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Abstract 
 

High throughput amplicon sequencing (HTAS) of conserved DNA regions is a powerful 

technique to characterize microbial communities. Recently, spike-in mock communities have 

been used to measure accuracy of sequencing platforms and data analysis pipelines. To assess 

the ability of sequencing platforms and data processing pipelines using fungal ITS amplicons, 

we created two ITS spike-in control mock communities composed of cloned DNA in plasmids: a 

biological mock community (BioMock), consisting of ITS sequences from fungal taxa, and a 

synthetic mock community (SynMock), consisting of non-biological ITS-like sequences.  

Using these spike-in controls we show that: 1) a non-biological synthetic control (e.g., SynMock) 

is the best solution for parameterizing bioinformatics pipelines, 2) pre-clustering steps for 

variable length amplicons are critically important, 3) a major source of bias is attributed to initial 

PCR reactions and thus HTAS read abundances are typically not representative of starting 

values. We developed AMPtk, a versatile software solution equipped to deal with variable length 

amplicons and quality filter HTAS data based on spike-in controls. While we describe herein a 

non-biological synthetic mock community for ITS sequences, the concept and AMPtk software 

can be widely applied to any HTAS dataset to improve data quality. 

 

Keywords – amplicon toolkit (AMPtk), environmental sequencing, eukaryotic DNA, fungi, 

metabarcoding, next-generation sequencing, non-biological synthetic mock community, spike-in 

control, rRNA internal transcribed spacer (ITS). 

 
Availability and Implementation -  AMPtk is publically available at 

https://github.com/nextgenusfs/amptk. All primary data and data analysis done in this 

manuscript are available via the Open Science Framework (https://osf.io/4xd9r/). The SynMock 

sequences and the script to produce them are available in the OSF repository 

((https://osf.io/4xd9r/) as well as packaged into AMPtk distributions. 
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Introduction 

High-throughput amplicon sequencing (HTAS) is a powerful tool that is frequently used 

for examining community composition of environmental samples. HTAS has proven to be a 

robust and cost-effective solution due to the ability to multiplex hundreds of samples on a single 

next-generation sequencing (NGS) run. However, HTAS output from environmental samples 

requires careful interpretation and appropriate and consistent use of positive and negative 

controls (Nguyen et al. 2015). One of the major challenges in HTAS is to differentiate 

sequencing error versus real biological sequence variation. Considerable progress has been 

made in the last several years via improved quality of sequencing results through manufacturer 

upgrades to reagents as well as improved quality filtering and “clustering” algorithms. While 

most algorithm development in HTAS is focused on the prokaryotic microbiome, using the 16S 

subunit of the rRNA array (e.g. QIIME (Caporaso et al. 2010), Mothur (Schloss et al. 2009), 

UPARSE (Edgar 2013), DADA2 (Callahan et al. 2016)), many of these same tools have been 

adopted for use with other groups of organisms, such as fungi. 

The internal transcribed spacer (ITS) region of the rRNA array has emerged as the 

molecular barcode for examining fungal communities in environmental samples (Schoch et al. 

2012). The ITS region is multi-copy and thus easily amplifiable via PCR even from 

environmental samples with low quantities of fungal DNA. The ITS region consists of two 

subunits, ITS1 and ITS2, and is generally conserved within fungal species yet possess enough 

variability to differentiate between species in many taxonomic groups. Because of its 

widespread use, several public databases are rich with reference fungal ITS sequences 

(Schoch et al. 2012). However, there are several properties of fungi and the fungal ITS region 

that are potentially problematic for HTAS that include: i) fungi have variable cell wall properties 

making DNA extraction efficiency unequal for different taxa and/or cell types (hyphae, fruiting 

bodies, spores, etc) (Vesty et al. 2017), ii) the number of nuclei per cell is variable between taxa 

(Roper et al. 2011), iii) the number of copies of the rRNA array are different between taxa and in 

some cases isolates of the same taxa (Ganley & Kobayashi 2007), iv) a single isolate can have 

multiple ITS sequences (intragenomic variability; (Lindner & Banik 2011; Simon & Weiss 2008)), 

v) the ITS region is highly variable in length, vi) ITS sequences vary in GC content, and vii) 

there are a variable number of homopolymer repeats. Additionally, current read lengths of 

commonly used sequencing platforms (Illumina Miseq currently covers ~ 500 bp (2 x 300) and 

Ion Torrent is 450 bp) are not long enough to cover the entire length of the ITS region, which is 

typically longer than 500 bp. However, conserved priming sites exist to amplify either the ITS1 

region or the ITS2 region, which has been shown to be sufficient for taxonomic identification. 
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While several studies have used the ITS1 region for HTAS, the ITS1 region contains introns in 

some taxa and thus to avoid potential bias it has been suggested that ITS2 region should be the 

preferred region for fungi (Taylor et al. 2016) (Figure 1A). Progress has recently been made 

using single-molecule DNA sequencing (e.g. PacBio) to assess fungal communities with long 

read lengths (up to 3000 base pairs), but this has not yet been widely adopted due to cost and 

technical hurdles (James et al. 2016; Tedersoo et al. 2018). 

Sequencing error is a known problem across NGS platforms used for HTAS. To address 

issues with sequencing error and reliability of results from HTAS, it has become increasingly 

common practice to use spiked-in “mock” community samples as positive controls for the 

parameterization and optimization of experimental workflows and data processing. Spike-in 

mock community controls for fungal ITS have been used (Amend et al. 2010; De Filippis et al. 

