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ABSTRACT  

Evidence that some influential biomedical results cannot be recapitulated has increased calls for 

data that is findable, accessible, interoperable, and reproducible (FAIR). Here, we study factors 

influencing the reproducibility of a prototypical cell-based assay: responsiveness of cultured cell lines to 

anti-cancer drugs. Such assays are important for drug development, mechanism of action studies, and 

patient stratification. This study involved seven research centers comprising the NIH LINCS Program 

Consortium, which aims to systematically characterize the responses of human cells to perturbation by 

gene disruption, small molecule drugs, and components of the microenvironment. We found that factors 

influencing the measurement of drug response vary substantially with the compound being analyzed and 

thus, the underlying biology. For example, substitution of a surrogate assay such as CellTiter-Glo® for 

direct microscopy-based cell counting is acceptable in the case of neratinib or alpelisib, but not 

palbociclib or etoposide. Uncovering and controlling for such context sensitivity requires systematic 

measurement of assay robustness in the face of biological variation, which is distinct from assay 

precision and sensitivity. Conversely, validating assays only over a narrow range of conditions has the 

potential to introduce serious systematic error in a large dataset spanning many compounds and cell 

lines. 

 

INTRODUCTION 

The goal of making biomedical data more findable, accessible, interoperable, and reusable (the 

FAIR principles (Wilkinson, Dumontier et al. 2016)) as well as reports from industry that call into the 

question the reproducibility of published data (Arrowsmith 2011, Prinz, Schlange et al. 2011, Begley 

and Ellis 2012, Baker 2016) have increased interest in data reliability (Errington, Iorns et al. 2014, 

Morrison 2014). However, only a limited number of studies (https://f1000research.com/channels/PRR) 

such as the Science Exchange Reproducibility Initiative 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/213553doi: bioRxiv preprint 

https://doi.org/10.1101/213553


Page 4 

(http://validation.scienceexchange.com/#/reproducibility-initiative) have addressed the issue through 

new experiments and the results of such reproducibility experiments have themselves been controversial 

(eLIFE-Editorial 2017, Ioannidis 2017, Nature-Editorial 2017, Nosek and Errington 2017). In this paper, 

we investigate a prototypical class of cell-based assays—rather than a specific scientific result—through 

collaboration among multiple geographically dispersed laboratories. This work was carried out as part of 

our participation in the NIH Library of Network-Based Cellular Signatures Program (LINCS) 

consortium (http://www.lincsproject.org/). The overall goal of LINCS is to generate broadly useful 

datasets characterizing the responses of cells to perturbation by small molecule drugs, components of the 

microenvironment, and gene depletion or overexpression. For such a resource to be useful, it must be 

reproducible.  

The assay studied by LINCS Centers in this paper involves measuring the responses of tissue 

culture cells to small molecule anti-cancer drugs across a dose range.  Drug-response assays in cultured 

cells are widely used in preclinical pharmacologyc(Cravatt and Gottesfeld 2010, Schenone, Dancik et al. 

2013) and the study of cellular pathwaysc(Barretina, Caponigro et al. 2012, Garnett, Edelman et al. 

2012, Heiser, Sadanandam et al. 2012). In the case of anti-cancer drugs, cells are exposed to drugs or 

drug-like compounds for several days (commonly three days) and the number of viable cells then 

determined, either by direct counting using a microscope or using a surrogate assay such as CellTiter-

Glo® (Promega), which measures ATP levels in a cell lysate. With some important caveats, the amount 

of ATP in a lysate from a single microtiter well is proportional to the number of viable cells in that 

well(Tolliday 2010). Several large-scale datasets describing the responses of hundreds of cell lines to 

libraries of anti-cancer drugs have recently been publishedc(Barretina, Caponigro et al. 2012, Garnett, 

Edelman et al. 2012, Seashore-Ludlow, Rees et al. 2015, Haverty, Lin et al. 2016), but their 

reproducibility and utility is being debatedc(Haibe-Kains, El-Hachem et al. 2013, Consortium and 

Consortium 2015, Safikhani, Freeman et al. 2015, Bouhaddou, DiStefano et al. 2016). 
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Our approach was simple: five experimentally-focused LINCS Data and Signature Generation 

Centers measured the sensitivity of the widely-used, non-transformed MCF 10A mammary epithelial 

cell line to eight small molecule drugs with different targets and mechanisms of action. The LINCS Data 

Coordination and Integration Center (DCIC) then processed and visualized the data working with 

