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Abstract

Most emerging human infectious diseases have an animal origin. Yet, while

zoonotic diseases originate from a primary reservoir, most theoretical studies

have principally focused on single-host processes, either exclusively humans or

exclusively animals, without considering the importance of animal to human

transmission for understanding the dynamics of emerging infectious diseases.

Here we aim to investigate the importance of spillover transmission for explain-

ing the number and the size of outbreaks. We propose a simple stochastic

Susceptible-Infected-Recovered model with a recurrent infection of an inciden-

tal host from a reservoir (e.g. humans by a zoonotic species), considering two

modes of transmission, (1) animal-to-human and (2) human-to-human. The

model assumes that (i) epidemiological processes are faster than other processes

such as demographics or pathogen evolution and (ii) that an epidemic occurs

until there are no susceptible individuals left. The results show that during an

epidemic, even when the pathogens are barely contagious, multiple outbreaks

are observed due to spillover transmission. Overall, the findings demonstrate

that the only consideration of direct transmission between individuals is not

sufficient to explain the dynamics of zoonotic pathogens in an incidental host.
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1. Introduction

Recent decades have seen a surge of emerging infectious diseases (EIDs),

with up to forty new diseases recorded since the 1970s [1]. Sixty percent of

emerging human infectious diseases have an animal origin [1, 2]. The World

Health Organization defines zoonotic pathogens as “pathogens that are natu-5

rally transmitted to humans via vertebrate animals”. The epidemics caused by

EIDs impact the societal and economical equilibria of countries by increasing un-

expected deaths, the need for health care infrastructures and by interfering with

travel [3]. Moreover, the risk of EIDs being transmitted to humans from wildlife

is increasing because of the recent growth and geographic expansion of human10

populations, climate change and deforestation, which all increase the number of

contacts between humans and potential new pathogens [1, 4, 5]. Given this, it

is crucially important to understand how infections spread from reservoir, i.e.

by spillover transmission.

There is numerous empirical evidence that the epidemiological dynamics of15

infectious diseases is highly dependent on the spillover transmission from the

reservoir (for the reservoir definition see Table 1). The start of an outbreak is

promoted by a primary contact between the reservoir and the incidental host

(i.e. host that becomes infected but is not part of the reservoir) leading to the

potential transmission of the infection in the host population. Moreover, multi-20

ple outbreaks are commonly observed during an epidemic of zoonotic pathogens

in human population, for instance in the case of the epidemic of the Nipah

Virus between 2001 and 2007 [6]. With regards to the Ebola virus, some twenty

outbreaks have been recorded since the discovery of the virus in 1976 [7]. This

number of outbreaks undoubtedly underestimates the total number of emer-25

gences because not all emergences necessarily lead to the spread of the infection
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from an animal reservoir to the host population [8]. While the reservoir has

an important role for causing the emergence of outbreaks, the role of spillover

transmission on the incidental epidemiological dynamics is rarely discussed.

Definitions of a reservoir Authors Refs

“any animal, person, plant, soil, substance or combination
of any of these in which the infectious agent normally lives”

CDC [9]

“all hosts, incidental or not, that contribute to the trans-
mission to the target host (i.e. the population of interest)
in which the pathogen can be permanently maintained”

Haydon et al. [10]

“an ecologic system in which an infectious agent survives
indefinitely”

Ashford [11, 12]

Table 1: The reservoir is mostly used as defined by the Centre for Disease Control and pre-
vention (CDC). Two other definitions have been proposed to clarify and complete the notion
of reservoir in the case of zoonotic pathogens. On the one hand, Haydon et al. (2002) define
the reservoir from a practical point of view in order to take into account all hosts epidemi-
ologically connected to the host of interest (i.e. target host), to implement better control
strategies. On the other hand, Ashford (1997) establishes a more generalizable definition: for
a given pathogen there is a single reservoir. We will use Ashford’s definition, i.e. a model
where a pathogen is persistent in the environment of the incidental host.

Theoretically, pathogen spillover is often neglected and it is generaly as-30

sumed that the epidemiological dynamics of outbreaks is driven by the ability

of the pathogen to propagate within hosts. For instance, a classification scheme

for pathogens has been proposed by Wolfe et al. (2007), including five evolu-

tionary stages in which the pathogen may evolve ranging from exclusive animal

infection (Stage I) to exclusive human infection (Stage V) (Figure 1) [13]. The35

intermediate stages are those found for the zoonotic pathogens (Stages II-IV).