2017; Nguyen et al. 2015; Taylor et al. 2016; Tonge et al. 2014), and have consisted of fungal 

genomic DNA (gDNA) extracted from tissue from fruiting bodies, cultures, or spores of a number 

of taxa which are then (usually) combined in equimolar amounts. Mock communities composed 

of fungal gDNA from fruiting bodies, spores, and/or hyphae provide a measure of success of 

extraction, PCR, and sequencing and thus are useful in the HTAS workflow. However, such 

mock communities are of limited value if used to validate/parameterize data processing 

workflows due to intrinsic properties of the ITS region mentioned previously (variable copy 

number, intraspecific variation, variable length, etc.). Therefore, there is a need for fungal ITS 

spike-in control mock communities that function to validate laboratory experimental design, 

validate data processing steps, and compare results between sequencing runs and platforms. 

HTAS is cost-effective due to the ability to massively multiplex environmental samples 

on a single sequencing run. This process depends on the attachment of a unique sequence 

identifier (referred to as a barcode, an index, or a tag, depending on sequencing platform) to 

each piece of DNA to be sequenced. In recent years, “index-bleed (“index hopping”, “tag 

jumping”, “barcode jumping”, “tag switching”, or “barcode switching”) has been noted to occur 

on Roche 454 platforms as well as Illumina platforms (Carlsen et al. 2012; Degnan & Ochman 

2012; Kircher et al. 2011; Philippe et al. 2015; Schnell et al. 2015). Index-bleed can lead to 

over-estimation of diversity in environmental samples (Philippe et al. 2015; Schnell et al. 2015) 

and mis-assignment of sequences to samples. It has been noted that spike-in mock 

communities may be useful to help detect index-bleed, and subsequent filters may be applied 

for use with the HTAS pipeline of choice (Degnan & Ochman 2012; Philippe et al. 2015). 

We hypothesized that a mock community composed of cloned fungal ITS sequences (in 

plasmids) would circumvent several of the variability issues associated with using mock 
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communities composed of fungal DNA or fungal tissue (variable copy number, intraspecific 

variation, etc), allowing for a definitive assessment of HTAS for mycobiome studies. 

Subsequently, we found that current “off-the-shelf” software solutions performed poorly using 

these fungal ITS community standards and thus developed AMPtk (amplicon toolkit), a versatile 

software pipeline that improves results from HTAS data. Furthermore, we designed a non-

biological synthetic spike-in mock community consisting of ITS-like sequences (SynMock) that, 

when coupled with AMPtk, provides a simple method to reduce the effects of index-bleed 

between multiplexed samples on a HTAS run.   

 

Materials and Methods 

Biological mock community (BioMock) 

To construct the Biomock we selected 26 identified fungal cultures (Supporting 

Information Table S1) from the Center for Forest Mycology Research (CFMR) culture collection 

(US Forest Service, Madison, Wisconsin). These cultures were purposefully chosen to 

represent a taxonomic range of fungi, including paralogs, fungi with GC rich ITS regions, a 

variety of ITS lengths, and fungi with a variety of homopolymers in the ITS region. To measure 

the sensitivity of our bioinformatics approach, we also included two ITS sequences from 

Leptoporus mollis that were isolated from the same culture as an example of intragenomic 

variation in the fungal ITS region. These two sequences are more than 3% divergent (95.9% 

identical) and thus would typically represent separate operational taxonomic units (OTUs) in a 

clustering pipeline, despite being from the same fungal isolate. All cultures were grown on 

cellophane on malt extract agar, and DNA was extracted from pure cultures following (Lindner & 

Banik 2008). Following extraction, the genomic DNA was PCR amplified using the fungal ITS 

specific primers ITS-1F (Gardes & Bruns 1993) and ITS4 (White et al. 1990). The PCR products 

were then cloned and Sanger sequenced using the ITS1-F primer following the protocol in 

(Lindner & Banik 2011). Sequence identifications were verified via BLAST search and two 

clones of each isolate were selected and cultured in liquid LB (Luria-Bertani) media and 

incubated at 37 C for 24 hours. Plasmids were purified from the cultures in LB media using 

standard alkaline lysis. These plasmids will hereafter be termed “purified plasmids”. The purified 

plasmids were then Sanger sequenced with vector primers T7 and SP6 to verify the insertion of 

a single copy of the appropriate ITS fragment. We subsequently quantified the purified plasmid 

DNA concentration using a Qubit® 2.0 fluorometer and DNA concentrations were equilibrated to 

10 nM using DNA-free molecular grade water. Following equilibration, 5 μl of each purified 
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plasmid were combined to make an equimolar “biological mock” community of single-copy 

purified plasmids (BioMock).  

PCR has known biases, which are related to different sequence characteristics and are 

hard to predict in mixed DNA communities of unknown composition. To illustrate the impact of 

initial PCR bias on the number of reads obtained from each member of a mixed DNA 

community, we generated individual HTAS-compatible PCR products from each BioMock 

plasmid which were subsequently mixed (post-PCR) in an equimolar ratio. This was 

accomplished by PCR amplifying each individual plasmid with the same barcoded primer set. 

PCR products were purified using E-gel® CloneWell™ 0.8% SYBR® Safe agarose gels 

(ThermoFisher), quantified using a Qubit® 2.0 fluorometer, and combined into an equimolar 

mixture post-amplification. This post-PCR combined mock community can be used to examine 

sequencing error on NGS platforms and is referred to as BioMock-standards. 

 

Non-biological mock community (SynMock) 

 We used the well-annotated ribosomal RNA (rRNA) sequence from Saccharomyces 

cerevisiae as a starting point to design ITS-like synthetic sequences. The ITS adjacent regions 

of small subunit (SSU) and large subunit (LSU) of S. cerevisiae were chosen as anchoring 

points because of the presence of conserved priming sites ITS1/ITS1-F and ITS4. A 5.8S 

sequence was designed using S. cerevisiae as a base but nucleotides were altered so it would 

be compatible with several primers in the 5.8S region, including ITS2, ITS3, and fITS7. Random 

sequences were generated with constrained GC content and sequence length for the ITS1 and 

ITS2 regions. Twelve unique sequences were synthesized (Genescript) and cloned into pUC57 

harboring ampicillin resistance. The SynMock sequences and the script to produce them are 

available in the OSF repository ((https://osf.io/4xd9r/) as well as packaged into AMPtk 

distributions. Each plasmid was purified by alkaline lysis, quantified, and an equimolar mixture 

was created as a template for HTAS library prep.  