LINCS Center 1. LINCS investigators have established that the way in which drug response is 

conventionally calculated from cell viability assays is confounded by variability in rates of cell 

proliferation arising from changes in plating density, fluctuation in media composition, and intrinsic 

differences in cell division times(Hafner, Niepel et al. 2016, Hafner, Niepel et al. 2017). We corrected 

for these and other known confounders using the growth rate inhibition (GR) method(Hafner, Niepel et 

al. 2016, Hafner, Niepel et al. 2017, Niepel, Hafner et al. 2017), thereby focusing the current study on 

other sources of irreproducibility that remain poorly understood. Individual Centers were provided with 

identical aliquots of MCF 10A cells, drugs, and media supplements, as well as a common experimental 

protocol and data analysis procedure. Some variation in methods was inevitable, because not all 

laboratories had access to the same instrumentation or the same level of technical expertise; in our view, 

this is a positive feature of the study because it more fully replicates “real-world” conditions. In initial 

experiments, we observed substantial center-to-center variation. We then performed systematic studies 

to identify those factors with the largest impact on the measurement of drug response, and distributed 

this information to other centers to improve experimental and analytical procedures. We found that 

irreproducibility arose from a subtle interplay between experimental and computational methods and 

poorly understood sources of biological variation. Thus, a sustained commitment to characterizing and 

controlling for this variability was necessary to obtain reproducible data from different sites. 

RESULTS 

Measuring drug responses in collaboration 

To establish the single-Center precision of dose-response assays, Center 1 performed multiple 

replicates of a 13-point dose-response assay with MCF 10A cells and the MEK1/2 kinase inhibitor 
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Trametinib at concentrations between 0.33 nM and 1 µM. Both technical and biological replicates were 

performed (Figure 1): for technical replicates, multiple drug dilution series were assayed on a single 

microtiter plate at a single time. For biological replicates, three sets of assays were performed on 

successive days in different plates; each biological replicate involved three technical replicates. In all 

cases, viable cell number was determined by differentially staining live and dead cells, collecting 

fluorescence images from each well, segmenting images using machine vision software, and then 

counting all viable cells in a well(Hafner, Niepel et al. 2016, Niepel, Hafner et al. 2017). Sigmoidal 

curves were fitted to the data and four response metrics derived: these measured potency (GR50), 

maximal efficacy (GRmax), slope (Hill Coefficient or hGR) of the dose response curve, and the integrated 

area over this curve (GRAOC)(Hafner, Niepel et al. 2016). Fitting procedures and response metrics have 

been described in detail previously(Hafner, Niepel et al. 2016, Hafner, Niepel et al. 2017) (Supplemental 

Figure 1), and all routines and data can be accessed on-line or via download at 

http://www.grcalculator.org/.  

We found that response curves for technical replicates were nearly indistinguishable (Figure 1), 

showing that purely technical error resulting from inaccurate pipetting or errors in counting cells is 

small. For biological replicates, standard deviations in measurement of drug potency and efficacy 

(log10(GR50) values and GRmax values, respectively) were ~ 0.07, representing the repeatability of the 

assay at a single research site across multiple days.  

To measure reproducibility across laboratories while controlling for anticipated sources of 

variability, a single LINCS Center distributed identical MCF 10A aliquots, drug stocks, and media 

additives, as well as a detailed experimental protocol optimized for cell line-drug pairs under study. This 

protocol included optimal dose-ranges and separation between doses for reliable curve fitting. When 

individual LINCS centers first performed these assays, up to 200-fold variability in GR50 values was 

observed between centers (Supplementary Figure 2). We therefore performed directed experiments in 

Center 1 to systematically investigate the origins of assay variability. 
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Technical drivers of variability 

First, we examined inter-Center variability in estimation of GRmax focusing on the topoisomerase 

inhibitor Etoposide and CDK4/6 inhibitor Palbociclib. One LINCS Center used the CellTiter-Glo® 

ATP-based assay and a luminescence plate reader as a proxy for the number of viable cells; CellTiter-

Glo is a common substitute for direct cell counting when a suitable microscope is not available. When 

we performed side-by-side experiments we found that dose-response curves and GR metrics computed 

from (image-based) direct cell counts and CellTiter-Glo® values were the same for the EGFR inhibitor 

Neratinib, differed marginally for the PI3K inhibitor Alpelisib, and exhibited significant differences for 

the topoisomerase inhibitor Etoposide or CDK4/6 inhibitor Palbociclib (Figure 2A,B). This finding 

explains, in part, inter-Center differences in drug response observed in preliminary experiments 

