221,130 - 392,118 1,625 BioMock 0.020% 0.233% 
Mock5 Ion Torrent PGM 4,341,392 2,602,544 21 59,394 - 254,269 927 SynMock 0.099% 0.156% 
Mock6 Illumina Miseq 18,005,575 17,979,995 21 623,128 - 1,167,662 2,497 SynMock 0.082% 0.046% 
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