 

Preparation of HTAS libraries and NGS Sequencing 

 HTAS libraries were generated using a proofreading polymerase, Pfx50 (ThermoFisher), 

and thermocycler conditions were as follows: initial denaturation of 94°C for 3 min, followed by 

11 cycles of [94°C for 30 sec, 60°C for 30 sec (drop 0.5°C per cycle), 68°C for 1 min], then 26 

cycles of [94°C for 30 sec, 55°C for 30 sec, and 68°C for 1 min], with a final extension of 68°C 

for 7 minutes. PCR products were cleaned using either E-gel® CloneWell™ 0.8% SYBR® Safe 

agarose gels (Life Technologies) or Zymo Select-a-size spin columns (Zymo Research). All 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 22, 2018. ; https://doi.org/10.1101/213470doi: bioRxiv preprint 

https://doi.org/10.1101/213470


 7

DNA was quantified using a Qubit® 2.0 fluorometer with the high-sensitivity DNA quantification 

kit (Life Technologies).  

A single step PCR reaction was used to create Ion Torrent compatible sequencing 

libraries, and primers were designed according to manufacturer’s recommendations. Briefly, the 

forward primer was composed of the Ion A adapter sequence, followed by the Ion key signal 

sequence, a unique Ion Xpress Barcode sequence (10-12 bp), a single base-pair linker (A), 

followed by the fITS7 primer (Ihrmark et al. 2012). The reverse primer was composed of the Ion 

trP1 adapter sequence followed by the conserved ITS4 primer (White et al. 1990). Sequencing 

on the Ion Torrent PGM was done according to manufacturer’s recommendations using an Ion 

PGM™ Hi-Q™ OT2 Kit, an Ion PGM™ Hi-Q™ Sequencing Kit, an Ion PGM™ sequencing chip 

(316v2 or 318v2), and raw data were processed with the Ion Torrent Suite v5.0.3 with the “--

disable-all-filters” flag given to the BaseCaller. Libraries for Illumina MiSeq were generated by a 

two-step dual indexing strategy. All samples were PCR amplified with Illumina-fITS7 and 

Illumina-ITS4 primers. PCR products were cleaned and then dual-barcoded using an 8 cycle 

PCR reaction using the Illumina Nextera Kit and subsequently sequenced using 2 x 300 bp 

sequencing kit on the Illumina MiSeq at the University of Wisconsin Biotechnology Center DNA 

Sequencing Facility. All primers utilized in this study are available via the OSF repository 

(https://osf.io/4xd9r/).  

 

Data processing using AMPtk  

 AMPtk is publically available at https://github.com/nextgenusfs/amptk. All primary data 

and data analysis done in this manuscript are available via the Open Science Framework 

(https://osf.io/4xd9r/). AMPtk is written in Python and relies on several modules: edlib (Šošic & 

Šikic 2017), biopython (Cock et al. 2009), biom-format (McDonald et al. 2012), pandas 

(McKinney), numpy (van der Walt et al. 2011), and matplotlib modules (Hunter 2007). External 

dependencies are USEARCH v9.1.13 (Edgar 2010) or greater and VSEARCH v2.2.0 (Rognes 

et al. 2016) or greater. In order to run the DADA2 (Callahan et al. 2016) method R is required 

along with the shortRead (Morgan et al. 2009) and DADA2 packages. The major steps for 

processing HTAS data are broken down into i) pre-processing reads, ii) clustering into OTUs, iii) 

filtering OTU table, and iv) assigning taxonomy. 

 

Pre-processing reads – Data structures from Roche 454 and Ion Torrent are similar where 

reads are in a single file and have a unique barcode at the 5’ end of the read followed by the 

gene-specific priming site; therefore, AMPtk processes reads from these two platforms very 
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similarly. As a preliminary quality control step, only reads that have a valid barcode and forward 

primer are retained. Next, reverse primer sequences are removed and reads are trimmed to a 

user-defined maximum length. Data from Illumina is processed differently because reads are 

most often paired-end reads and most sequencing centers provide users with de-multiplexed by 

sample paired-end data (i.e. output of ‘bcl2fastq’). AMPtk first merges the paired end reads 

using USEARCH or VSEARCH, phiX spike-in control is removed with USEARCH, forward and 

reverse primers are removed if found, and all data are combined into a single file. Pre-

processing reads in AMPtk from any of the sequencing platforms results in a single output file 

that is compatible with all downstream steps. 

 

Clustering reads into OTUs – AMPtk is capable of running several different clustering algorithms 

including UPARSE, DADA2, UNOISE2, UNOISE3, and reference-based clustering. The 

algorithms all start with quality filtering using expected errors trimming and are modified slightly 

in AMPtk to build OTU tables using the original de-multiplexed data; therefore read counts 

represent what was in the sample prior to quality filtering. This is an important distinction, as 

expected errors quality trimming (Edgar & Flyvbjerg 2015) can be rather stringent if long read 

lengths are used and the amplicons are of variable length. 