(Supplementary Figure 2). It is known that CellTiter-Glo® and direct cell counts are poorly correlated 

when drugs cause dramatic changes in cell size or alter ATP metabolism, thereby changing the 

relationship between ATP level in cell extracts and cell number (Figure 2C for Palbociclib)(Salani, 

Marini et al. 2013, Harris, Koh et al. 2016, Soliman, Steenson et al. 2016). Our data show that the 

degree of agreement between cell counting and CellTiter-Glo® depended on the drug being assayed 

(previous work has shown that cell line also impacts the correlation between the assays(Niepel, Hafner 

et al. 2017)). Thus, direct cell counting and CellTiter-Glo® measurements can be substituted for each 

other in some cases but not in others. More generally, a substitution of assays that appears to be justified 

by pilot studies on a limited number of cell lines and drugs can be problematic when the number and 

chemical diversity of drugs is increased. 

Edge effects and non-uniform cell growth are a second and substantial source of variation in cell 

based studies performed in microtiter plates(Coyle, Green et al. 1989, Bushway, Azimi et al. 2010) 

thought to arise in part from temperature gradients and uneven evaporation of media at the edges of 

plates. We have observed a variety of irregularities in plating and cell growth at least some of which are 

dependent on the batch of microtiter plate; we now test all batches of plates for uniformity of cell 
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growth(Niepel, Hafner et al. 2017). Because variation in growth is often confined to specific regions of a 

plate (Figure 2D), it can generate systematic error in dose-response curves. A variety of approaches can 

be taken to minimize such effects (e.g. placing plates in humidified chambers to reduce evaporation 

from edge wells), but we found that automated and randomized compound dispensing is particularly 

helpful. Using the HP D300e Digital Dispenser it is possible to “print” compounds directly into 

microtiter plates in an arbitrary pattern, randomizing the locations of control and technical replicate 

samples in the plate.  In this way, systematic error arising from edge effects is converted into random 

error, which doesn’t result in a directional bias of response metrics and is more easily modeled(Niepel, 

Hafner et al. 2017). We have found that the use of simple washing and dispensing robots also reduces 

errors that humans make during repetitive pipetting operations. Most of these robots are small, robust, 

and relatively inexpensive, and our experience suggests that they greatly improve the reproducibility of 

medium- and high-throughput cell-based and biochemical studies.  

A third source of error we explored involved the concentration range over which a drug was 

assayed and the impact of the range on curve fitting and parameter estimation. For example, if we follow 

general practice and assay Trametinib over a thousand-fold concentration range, growth is fully arrested 

at ~30 nM (Figure 3A, left plot, red arrow): phenotypic response does not change even when the dose is 

increased 100-fold to 1 µM and increasing the dose-range has no effect on curve fitting and parameter 

estimation (Figure 3A, left plot). However, when Dasatinib (a poly-selective SRC-family kinase 

inhibitor) was assayed over a thousand-fold range, curve fitting identified a plateau in GR value between 

0.3 to 1 µM, but when the dose-range was extended GR values become negative, demonstrating a shift 

from cytostasis to cell killing (Figure 3A, right plot, and 3B). The subtlety here is that a dose-range that 

is adequate for analysis of Trametinib is not adequate for Dasatinib. This sort of variation is difficult to 

spot in a high-throughput experiment and suggests that efficient procedures are needed to optimize dose 

ranges for specific compounds careful quality control of curve fitting. 
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A fourth source of inter-Center variation involved over-estimation of cell number in the presence 

of high doses of Dasatinib and Neratinib when we compared Centers that used imaging-based assays 

(Figure 3C). Above 1 µM, GR values were negative for both drugs denoting cell death, but cell counts at 

one LINCS Center implied purely cytostatic effects. Follow-up studies showed that the discrepancy 

arose from the use of image processing algorithms that included dead cells in the “viable cell count” and 

from over-counting the number of cells when the drugs induced frequent multi-nucleation(Roytta, Laine 

et al. 1987, Orth, Kohler et al. 2011). Observed differences in drug response across Centers could be 

recapitulated in a single laboratory using two different image processing routines and were also evident 

by visual inspection of the segmented images (Figure 3C,D). In retrospect, all Centers should have 

processed images in the same way, but such routines are often built into manufacturer’s proprietary 

software making identical image analysis dependent on transfer of primary data. Furthermore, this level 

of harmonization is impossible to achieve when replicating published results. This example 

demonstrates the importance of locking down all steps in the data processing pipeline from raw 

measurements to final parameter estimation, as well as a relatively subtle interplay between biological 

and technical sources of variability.  