Lloyd-Smith et al. (2009), propose to enhance the classification scheme by

differentiating the Stages II-IV by ability of pathogens to propagate between

individuals in the incidental host (i.e. as a function of the basic reproductive

ratio R0): the non-contagious pathogens (R0 = 0, Stage II), pathogens barely40

contagious inducing stuttering chains of transmission (0 < R0 < 1, Stage III)

and contagious pathogens inducing large outbreaks (R0 > 1, Stage IV) [14].

However, the role of the reservoir is not clearly defined, and spillover effects on

the epidemiological dynamics are not discussed.
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Stage I Stage VStage IVStage II Stage III

Ex : SmallpoxEx : Plasmodium 
Vinckeia

Ex : rabies Ex : MERS Ex : Ebola virus

Figure 1: Representation of the evolutionnary stages proposed by Wolfe et al. (2007) in which
a pathogen may evolve from infecting only animals to infecting only humans. Each stage
corresponds to a specific epidemiological dynamics in the incidental host. Stage II corresponds
to few spillovers from animals (e.g. bats) to humans with no possible transmission between
humans. Stage III corresponds to few stuttering chains of transmission between humans that
go extinct (no outbreaks). Stage IV corresponds to large outbreaks in human population but
the pathogen cannot be maintained without the reservoir.

Only a few models have investigated the dynamics of EIDs by taking into ac-45

count explicitly the transmission from the reservoir to the incidental host. Lloyd-

Smith et al. (2009) have analysed 442 modelling studies of zoonotic pathogens

and concluded that models incorporating spillover transmission are dismayingly

rare [14]. More recent models aimed at investigating the dynamics of EIDs by

taking into account the spread of the pathogen using multi-hosts processes but50

disregarding the persistence of the pathogen in the reservoir [15], or by focus-

ing on the dynamics and conditions of persistence of the pathogen between two

populations [16]. Others have considered an endemic reservoir but those models

are disease-specific and do not generate generalizable dynamics [17, 18]. More

recently, Singh and Myers (2014) developed a Susceptible-Infected-Recovered55

(SIR) stochastic model coupled with a constant force of infection. Such model

is mostly interested in the effect of population size and its impact on the size

of an outbreak [19]. However, this approach does not allow teasing apart the
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contribution of incidental host transmission from that of the transmission from

the reservoir in modulating the dynamics of zoonotic pathogens.60

In this paper, we aim to provide general insights into the dynamics of a

zoonotic pathogen (i.e. pathogens classified in stages II-IV) emerging from a

reservoir and its ability to propagate in an incidental host. To do so, we de-

veloped a theoretical model that can dissociate the effect of between-host (i.e.

direct) transmission from the effect of spillover (i.e. reservoir) transmission. A65

multi-hosts process with a reservoir and an incidental host are considered. The

epidemiological processes are stochastic, which is particularly relevant in the

case of transmission from the reservoir and more realistic. The model makes

a number of assumptions. First, the epidemiological processes are much faster

than the demographic processes. Second, the pathogen in the reservoir is consid-70

ered as endemic and might contaminate recurrently the incidental host. Third,

an individual cannot become susceptible after having been infected. As a con-

sequence, the total number of susceptible individuals in the incidental host de-

creases during the epidemic. This is what is expected for an epidemic spreading

locally during a short period of time (at the scale of a few thousands individuals75

during weeks or months, depending on the disease and populations considered).

We then harness the model to predict the effects of both spillover transmission

and direct transmission on the number and the size of outbreaks. Outbreaks

occur when the number of cases of disease increases above what would normally

be expected. We show that the recurrent emergence of the pathogen from the80

reservoir in the incidental host is as important as the transmission between in-

dividuals of the incidental host. We discuss the implications of these results for

the classification of pathogens proposed by Lloyd-Smith et al. (2009).

2. Model

A Stochastic Susceptible-Infected-Recovered (SIR) compartmental transmis-85

sion model [20] with recurrent introduction of the infection into an incidental

host by a reservoir is considered (Figure 2). Our goal here is not to study a
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Figure 2: Representation of the stochastic model with transition rates. A reservoir (A) has
been added to a classical SIR model where the pathogen is persistent. Individuals are char-
acterized by their epidemiological status in the incidental host (S: suceptible; I: infected;
R: recovered). A susceptible individual becomes infected through the transmission by con-
tact at rate βSI or through the reservoir at rate τS. An infected individual recovers at
rate γ. Stochastic simulations are performed with the following values: the transmission by
contact, expressed as the basic reproductive ratio, 0 < R0 < 10, the spillover transmission,
10−1 < τ < 10−10 and the recovery rate γ = 0.1.

disease in particular but to provide general insights of the reservoir effect on

the epidemiological dynamics of the incidental host. The infection is assumed

to propagate quickly relatively to other processes such as pathogen evolution90

and demographic processes. The reservoir is defined as a compartment where

the pathogen is persistently maintained, this pathogen is then considered as

endemic. The population is fully mixed. An individual can be infected through

two ways of transmission, from the reservoir by the spillover transmission and

by direct contact between individuals. We neglect reverse infection from the95

incidental host to the reservoir.