 

Index-bleed filtering of OTU tables – Filtering in AMPtk works optimally when a spike-in mock 

community is sequenced in the dataset. While by default AMPtk is setup to work with the 

SynMock described herein, any spike-in mock community can be used. AMPtk identifies which 

OTUs belong to the mock community and calculate index-bleed of that mock community into 

other samples as well as bleed into the mock community from samples. This calculated index-

bleed percentage is then used to filter the OTU table. Filtering is done on a per OTU basis, such 

that read counts in each OTU that are below the index-bleed threshold are set to zero as they 

fall within the range of data that could be attributed to index-bleed and read counts above the 

threshold are not changed. 

 

Assigning taxonomy - AMPtk is pre-configured with databases for fungal ITS, fungal LSU, 

arthropod mtCO1, and prokaryotic 16S; however custom databases are easily created with the 

‘amptk database’ command. Several tools are available for taxonomy assignment in AMPtk 

including remote blast of the NCBI nt database, RDP Classifier (Wang et al. 2007), global 

alignment to a custom sequence database, UTAX Classifier (RC Edgar, 

http://drive5.com/usearch/manual9.2/cmd_utax.html), and the SINTAX Classifier (Edgar 2016). 

also made available for use under a CC0 license. 
not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is 

The copyright holder for this preprint (which wasthis version posted February 22, 2018. ; https://doi.org/10.1101/213470doi: bioRxiv preprint 

https://doi.org/10.1101/213470


 9

The default method for taxonomy assignment in AMPtk is a “hybrid” approach that uses 

classification from global alignment, UTAX, and SINTAX. The best taxonomy is then chosen as 

follows: i) if global alignment percent identity is > 97% then the top hit is retained, ii) if global 

alignment percent identity is < 97%, then the best confidence score from UTAX or SINTAX is 

used, iii) if there is disagreement between taxonomy levels assigned by each method then a 

least common ancestor (LCA) approach is utilized to generate a conservative estimate of 

taxonomy. AMPtk also can take a QIIME-like mapping file that can contain all the metadata 

associated with the HTAS study; the output is then a multi-fasta file containing taxonomy in the 

headers, a classic OTU table with taxonomy appended, and a BIOM file incorporating the OTU 

table, taxonomy, and metadata. The BIOM output of AMPtk is compatible with several 

downstream statistical and visualization software packages such as PhyloSeq (McMurdie & 

Holmes 2013).  

 

Accessory scripts in AMPtk - AMPtk has several additional features that will aid the user in 

analyzing HTAS data. For instance, AMPtk contains a script that will prepare data for 

submission to the NCBI SRA archive by formatting it properly and outputting a ready-to-submit 

SRA submission file. The FunGuild (Nguyen et al. 2016) package which assigns OTUs to an 

annotated database of functional guilds is also incorporated directly into AMPtk. Additionally, 

users can draw a heatmap of an OTU table as well as summarize taxonomy in a stacked 

histogram.  

 

Results 

In silico analysis of the fungal ITS region 

 To gain baseline data on potential amplicons of the ITS1 or ITS2 regions, the ITS1 and 

ITS2 regions were extracted using priming sites specific for each region (ITS1: ITS1-F and 

ITS2; ITS2: fITS7 and ITS4) from the UNITE+INSD v7.2 database (Abarenkov et al. 2010) 

consisting of 736,375 ITS sequences. For comparison, the commonly sequenced V3-V4 region 

was extracted from prokaryotic 16S sequences from the Silva v128 database (Quast et al. 

2013). A length histogram for each dataset as well as summary statistics were generated 

(Figure 1B; Table 1), indicating that all three of these molecular barcodes have an average 

length of ~ 250 bp (Table1); however, there was considerable variation in the lengths of the ITS 

region in comparison to the V3/V4 region of 16S (Figure 1B). Stretches of homopolymer 

sequences can also be problematic for some NGS platforms (454 and PGM), and thus the 

number of sequences in this dataset that contained homopolymer stretches greater than 6 
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nucleotides were calculated (Table 1). Given the small percentage of ITS1 and ITS2 regions 

that are greater than 450 bp (the current upper limit of the Ion Torrent PGM platform), the 

number of taxa in the reference database that are unlikely to sequence on the Ion Torrent due 

to amplicon length is relatively small (Table 1). Illumina MiSeq is now capable of paired end 300 

bp read lengths (2 x 300); however, reads need to overlap for proper processing in NGS 

software platforms and thus a ~ 500 bp size limit would also be able to sequence most taxa in 

the reference database using either the ITS1 or ITS2 region. 

 

 

Figure 1. The fungal internal transcribed spacer (ITS) region of the rRNA array is highly variable 

in length. (A) A schematic of the rRNA array highlights the conserved priming sites commonly 

used to amplify either the ITS1 or ITS2 region. (B) Size distribution of full length ITS (blue), ITS1 

(green), ITS2 (red) sequences in the UNITE v7.2 curated databases shown in comparison to the 

bacterial 16S V3/V4 amplicon from the Silva v128 database. Current sequencing technologies 

do not have read lengths long enough to capture full-length ITS sequences, and thus ITS1 or 
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ITS2 regions are used for fungal environmental community analysis. 16S V3/V4 in yellow; ITS 

full length in blue, ITS2 in red, and ITS1 in green. 

 

Table 1. Summary statistics of the fungal ITS molecular barcode in comparison to bacterial 16S. 