Biological factors impacting repeatability 

Variables that can change the biology of drug response, such as media composition, incubation 

conditions, microenvironment, media volume, and cell density, have been discussed elsewhere(Hafner, 

Niepel et al. 2016, Haverty, Lin et al. 2016) and were controlled to the greatest extent possible in this 

study through standardization of reagents and the use of GR metrics. In a truly independent repeat of the 

current study, experimental variables such as these would need to be considered as additional 

confounders, because it is difficult to fully standardize a reagent as complex as tissue culture media. 

However, one Center performed a preliminary comparison of batches of horse serum, hydrocortisone, 

cholera toxin, and insulin and found that the effects on drug response were smaller than the sources of 

variation discussed above (data not shown). At the outset of the study, we had anticipated that the origin 
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of the MCF 10A isolate would be an important determinant of drug response. MCF 10A cells have been 

grown for many years, and karyotyping reveals differences among isolates(Soule, Maloney et al. 1990, 

Caruso, Reiners et al. 2001, Cowell, LaDuca et al. 2005, Kim, Yang et al. 2008, Zientek-Targosz, 

Kunnev et al. 2008, Marella, Malyavantham et al. 2009), which is why we distributed aliquots of a 

single isolate to all Centers. However, we detected very little variability in drug sensitivity when three 

different MCF 10A isolates were compared directly to each other and also to a histone H2B-mCherry-

tagged subclone of one of the isolates (Supplemental Figure 3). Variability among MCF 10A isolates 

assayed at Center 1 (including different sub-clones from the same master stock) was also smaller than 

what was observed when a single isolate was assayed at different Centers. However, in other settings, 

clonal variation is likely to have a much larger impact(Ramirez, Rajaram et al. 2016). 

The duration of drug exposure is not generally explored in in vitro studies, and instead 

researchers typically assay cells after a fixed time point after treatment. Here, we monitored the 

responses of MCF 10A cells to drugs in a live-cell experiment in which cell number was measured every 

two hours using an automated high-throughput microscope. We then quantified the response by 

calculating GR values over a 12 hour moving window (instantaneous GR values) and found that the 

effect of time and dose were substantial in some cases and varied with drug. For example, instantaneous 

GR values for cells exposed to Etoposide were nearly constant at all drug doses throughout a 50-hour 

assay period (Figure 4, top left plot), whereas instantaneous GR values for 0.1 µM of Neratinib varied 

from 0 to 1 over the same period (Figure 4, bottom left plot), with the highest variability at intermediate 

drug doses. As a consequence, GR dose-response curves and metrics derived from these curves, such as 

GR50 and GRmax, varied with time (Figure 4 and Supplemental Figure 4). The temporal dependence of 

drug response is likely to reflect biological adaptation, drug export, and other factors important in 

understanding drug mechanism of action(Fletcher, Haber et al. 2010, Muranen, Selfors et al. 2012, 

Hafner, Niepel et al. 2016, Harris, Frick et al. 2016, Fallahi-Sichani, Becker et al. 2017), factors which, 
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in a high-throughput assay, remain unexplored and can add to the difficulties in reproducing 

experimental results. 

Final results 

When the factors described above were taken into account to the greatest extent possible, we 

found that reproducibility of drug-response measurements across five LINCS Centers could be reduced 

to a standard deviation of about 2.4-fold (standard deviation value of log10(GR50) is ~0.38; see Figure 5). 

In the final dataset, one center still relied on manual compound dispensing because a robot was not 

available and a second center used CellTiter-Glo® assays rather than direct cell counting to estimate 

viable cell number. Despite such differences in procedure, which are typical of “real-world” conditions, 

inter-Center variability at the end of the study was dramatically lower than at the outset, while remaining 

about 5-fold higher than for biological repeats at a single center (Figure 1, fourth panel; 5A-B). 

Variability remained drug-dependent. For example, for Paclitaxel estimates of GRmax and Hill 

Coefficient (hGR) were variable, and GR50 and hGR values were variable for Palbociclib (Figure 5A-B). 

In contrast, for Neratinib, response was reproducibly measured (standard deviation for all metrics below 

0.17 with a single outlier).  