The incidental host is composed of N individuals. The infection can spillover

by contact between the reservoir and the incidental host at rate τS where S is

the number of susceptible individuals and τ is the rate at which an individual

becomes infected from the reservoir. In the incidental host, the infection can100

propagate by direct contact at rate βSI where I is the number of infected in-

dividuals and β is the individual rate of infection transmission. An infected

individual can recover at rate γ. The direct transmission is expressed in terms
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of the basic reproductive ratio of the pathogen, R0, which is widely used in

epidemiology. R0 corresponds to the average number of secondary infections105

produced by an infected individual in an otherwise susceptible population. The

interest of this ratio is mostly the notion of threshold: in a deterministic model,

for a pathogen to invade the population, R0 must be larger than 1 in the absence

of reservoir. In a stochastic model, the higher the R0 the higher the probability

for the pathogen to invade the population. In a SIR model, the basic reproduc-110

tive ratio R0 equals to βN
γ . Individuals in the recovered compartment do not

contribute anymore to the transmission process. Since we assume that demo-

graphic processes are slower than epidemic processes, the number of susceptible

individuals decreases during the epidemic due to the consumption of susceptibles

by the infection until the extinction of the population.115

To analyse the dynamics in the incidental host, three statistics will be studied

(i) the mean number of outbreaks, (ii) the mean size of the recurrent outbreaks

during an epidemic and (iii) the mean size of the largest outbreak occurring

during an epidemic. We consider the appearance of an outbreak when the

incidence of the infection exceeds the threshold c and define the maximum size120

of an outbreak as the largest number of infected individuals during the largest

outbreak.

2.1. Analysis of the model

Stochastic simulations. We performed stochastic individual-based simulations

of the epidemics with spillover transmission, using rates as presented in Figure 2,125

10 000 simulations are performed for each parameter set. The incidental host

is initially (t = 0) composed of 1000 susceptible individuals (N = S = 1000).

The infection is considered as endemic in the reservoir. Simulations are stopped

when there are no susceptible individual anymore. We define an outbreak as an

excursion (i.e. the stochastic path followed by the population between the first130

infection to the extinction of the epidemic) during which the number of infected

individuals exceeds or equals to the epidemiological threshold c (c = 5 in the

simulations).
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Approximation by a branching process. The epidemiological model with recur-

rent introduction of the infection into an incidental host by a reservoir can be135

approximated by a branching process with immigration from the reservoir to

the incidental host at the beginning of the infectious process (thus assuming

that individual “birth and death rates of infected individuals” are constant dur-

ing the starting phase of an outbreak). The individual birth and death rates

are respectively βS, the transmission rate and γ, the recovery rate and the140

immigration rate corresponds to the spillover rate τN at the beginning of the

infection. In other words we assume that the number of susceptibles is N to

study the beginning of the infection, which is a good approximation as long as

few individuals have been infected. We distinguish between two regimes in the

incidental host, the subcritical regime when R0 < 1 and the supercritical regime145

when R0 > 1. We suppose that at time t = 0 a single individual is infected by

the spillover transmission.

3. Results

3.1. The epidemiological dynamics in the incidental host

As illustrated in Figure 3, three patterns are observed (i) a stuttering chain of150

transmission that goes extinct, i.e. infection spreads inefficiently, (corresponding

to Stage II in Wolfe’s classification, see Figure 1), (ii) a large outbreak and few

stuttering chains of transmission (corresponding to Stage III, see Figure 1) and

(iii) a single large outbreak consuming a large number of susceptible individuals

(corresponding to Stage IV see Figure 1).155

Figure 4 shows the roles of R0 and τ in the occurrence of the patterns. Stut-

tering chains of transmission occur when the pathogen is barely contagious be-

tween individuals (small R0) and when the recurrent emergence of the pathogen

(τ) is low. At the opposite, when the pathogen is highly contagious (large R0)

or when the spillover transmission is high (τ), only one large outbreak is ob-160

served. For intermediate values, both dynamics (a large outbreak and stuttering

chains of transmission) are observed. The dynamics observed in the three stages

8
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Figure 3: Three examples of epidemiological dynamics corresponding to the three Stages II, III
and IV respectively with low values of both direct and spillover transmissions (R0 = 0.2 and
τ = 10−7), intermediate values of direct or spillover transmission (R0 = 1.5 and τ = 10−4),
high value of direct or spillover transmission (R0 = 2 and τ = 10−1).

depend both of the value of the direct transmission (R0) and the effect of the

reservoir (τ).