Region Num 
Seqs 

Avg Length (bp) % HP1 > 6 % HP1 > 8 % > 450 bp 

ITS Full Length 696 704 488 55.07% 8.66% - 
ITS1 685 399 247 36.58% 5.60% 3.27% 
ITS2 535 200 264 44.19% 5.54% 0.83% 
16S (V3/V4) 627 247 253 23.74% 1.02% - 
1 HP: homopolymer stretches 

 
 
Creation of a representative artificial fungal mock community (BioMock) 

Given the results from analysis of the UNITE datasets, we set out to create a 

representative ITS mock community to be used as a spike-in sequencing control to determine 

the quantitative nature of ITS HTAS and to measure the performance between the commonly 

used Illumina MiSeq platform versus the Ion Torrent PGM. To circumvent the problematic 

issues associated with the ITS region, we reasoned that cloned ITS sequences in plasmid form 

would allow for accurate quantification and pooling, thus providing a means to test the accuracy 

of the sequencer platforms and data processing workflows. We cloned known ITS sequences 

from 26 cultures from the CFMR culture collection that varied in length (237 bp to 548 bp), 

ranged in GC content (43.8% - 68.4%), and contained sequences with homopolymer stretches 

with one sequence containing two 9 bp stretches. These plasmids were combined into BioMock 

and BioMock-standards as described in materials and methods section. The value of the 

BioMock-standards is that the library was combined after PCR, and thus the standards are free 

from PCR-induced artifacts that may arise from PCR of a mixed community. 

 

Existing data processing workflows perform poorly with fungal ITS sequences 

 Clustering amplicons into operational taxonomic units (OTUs) is common practice in 

molecular ecology and there are many software solutions/algorithms (such as QIIME (Caporaso 

et al. 2010), UPARSE (Edgar 2013), Mothur (Schloss et al. 2009), and DADA2 (Callahan et al. 

2016)) that have been developed to deal appropriately with errors associated with next-

generation sequencing platforms. Many studies using 16S amplicon data have focused on 

comparing clustering methods (Callahan et al. 2016; Edgar 2013), while others have focused on 

quality filtering reads prior to clustering (Edgar & Flyvbjerg 2015). Therefore, we chose not to 

compare the different software algorithms in this study but will briefly mention that when we did 
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run our data through QIIME, the number of OTUs was highly over-estimated and the error rates 

were very high (Supporting Information Table S2). We were unable to run our data through 

Mothur due to the inability to do a multiple sequence alignment and subsequent distance matrix 

of the ITS region. The best performing clustering pipeline was UPARSE; however there were 

several issues with how the reads were pre-processed and quality filtered that lead to 

suboptimal results (Supporting Information Table S3 and Table S4). It is important to note that 

all of these software solutions have been built with 16S amplicons in mind and several have 

been optimized for Illumina data.  

  
The major difference in 16S amplicons versus those of ITS1/ITS2 is that the lengths of 

16S amplicons are nearly identical, while ITS1/ITS2 amplicons vary in length (Figure 1B). This 

distinguishing feature makes ITS sequences from diverse taxa impossible to align (Schoch et al. 

2012) and thus represents a major limitation in data processing. To illustrate the importance of 

properly pre-processing ITS data, we clustered the ITS1 and ITS2 regions using UPARSE while 

using the full length ITS1/ITS2 UNITE reference database as a benchmark (Figure 2). Using the 

UNITE database, we then explored the outcome of trimming/truncating the sequences to 

different length thresholds, a common practice in OTU clustering pipelines. The UPARSE 

algorithm uses global alignment and as such terminal mismatches count in the alignment (as 

opposed to local alignment where terminal mismatches are ignored); thus the UPARSE pipeline 

expects that reads are truncated to a set length. UPARSE achieves this by truncating all reads 

to a set length threshold and discards reads that are shorter than the length threshold. 

Therefore real ITS sequences are discarded (Figure 2). We then came up with two potential 

solutions to fix this unintended outcome: i) truncate reads that were longer than the threshold 

and keep all shorter reads (full length), and ii) truncate longer reads and pad the shorter reads 

with N’s out to the length threshold (padding). Using the UNITE v7.2 database of curated 

sequences (general release June 28th, 2017) as input, both “full-length” and “padding” improved 

UPARSE results with the “full length” method recovering more than 99% of the expected OTUs 

(Figure 2).  
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Figure 2. Pre-processing ITS sequences is critically important to accurately recover OTUs using 

the curated UNITE v7.2 reference database. ITS1 and ITS2 sequences were extracted from the 

UNITE v7.2 general fasta release database using ‘AMPtk database’. Identical sequences were 

collapsed (dereplication) and remaining sequences were clustering using UPARSE 

(‘cluster_otus) to generate the total number of UPARSE OTUs expected for the ITS1 and ITS2 

regions. The data was then processed to five different lengths (150, 200, 250, 300, and 350 bp) 

and then clustered (UPARSE ‘cluster_otus’) using i) default UPARSE truncation (longer 

sequences are truncated and shorter sequences are discarded), ii) padding with ambiguous 

bases (longer sequences truncated and shorter sequences padded with N’s to length 

threshold), and iii) full-length sequences (longer sequences are truncated and shorter 

sequences are retained if reverse primer is found). Full-length and padding pre-processing 

sequences outperforms default UPARSE truncation. 
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Due to the intrinsic nature of the variable length ITS amplicons, we needed a data 

processing solution that would be flexible enough to maintain the full length of the reads, trim 

reads without data loss, prepare sequencing reads for downstream clustering algorithms, and 

support all major NGS platforms. Using the BioMock communities as a means to validate the 

results of all data processing steps, we wrote a flexible series of scripts for processing Illumina, 

Ion Torrent, as well as Roche 454 data that are packaged into AMPtk (amplicon tool kit). A flow 

diagram of AMPtk is illustrated in Figure 3 and a more thorough description of AMPtk is 

provided in the material and methods section. A manual for AMPtk is available at 

http://amptk.readthedocs.io/en/latest/. After data is pre-processed with AMPtk via a platform 

specific method, AMPtk then functions as a wrapper for several popular algorithms including 

UPARSE, DADA2, UNOISE2, and UNOISE3. All data presented in this manuscript were 

processed with AMPtk v1.0.1. 