DISCUSSION 

In this study, we show that five geographically dispersed laboratories can, with effort, generate 

reasonably reproducible drug-response data in tissue culture cells. Inter-lab precision was three- to five-

fold lower than that achievable within a single laboratory, likely reflecting persistent differences in 

experimental procedure. This level of precision required some effort to achieve and, in our judgement, 

exceeds the norm for this class of experiments in the current literature (although this is not easy to 

prove). Further improvements in inter-center precision and reproducibility would necessitate the 

implementation of identical and automated compound handling, pipetting, and cell counting procedures 

in all laboratories. This was not achieved, because of the expense of acquiring the necessary instrument 
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and a belief—belied by subsequent experiments—that counting cells is such a simple procedure that 

different assays can be substituted for each other without consequence. 

At the outset of the study we had hoped to identify the specific biological, experimental, and 

computational factors that had the largest impact on irreproducibility across individual Centers and 

thereby generate a ranked list of the most important factors in ensuring reliable data collection. 

However, we discovered that in many cases irreproducibility was itself irreproducible and that the 

technical factors responsible for specific outlier datapoints were difficult to diagnose. We therefore 

undertook a systematic study of the assay itself, with an eye to identifying those variables with the 

greatest impact on data quality. We found that irreproducibility most commonly arises from unexpected 

interplay between experimental protocol and true biological variability. For example, estimating cell 

number from ATP levels using the CellTiter-Glo® assay produces very similar results as direct counting 

of cells in the case of Neratinib, but this is not true when cells are exposed to Etoposide or Palbociclib 

(Figure 2). The discrepancy most likely arises because ATP levels in lysates of drug-treated cells vary 

for reasons other than changes in cell number, including changes in cell size and metabolism. This 

observation has important implications for the design of experiments in which diverse compounds are 

screened. We have previously shown that the density at which cells are assayed also has a dramatic 

effect on drug response(Hafner, Niepel et al. 2016), but this too is context dependent. For some cell line-

drug pairs, density has little or no effect, whereas for other pairs it increases drug sensitivity, and for yet 

others it decreases sensitivity.  

Preliminary studies suggest that such context dependence reflects real changes in the underlying 

biology and not flaws in assay methodology itself. For example, cell density directly impacts media 

conditioning and the strength of autocrine signaling, which affects response to some drugs but not 

others(Yonesaka, Zejnullahu et al. 2008, Wilson, Fridlyand et al. 2012). As a consequence, changes in 

protocol that might seem unimportant based on a control study in one cell type or biological setting 

might, nonetheless, substantially affect results obtained with other cells or growth conditions. From this 
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we conclude that there is no substitute for empirical analysis of even a seemingly simple assay. In 

general, the variables with the greatest effect on measurement of drug response differed from what we 

expected a priori. For example, isolate-to-isolate differences (evident in karyotypic changes) in 

MCF 10A cultures had less of an effect on drug response assays (Supplemental Figure 3) than the ways 

in which drugs and cells were plated into multi-well plates and counted (Figure 2D, 3). The only way to 

identify and control for such variation is to conduct comprehensive experiments aimed at empirically 

establishing the range of conditions over which data remain precise and exact for a significant number of 

cell lines and drugs used in a specific profiling effort. 

Data processing routines are as important for reproducibility as well-controlled 

experiments(Sandve, Nekrutenko et al. 2013). Data and data analysis routines can interact in multiple 

ways, some of which are clear in retrospect but not necessarily anticipated. For example, collecting 9-

point dose response curves generally represents good practice, but it is essential that the dose range 

effectively span the GR50 (the mid-point of the response) and account for the possibility of compound 

dose response curves (which is often ascribed to inhibition of different targets over different dose 

ranges). When this is not the case (as illustrated by Figure 3A), curve fitting is underdetermined and 

response metrics become unreliable. In many cases problems with dose range are not evident until an 

initial assay has been performed. Iterative design is straightforward in small scale studies, but 

substantially harder for large-scale screens; for a large dataset, data processing routines must be 

designed to automatically identify and flag problems with dose range. Another example involves image 

processing routines for automated cell counting: such routines must be optimized for cells that grow and 

respond to drugs in different ways (Figure 3C,D) and must be tested for performance at high and low 

cell densities. Processing pipelines for the type of data collected in this study are much less developed 

than the pipelines commonly used for genomics data(Lam, Clark et al. 2011, Bao, Huang et al. 2014, 