3.2. What is the effect of the direct transmission on the number of outbreaks165

when the effect of the reservoir is low?

3.2.1. Case of a barely contagious pathogen (R0 < 1):

We aim at approximating the mean number of outbreaks in the case where

the spillover transmission rate τ and the reproductive number R0 are small

(subcritical case corresponding to R0 < 1). The method of approximation is

the following: let us denote by Si the number of susceptible individuals at the

beginning of the i-th excursion. During the i-th excursion, we set this number of

susceptibles to its initial value Si, and consider that the rate of new infections is

βISi. We thus obtain a branching process with individual birth (infection) rate

βSi and individual death (recovery) rate γ. When there is no more infected

individuals, we compute the mean number of recovered individuals produced

by this branching process excursion, denoted by E[K(Si, β, γ)], and make the

approximation that

Si+1 = Si − E[K(Si, β, γ)], (1)

9
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Figure 4: The general epidemiological dynamics is depicted as a function of the direct trans-
mission (R0) and the spillover transmission (τ). The epidemiological dynamics of stochastic
simulations are classified following the stages described by Wolfe et al. (2007), Stage II: stut-
tering chains of transmission (i.e. less than one outbreak), Stage III: one large outbreak and
stuttering chains of transmission (i.e. more than one outbreak) and Stage IV: a single large
outbreak consuming a large number of susceptible individuals.

where E[K(Si, β, γ)] can be computed and equals (see Appendix A):

E[K(Si, β, γ)] =
γ

γ + βSi

∞∑
k=0

(2k)!

(k!)2

(
γβSi

(γ + βSi)2

)k
. (2)

In other words, the initial number of susceptible individuals for the i + 1-th

excursion is the initial number of susceptible individuals for the i-th excursion

minus the mean number of recovered individuals produced during the i-th ex-

cursion under our branching process approximation. We repeat the procedure

for the i+ 1-th excursion, and so on, until k satisfies Sk > 0 and Sk+1 ≤ 0 (no

susceptible anymore). In order to be considered as an outbreak, an excursion

has to exceed c individuals, where we recall that c is the epidemiological thresh-

old. Under our branching process approximation, the probability for the i-th

excursion to reach the epidemiological threshold (see Appendix A) is:

P (Si, β, γ) =
(γ/βSi)− 1

(γ/βSi)c − 1
. (3)
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As a consequence, our approximation of the mean number of outbreaks (E[O(N, β, γ)])

reads:

E[O(N, β, γ)] =
k∑
i=0

P (Si, β, γ), (4)

where S1 = N , and the Si’s are computed as described in (1).

When the spillover transmission is fixed and small, the mean number of out-

breaks computed with the branching process is a good approximation compared170

to numerical simulations (Figure 5). The spillover transmission added in our

model introduces the infection recurrently and allows the infection to spread

even for a pathogen barely contagious (R0 < 1). According to Figure 5 when

R0 < 1 the number of outbreaks increases when the direct transmission between

individuals increases. Indeed, the higher the transmission, the higher the proba-175

bility for the excursions to reach the epidemiological threshold (c). The number

of outbreaks can be high because when the direct transmission is smaller than

1, the infection spreads inefficiently and does not consume a large number of

susceptibles allowing the next excursion to exceed the epidemiogical threshold.

Figure 6 shows that the number of outbreaks is a non-monotonic function of180

the direct transmission (R0) and the spillover transmission (τ). For intermediate

and low values of spillover transmission (10−6 < τ < 10−4), the number of

outbreaks increases until R0 ∼ 1 then decreases. Moreover, we observed an

increasing number of outbreaks with τ when the pathogen is barely contagious

until τ is intermediate then decreases when τ becomes large (τ > 10−3).185

3.2.2. Case of a contagious pathogen R0 > 1:

The supercritical case (R0 > 1) is now considered and the spillover trans-

mission rate (τ) is still supposed small.