 

 

 

Figure 3. Overview of the commands in AMPtk. AMPtk is built to be compatible with multiple 

sequencing platforms as well as contains several clustering algorithms. 
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Read abundances do not represent community abundances: PCR introduces bias 

Next-generation sequencing platforms are quantitative if the library to be sequenced is 

unbiased, as is typically the case with RNA-sequencing and whole genome sequencing library 

prep protocols. However, PCR of mixed communities has long been shown to introduce bias in 

next-generation sequencing workflows (Aird et al. 2011; Kebschull & Zador 2015; Pinto & 

Raskin 2012). For HTAS this is an important caveat, as molecular ecologists are interested in 

diversity metrics of environmental communities as well as their relative abundance. Through the 

use of mock communities, several studies have pointed out that read abundance from fungal 

HTAS are not representative of relative biological abundance (Amend et al. 2010; De Filippis et 

al. 2017). However, it was recently reported that for a fungal ITS mock community of 8 

members, abundances were meaningful (Taylor et al. 2016) and many studies continue to use 

abundance-based metrics to analyze HTAS, without giving any consideration to 

presence/absence-based metrics. We reasoned we could investigate this issue using the ITS 

BioMock artificial community, which would not suffer from bias associated with DNA extraction, 

ITS copy numbers, and intraspecific variation. We compared the relative read abundances of 

BioMock-standards to 3 different combinations of BioMock on both the Ion Torrent PGM and 

Illumina MiSeq platforms (Figure 4). The BioMock-standards consist of an equimolar mixture of 

26 PCR products thereby removing the PCR bias from mixed DNA samples, while the BioMock 

communities consist of an equimolar mixture of 23 single-copy plasmids. These data show that 

even in an extreme example of an equally mixed community of cloned ITS sequences, read 

abundance does not represent actual abundance in the mock community (Figure 4). The 

majority of the bias is introduced at the initial PCR step, as the pre-PCR combined BioMock-

standards result in a more equal distribution of reads, albeit not a perfect distribution. We also 

tested PCR conditions, DNA concentrations, and sample reproducibility on the Ion Torrent PGM 

(Supporting Information Figure S1). While the bias via PCR is consistent between sequencing 

platforms, there is no obvious correlation between length of the read, GC content, nor stretches 

of homopolymers affecting efficient PCR amplification. For example, Wolfiporia dilatophya 

(mock11) contains no homopolymer stretches larger than 5, has GC distribution of 54.6%, and 

is near the median in length, yet it does not PCR amplify well in the BioMock community (Figure 

4). These data also show a size limitation in the Ion Torrent PGM workflow, as Wolfiporia cocos 

(mock 26) sequences very poorly due to its long ITS2 region (Figure 4). Three members of the 

original 26 members of the BioMock community were dropped (mock24, mock25, mock26) due 

to persistent problems getting them to amplify/sequence in repeated HTAS on the Ion Torrent 

platform (Supporting Information Figure S1).  
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Figure 4. Read abundance is an unreliable proxy for actual abundance within a mixed 

community. Using an equimolar mixture of cloned ITS sequences in plasmid form (MockA, 

MockB1, MockB2) in comparison to equimolar mixture of individual PCR products (Stds) 

illustrates that the initial PCR reaction during library preparation heavily biases the read 

abundance obtained after sequencing on both the Ion Torrent PGM and Illumina MiSeq 

platforms. While read abundances are unreliable, all members of the mock community were 

recovered. MockA represents a 1:16,000 dilution and MockB1/MockB2 are replicates of a 

1:32,000 dilution of the BioMock community. The Ion Torrent PGM platform has a length 

threshold of approximately 450 bp; therefore longer amplicons like Wolfiporia cocos ITS2 

sequence very poorly. 
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In HTAS experiments, considerable effort is made to try to sequence to an equal depth 

for each sample. However, in practice this rarely works perfectly and thus a typical HTAS 

dataset has a 2-4X range in number of reads per sample. The depth of sequence range for the 

HTAS runs presented here is within a range of 2X for each run and the smallest number of 

reads per sample in any of our sequencing runs was nearly 60,000 (Supporting Information 

Table S5). Unequal sequencing depth has been used as rationale for explaining the lack of 

correlation between read abundance and actual abundance. Therefore, random subsampling of 

reads in each sample prior to clustering (also called rarefying) has been widely used in the 

literature, despite a compelling statistical argument that this method is flawed (McMurdie & 

Holmes 2014). Randomly subsampling reads for each sample using our BioMock community 

yielded nearly identical results (Supporting Information Figure S2). Sequencing depth has been 

shown to be an important variable for HTAS experiments (Smith & Peay 2014), therefore we 

typically employ a 5,000 reads per sample cutoff when processing environmental datasets.  

 

A non-biological synthetic mock community to measure index-bleed among samples 

 Index-bleed is a phenomenon that has been described on Roche 454 platform (Carlsen 

et al. 2012) as well as Illumina platforms (Kircher et al. 2012; Wright & Vetsigian 2016). A 

consensus on a mechanism of index-bleed during the sequencing run has yet to be reached. 