Ashley 2016), but much can be learned from this comparison. For example, computational platforms 

with provenance such as Galaxy(Goecks, Nekrutenko et al. 2010), Sage Bionetworks’ Synapse(Omberg, 
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Ellrott et al. 2013), or Cancer Genomics Clouds, have been developed to support data sharing, 

reproducible analyses, and transparent pipelines, with a primary focus on genomics data. Galaxy also 

provides a shared platform on which to execute workflows, which serves to eliminate compute 

environment differences. With sufficient investment in pipeline development it should be possible to 

adapt such solutions to a wider range of assay types. Image processing algorithms present a unique 

challenge in that they are frequently proprietary software linked to a specific data acquisition 

microscope, which complicates common analysis across laboratories; open-source image analysis 

platforms are therefore preferable in principle(Carpenter, Jones et al. 2006). In the specific case of drug 

dose-response assays described here, we have developed an online tool at http://GRcalculator.org along 

with open source scripts for download(Clark, Hafner et al. 2017).  

The elements of a workflow for reproducible collection of dose-response data are fairly simple: 

(i) Standardization of reagents including obtaining cell lines directly from repositories such as the 

ATCC, performing mass spectrometry-based quality control of small molecule drugs, and tracking lot 

numbers for all media additives; (ii) Standardized data processing starting with raw data and metadata 

through to reporting of final results; and (iii) Use of automation to improve reliability and enable 

experimental designs too complex or labor intensive for humans to execute reliably. The first two points 

are obvious, but not trivial to implement, because laboratories are not all equipped the same way and 

some data processing routines are embedded in a non-obvious way in instrument software. A major 

benefit of automation is that it makes random plate layouts feasible, thereby changing systematic edge 

effects into random error that has a reduced impact on the dose-response measures. Our data argue that 

small and relatively inexpensive bench-top dispensing and washing robots have an important role in the 

performance of reproducible cell-based assays.  

The primary contribution of the current study is to show that future execution of reproducible 

drug dose-response assays in different cell types will require systematic experimentation aimed at 

establishing the robustness of assays over a full range biological settings and cell types. Such robustness 
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is distinct from conventional measures of assay performance such as precision or repeatability in a 

single biological setting (Figure 5C). Testing of this type is not routinely performed for the simple 

reason that establishing and maintaining robust and reproducible assays is time consuming and 

expensive: we estimate that reproducibility adds ~20% to the total cost of a large-scale study such as 

drug-response experiments in panels of cell lines(AlQuraishi and Sorger 2016). Iterative experimental 

design is also essential, even though several leading biomedical scientists have argued that this is not 

feasible for large-scale studies.(Harris 2017) More generally, despite a push for adherence to the FAIR 

principles(Wilkinson, Dumontier et al. 2016) there is currently no consensus that the necessary 

investment is worthwhile, nor do incentives exist in the publication or funding processes for individual 

research scientists to meet FAIR standards(AlQuraishi and Sorger 2016, Goodspeed, Heiser et al. 2016). 

In developing these incentives, we must recognize that reproducible research is a public good whose 

costs are borne by individual investigators and whose benefits are conferred to the community as a 

whole.  

A question raised by our analysis is whether, given their variability and context-dependence, 

drug response assays performed in vitro are useful for understanding drug response in other settings, 

especially in human patients(Wilding and Bodmer 2014). Concern about the translatability of in vitro 

experiments is long-standing, but we think the current work provides grounds for optimism rather than 

additional worry. Simply put, if in vitro data cannot be reproduced from one laboratory to the next, then 

it is no wonder that they cannot easily be reproduced in humans; conversely, paying greater attention to 

accurate and reproducible in vitro data is likely to improve translation. Moreover, many of the factors 

that appear to represent irreproducibility in fact arise from biologically meaningful variation. This 

includes the time-dependence of drug response, the impact of non-genetic heterogeneity at a single-cell 

level, and the influence of growth conditions and environmental factors(Cohen, Geva-Zatorsky et al. 

2008, Yonesaka, Zejnullahu et al. 2008, Loewer and Lahav 2011, Muranen, Selfors et al. 2012, Wilson, 

Fridlyand et al. 2012). The simple assays of drug response in current use are unable to correct for such 
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variability, and the problem is made worse by “kit-based science” in which technical validation of 

assays is left to vendors. However, if the challenge of understanding biological variability at a 

mechanistic level is embraced, it seems likely that we will improve our ability to conduct in vitro assays 

reproducibly and to apply data obtained in cell lines to human patients.  