Index-bleed is a significant challenge to overcome as sample crossover has the potential to 

over-estimate diversity and lead to inaccurate representations of microbial communities, 

especially considering that read abundance is an unreliable proxy for biological abundance 

(Figure 4). Using our BioMock sequencing results, we also discovered this phenomenon on both 

Ion Torrent and Illumina platforms. We calculated the rate of index-bleed in our BioMock Ion 

Torrent sequencing run to be 0.033% and on Illumina MiSeq between 0.233% and 0.264%. We 

also confirmed that index-bleed was happening on the Illumina flow-cell by re-sequencing a 

subset of Illumina libraries that had shown high index-bleed on the first MiSeq flowcell that did 

not contain the BioMock (Supporting Information Figure S3). One problem that we noticed in 

measuring index-bleed using a mock community of actual ITS sequences (BioMock) was that 

these same taxa in the mock community could be present in environmental samples, which 

would lead to inaccurate estimation of index-bleed. In our environmental data, it was likely that 

at least one of the BioMock members was present in several of the environmental samples, 

suggesting the calculated index-bleed could be over-estimated. To overcome this problem, we 

designed a non-biological (synthetic) mock community composed of ITS-like sequences that 

contained conserved priming sites (SSU and LSU regions), ITS1 region, 5.8S region, and an 
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ITS2 region (Figure 5). We designed the ITS1 and ITS2 portions of the sequences to be non-

biological; that is, no similar sequences are known to occur in nature (based on searches of 

known databases and based on the infinitesimally low probability that a randomly generated 

sequence would match something found in nature) and therefore these non-biological 

sequences can be used to accurately track index-bleed in HTAS studies. Using the summary 

statistics from the analysis of the UNITE reference database for guidance, we also varied the 

length, GC content, and homopolymer stretches to be representative of real ITS sequences. 

 

 

Figure 5. Schematic drawing of the 12-member non-biological synthetic mock community 

(SynMock). Conserved priming sites for either ITS1 or ITS2 amplicons are retained for 

versatility. The length distribution, GC content, and homopolymer stretches are representative of 

curated public databases; however, the sequences are non-biological and thus not found in 

nature. 

 

The SynMock was tested as a spike-in control on both the Ion Torrent and Illumina 

MiSeq platforms. The raw data were processed using AMPtk and clustered using UPARSE. 

These data illustrate that the synthetic sequences are able to be processed simultaneously with 

real ITS sequences and provide a way to track the level of index-bleed between multiplexed 

samples (Figure 6). The increased benefit of being able to track the SynMock sequences as 
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they “bleed” out of the sample allows for a more accurate measurement of index-bleed. Using 

default Illumina de-multiplexing (allowing 1 mismatch in the index sequence), index-bleed using 

the SynMock community was 0.072% (Figure 6C). To determine if allowing mismatches in the 

index reads was increasing index-bleed, we reprocessed the data with 0 mismatches and found 

that index-bleed was reduced to 0.046%. While index-bleed was reduced by nearly half, the 

tradeoff was that 0 mismatches resulted in approximately 10% fewer reads. For most datasets, 

a loss of 10% of the sequencing reads should not be problematic, especially if the benefit is to 

reduce index-bleed in the data. We noted that in our Illumina dual-indexing library prep that 

there was increased index-bleed on samples that had a shared reverse index (i7), suggesting 

that errors are increased at later stages of an Illumina sequencing run (Figure 6B). A similar 

pattern of increased index-bleed correlating with relaxed primer mismatch settings was 

observed with Ion Torrent PGM data, although not as drastic. Allowing 1 mismatch in the 

barcode resulted in 0.167% index-bleed while allowing 0 mismatches in the barcode resulted in 

0.156% index-bleed (Figure 6C). While these data would suggest that index-bleed is perhaps 

higher in Ion Torrent PGM datasets, we have subsequently used the SynMock on more than 10 

different HTAS Ion Torrent PGM experiments and have since seen much lower levels of index-

bleed, occasionally approaching 0% index-bleed.  
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Figure 6. Index-bleed or sample mis-assignment occurs on both Ion Torrent PGM and Illumina 

Miseq. (A) Read counts from the SynMock community run on the Ion Torrent PGM platform. 

SynMock reads can be found in environmental samples and reads from the environmental 

samples are found in the SynMock sample. The data were processed allowing 0 mismatches in 

the barcode sequence and there is no clear pattern to index-bleed on the Ion Torrent PGM 

platform. (B) Data processed on the Illumina MiSeq (2x300) allowing 0 mismatches in the index 

reads show index-bleed in and out of the SynMock sample. Samples that share an index (i5 or 

i7) show an increase in index-bleed. (C) Index-bleed between samples can be tracked using the 

SynMock spike-in control, where AMPtk will measure both index-bleed into the SynMock as well 
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as index-bleed into other samples. These calculated values are then used by AMPtk to filter an 

OTU table to remove read counts that fall below the index-bleed threshold. Index-bleed is 

reduced if 0 mismatches are allowed in the barcode/index sequence, however, this is still not 

sufficient to eliminate index-bleed. 

 

Many environmental samples can contain hundreds of taxa and thus a legitimate 

concern is that the 12 member SynMock community does not represent a realistic community in 

terms of diversity in a sample. To test if the SynMock was able to be recovered in a more 

complex community, we mixed SynMock together with two environmental samples that had 

more than 200 OTUs in previous sequencing runs. These mixed samples show that SynMock 

could be recovered from a complex community and the sequences behave like real ITS 

sequences (Figure 6A). While many studies have set a read count threshold to filter “noisy” data 

from OTU tables, this threshold has been typically selected arbitrarily, i.e. OTUs with read 

counts less than 100 or less than 10% of the total, etc. Use of the SynMock spike-in control 

allowed for data-driven thresholds to be measured and moreover for the ability to filter the OTU 

table based on the calculated index-bleed. The AMPtk filter command calculates index-bleed by 

mapping the OTUs to the mock community and then provides a way to filter the OTU table 

based on this calculated value. AMPtk filters across each OTU in the table such that difficult to 

sequence or “low abundance” OTUs are not indiscriminately dropped. Taken together, these 

data illustrate the utility of a non-biological mock community in parameterizing data processing 

steps and importantly providing a method in AMPtk to reduce index-bleed from HTAS datasets. 

AMPtk provides an easy to use method to accurately process variable length amplicons, cluster 

them into OTUs or denoise sequences, generate an OTU table, filter the OTU table for index-

bleed, and assign taxonomy. 