 

MATERIAL AND METHODS 

Cell lines and drugs 

Three isolates of MCF 10A, here referred to as MCF 10A-GM, MCF 10A-OHSU, and 

MCF 10A-HMS, were sourced independently at three different times from the ATCC. MCF 10A-H2B-

mCherry cells were created by inserting an H2B-mCherry expression cassette into the AAVS1 safe 

harbor genomic locus of MCF 10A-HMS using CRISPR/Cas9(Hafner, Niepel et al. 2016). All lines 

were cultured in DMEM/F12 base media (Invitrogen #11330-032) supplemented with 5% horse serum 

(Sigma-Aldrich #H1138), 0.5 μg/mL hydrocortisone (Sigma # H-4001), 20 ng/mL rhEGF (R&D 

Systems #236-EG), 10 μg/mL insulin (Sigma #I9278), 100 ng/mL cholera toxin (Sigma-Aldrich 

#C8052), and 100 units/mL penicillin and 100 μg/mL streptomycin (Invitrogen #15140148 or 

#15140122 or other sources) as described previously(Debnath, Muthuswamy et al. 2003). Base media, 

horse serum, hydrocortisone, rhEGF, insulin, and cholera toxin where purchased by the MEP-LINCS 

Center and distributed to the remaining experimental sites. MCF 10A-GM was expanded by Gordon 

Mills at MD Anderson Cancer Center and distributed to all experimental sites. Cell identity was 

confirmed at individual experimental sites by short tandem repeat (STR) profiling, and the cells were 

found to be free of mycoplasma prior to performing experiments. 

Drugs were obtained from commercial vendors by HMS LINCS, tested for identity and purity in 

house as described in detail in the drug collection section of the HMS LINCS Database 

(http://lincs.hms.harvard.edu/db/sm/), and distributed as 10 mM stock solutions dissolved in DMSO to 

all experimental sites. 
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Drug response experiments and data analysis 

The experimental and computational protocols to measure drug response are described in detail 

in two prior publications(Hafner, Niepel et al. 2017, Niepel, Hafner et al. 2017). The following protocol 

was suggested for this study: cells were plated at 750 cells per well in 60 µL of media in 384-well plates 

using automated plate fillers and incubated for 24 h prior to drug addition. Drugs were added at the 

indicated doses with a D300 Digital Dispenser (Hewlett-Packard), and cells were further incubated for 

72 h. At the time of drug addition and at the endpoint of the experiment cells were staining with Hoechst 

and LIVE/DEAD™ Fixable Red Dead Cell Stain (ThermoFisher Scientific) and cell numbers were 

determined by imaging as described(Hafner, Niepel et al. 2016, Niepel, Hafner et al. 2017) or by the 

CellTiter-Glo® assay (Promega). Some details of the experimental protocol differed across Centers and 

over time, e.g. manually dispensing of drugs or use of 96-well plates. 

For live-cell experiments with MCF 10A-H2B-mCherry, cell counts were performed by imaging 

plates in an 2 hr interval over the course of 96 hours (only first 50 hours shown)(Hafner, Niepel et al. 

2016, Niepel, Hafner et al. 2017). Data analysis was performed as described previously (Hafner, Niepel 

et al. 2016, Hafner, Niepel et al. 2017).  

Irregularities in growth across microtiter plates was performed by plating MCF 10A cells at 

750 cells per well in 60 µL of media in 384-well plates using automated plate fillers and determining 

cell numbers after 96 h through imaging as described(Hafner, Niepel et al. 2016, Niepel, Hafner et al. 

2017). 

. 
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FIGURE LEGENDS  

Figure 1: Results from harmonized drug responses. 

Dose-response curves of MCF 10A treated with the MEK1/2 inhibitor Trametinib showing technical 

replicates (duplicate data collected on the same multi-well plate), biological replicates (averaged data for 

repeats collected on different days in the same laboratory), and independent experiments (averages of 

one or more biological replicates performed by different LINCS Centers, where circles represent data 

from image-based assays and triangles from CellTiter-Glo® assays). Dotted black lines show the 

averages across all technical replicates, biological replicates, and independent replicates, respectively, in 

the three plots. 

 
Figure 2: Experimental causes of variability. 

(A) Dose-response curves of MCF 10A cells treated with four different drugs measured by image-based 

cell count or ATP content (CellTiter-Glo®) on the same day by the HMS LINCS Center, which is 
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equivalent to technical replicates. (B) Computed GR50 and GRmax values corresponding to the plots in A. 

(C) Representative images of MCF 10A cells treated with vehicle control (DMSO) or 1 µM Palbociclib. 