 
Discussion 

 Many HTAS studies have the goal of measuring and comparing biological diversity in 

environmental samples; however, there are technical limitations that need to be understood in 

order to reach justifiable conclusions. Mock communities and negative controls have been 

shown to have great utility for HTAS studies, and expanding upon this concept, we present a 

non-biological synthetic mock community of ITS-like sequences for use as a technical spike-in 

control for fungal biodiversity studies. Additionally, we describe AMPtk, a software tool kit for 

analyzing variable length amplicons such as the fungal ITS1 or ITS2 molecular barcodes. These 

two tools can be coupled together to validate data processing pipelines and reduce index-bleed 
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from OTU tables prior to downstream community ecology analyses. The concept of a non-

biological synthetic spike-in control can be expanded to many different genes and organisms, as 

was recently described for 16S for microbiome studies (Tourlousse et al. 2017).  

 The ITS region is widely used as a molecular barcode in fungal biodiversity studies as it 

is easy to amplify and public reference databases are robust. However, HTAS with the ITS 

region presents some unique challenges due to variability in sequence characteristics such as 

length and copy number. Most HTAS software development and optimization has been focused 

on the 16S molecular barcode, a region that is near uniform in length across prokaryotic taxa. 

Thus, there is a need for a software solution that can more accurately account for variable 

length amplicons. We developed a single-copy mock community based on cloned ITS 

sequences as a tool to validate and compare different NGS platforms and data processing 

pipelines. Using an artificial single-copy mock community of cloned ITS sequences in plasmids 

(BioMock), we determined that the core clustering/denoising algorithms work for variable length 

amplicons; however, pre-processing techniques widely used for uniform length amplicons 

introduce significant error into the pipelines. Simplifying the pre-processing of sequencing reads 

(i.e., identifying unique sequence barcodes, forward/reverse primers, and trimming reads to a 

uniform length without data loss) resulted in large improvement in downstream OTU clustering. 

The pre-processing of reads prior to quality filtering is critical for variable length amplicons and 

is implemented in AMPtk.  

 Proper pre-processing of variable length amplicons improves clustering results 

substantially. However, the BioMock results illustrated that read abundances obtained from 

HTAS are not a reliable proxy for inferring biological relative abundance, demonstrating 

additional assays such as qPCR are required to capture biological relative abundance. These 

data do support use of presence/absence (binary) metrics as we were able to recover all 

members of our mock community, even when they were spiked into a diverse environmental 

sample. We identified the initial PCR reaction (library construction) as the major source of read 

number bias, a conclusion consistent with the literature (Jusino et al. 2017; Polz & Cavanaugh 

1998; Wu et al. 2010). To reduce PCR artifacts for any assay it is generally accepted that one 

should use the fewest cycles possible, the most concentrated DNA possible, and it has been 

suggested to use a proofreading polymerase (Oliver et al. 2015). We have tested DNA 

concentration and PCR cycle numbers for HTAS library generation and subsequent sequencing 

on the Ion Torrent PGM platform, and our results were consistent with these general guidelines 

(Supporting Information Figure S1). However, following these guidelines is not sufficient to 

reduce the bias in read abundance from a mixed community from PCR. The Ion Torrent PGM 
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platform currently has an amplicon size limit of ~ 450 bp, and thus some very large ITS 

sequences are difficult to sequence. However, there are only a small number of known ITS1 or 

ITS2 sequences that are longer than 450 bp (Table 1) and therefore either platform, Ion Torrent 

or MiSeq, provided similar results under the conditions tested.  

 Index-bleed has recently been acknowledged by Illumina (https://tinyurl.com/illumina-

hopping), although they limit their acknowledgement to a new flow cell on the HiSeq and 

NovaSeq platforms. Several studies have shown that older instruments/flowcells have also 

shown index-bleed, albeit at a much lower rate (Kircher et al. 2012; Wright & Vetsigian 2016) 

and index-bleed has been identified on Roche 454 (Carlsen et al. 2012). Here we report a low 

rate of index-bleed on both Ion Torrent and Illumina MiSeq platforms. While the effective rate of 

index-bleed is low (< 0.2%), coupled with the fact that read number is not a reliable proxy of 

community abundance, index-bleed in datasets being analyzed by presence-absence metrics is 

a problematic scenario. To identify and combat index-bleed, we created a non-biological 

synthetic mock community (SynMock) of ITS-like sequences that behave like real ITS 

sequences during the HTAS workflow. Because the SynMock sequences are not known to 

occur in nature, they can be effectively used to measure index-bleed in a sequencing run. A 

similar approach was recently described for 16S amplicons using synthesized oligonucleotides 

(Kim et al. 2017). We propose that HTAS studies of fungal ITS communities should employ 

SynMock or a similar non-biological mock community as a technical control. Additional controls 

such as a biological mock community of mixed fruiting bodies, spores, hyphae, etc. of taxa of 

interest are also useful if the experiment is designed to identify the prevalence of particular taxa. 

 The bioinformatics pipeline presented here, AMPtk, was developed to specifically 

address the quality issues that we have identified by using spike-in mock communities and to 

provide the scientific community with a necessary tool to study fungal community diversity. 

AMPtk is a flexible solution that can be used to study other regions used in HTAS, such as 

mitochondrial cytochrome oxidase 1 (mtCO1) of insects and the large subunit (LSU) of the 

rRNA array. The goal of AMPtk is to reduce data processing to a few simple steps and to 

improve the output of HTAS studies. Due to the inherent properties of HTAS and the ITS 

molecular barcode, we take the position that studies of this nature should be used as a 

preliminary survey of which taxa present in an ecosystem and that inferring relative abundance 

from read numbers should be avoided. To understand relative abundance of particular taxa in a 

community, additional independent assays such as taxa specific qPCR or digital PCR are 

warranted. 
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