(D) Uneven growth of MCF 10A cells in a 384-well plate over the course of three days that 

demonstrates the presence of edge effects. In the heatmap, color represents the number of cells per well, 

as assessed by imaging. Plots show deviation from mean number (for the full plate based on the distance 

from the edge, by column, or by row. Error bars represent the standard deviation. 

 
Figure 3: Technical causes of variability. 

(A) Dose-response curves of MCF 10A cells treated with Trametinib or Dasatinib fitted to either the 

extended dose range (up to 1 µM and 10 μM, respectively) or omitting the last order of magnitude. (B) 

Computed GR50, GRmax, and GRinf values corresponding to the plots in A. (C) Results of cell counting 

for MCF 10A cells treated with Dasatinib or Neratinib using two different image processing algorithms 

(denoted as A (red) and B (blue)) included in the Columbus image analysis software package. (D) 

Number of dead cells (LIVE/DEAD™ Fixable Red Dead Cell Stain positive) and nuclei (Hoechst 

positive) counted for MCF 10A cells treated with 3.16 µM Dasatinib or 1 µM Neratinib based on the 

two different algorithms (corresponding to the plots in C).  

 
Figure 4: Changes in drug response related to the underlying biology. 

Left panels: Inhibition of MCF 10A growth (12-hour instantaneous GR values) measured in a time-

lapse, live-cell experiment involving treatment with multiple doses of Etoposide (top) or Neratinib 

(bottom). Different colors indicated different drug concentrations ranging from 1 nM (yellow) to 10 µM 

(blue). Middle panels: Dose-response curves derived from 12-hour GR values computed at 24 (red) and 

48 hours (blue) across three biological repeats. Right Panels: Computed GR50 and GRmax values at 24 

and 48 hr. 
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Figure 5: Variability of the response measures across Centers. 

(A) Dose-response curves of MCF 10A cells treated with eight drugs measured independently by the 

five LINCS Centers (circles represent data from image-based assays and triangles from CellTiter-Glo® 

assays). Dotted black lines show the dose-response curve when all independent replicates were 

averaged. (B) GR metrics describing the sensitivity of MCF 10A cells to eight drugs measured 

independently by five LINCS Centers (circles represent data from image-based assays and triangles 

from CellTiter-Glo® assays). The black line shows the mean sensitivity across all Centers, and the gray 

area shows the standard error of the mean. (C) Differences in repeatability/precision vs. biological 

sensitivity/stability/robustness. 

 

Supplemental Figure 1: GR dose-response curve and metrics 

Schematic of a dose-response curve under the GR model and the source of the derived metrics.  

 

Supplemental Figure 2: GR metrics describing the initial experiments to assess sensitivity of 

MCF10A cells to eight drugs measured at 3 Centers. Center 3 and Center 4 represent the final results 

provided by each Center (as in Fig. 5A). Preliminary 1 represents initial experiments run by Center 3, 

which showed poor agreement with data from the other two Centers (see table to pipeline details). The 

disparate results reflect in part differences in readout (CTG vs. Imaging) for Etoposide, Vorinostat, 

Alpelisib, and Palbociclib. Preliminary 2 represents a coordinated effort by Centers 3 and 4: daughter 

drug plates used by Center 3 in Preliminary 1 experiments were shipped to Center 4 for cell culture. For 

many drugs, there is good agreement between Preliminary 1 and Preliminary 2, indicating consistency 

between cell culturing. The consistent discrepancy in responses to Trametinib between Preliminary 1-

Preliminary 2 studies and Center 3-Center 4 studies indicate errors in construction of the drug dilution 

series. 
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Supplemental Figure 3: GR metrics across MCF 10A isolates 

GR metrics describing the sensitivity of four different MCF 10A cell isolates to eight drugs measured 

independently at the HMS LINCS center. The black line shows the mean sensitivity measured across all 

isolates, and the gray box shows the standard error of the mean. 

 
Supplemental Figure 4: Instantaneous GR metrics  

Instantaneous GRmax (A) and GR50 (B) values in MCF 10A cells treated with Etoposide (left) and 

Neratinib (right) over the course of 24 hr for three biological repeats. 

 
ADDITIONAL MATERIAL 

Supplemental Data 1: 

Final drug-response data generated by all LINCS Centers (Figure 5). 

Supplemental Data 2: 

Data generated by the HMS LINCS Center during follow-up experiments (Figures 2-4 and 

Supplemental Figure 3-4). 
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