In this case, two different types of excursions occur in the incidental host:

(i) a large outbreak which consumes, with a great probability, a large propor-

tion of susceptible individuals and (ii) multiple excursions before and after the

large outbreak. We note Obefore(N, β, γ) and Oafter(N, β, γ) the number of

outbreaks occurring respectively before and after the large outbreak. Because

11
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Figure 5: The number of outbreaks is evaluated when the spillover transmission τ is small. For
the numerical simulations, τ = 10−10 has been chosen. The orange and black dotted curves
represent respectively the numerical simulations and the branching process approximation.

R0 > 1, the probability to have one large outbreak is high. Hence we make

the approximation that one large outbreak occurs during the epidemic, and the

total number of outbreaks (Ototal(N, β, γ)) can be approximated by:

Ototal(N, β, γ) = Obefore(N, β, γ) + 1 +Oafter(N, β, γ). (5)

To be part of outbreaks occurring before the large one, an excursion has to

satisfy two conditions (i) to have a size higher than the epidemiological treshold

c, and (ii) to be of a size not too large otherwise it would correspond to the large

outbreak. To be more precise, this condition will correspond to the fact that

the supercritical branching process used to approximate this excursion does not

go to infinity. As a consequence, Obefore(N, β, γ) can be approximated by (See

Appendix B):

Obefore(N, β, γ) =
1

(βN/γ)c − 1
. (6)

To approximate the number of outbreaks after the large outbreak (Oafter(N, β, γ)),

12
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we need to know how many susceptible individuals remain in the population.190

The number of susceptibles consumed before the large outbreak is negligible

with respect to the number of susceptibles consumed during the large outbreak.

Hence we can consider that the initial state of the large outbreak is N sus-

ceptibles, one infected individual and no recovered individual. The number of

susceptibles remaining after the large outbreak can be approximated with the195

deterministic SIR model.

The large outbreak stops when there is no infected individual anymore in

the incidental host. Using that
Ṡ

S
= −βI =

−β
γ
Ṙ, we get:

(N − γ

β
logN)− (S − γ

β
logS) = 0 (7)

which has one trivial solution (Si = N) and a non-trivial solution with no

explicit expression denoted Nafter(N, β, γ). After the large outbreak, the epi-

demiological threshold for the next excursions, denoted R0after
, is subcritical

(R0after
< 1) (see Appendix B) and the number of outbreaks after the large200

one, denoted Oafter, can be approximated using Equations (2) to (4).

The branching process approximations of the mean number of outbreaks in

the supercritical regime, depicted in Figure 5, are close to the mean number

of outbreaks found by numerical simulations when the recurrent infection from

the reservoir is small. The number of outbreaks decreases when the pathogen205

becomes highly contagious to reach one outbreak when R0 > 2.5. When the

infection is introduced in the incidental host by the spillover transmission, the

probability to reach the epidemiological threshold depends on the direct trans-

mission between individuals. When the direct transmission increases the infec-

tion spreads more efficiently consuming a large number of susceptible individuals210

allowing little or no other excursion to reach the epidemiological threshold and

producing only one outbreak when R0 > 2.5.
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Figure 6: The number of outbreaks as a function of the spillover transmission (10−6 < τ <
10−1). The direct transmission is equal to 0.4.

3.3. What is the effect of the reservoir on the number of outbreaks?

We now focus on the effect of the spillover transmission with a pathogen

barely contagious (R0 < 1) on the number of outbreaks. Because we consider215

the subcritical case (R0 < 1), the excursions are small and at the beginning

of the epidemiological dynamics, we make the approximation that the spillover

transmission rate is constant equal to τN , and the direct transmission rate

is equal to βNI. Using Equation (8) in Singh and Meyer (2014), we get the

mean number of infections by the reservoir (m) during an excursion under this220

branching process approximation [19]:

m =

(
1− βN

γ

)−τ/β
. (8)

We know that the probability for an excursion to reach the epidemiological

threshold c in order to be considered as an outbreak is (recall Equation (3) see

details in Appendix A):

pc =
γ/βN − 1

(γ/βN)c − 1
. (9)
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Because the subcritical case is considered, the probability pc is small, thus225

allowing the approximation of the probability that the excursion is not an out-

break (See Appendix C for details):

P(excursion is not an outbreak) ∼ (1− pc)m ∼ 1−mpc. (10)

We deduce the probability for the excursion to reach the threshold c, (See

Appendix C),

P(excursion is an outbreak) ∼ mpc =

(
1− βN

γ

)−τ/β
γ/βN − 1

(γ/βN)c − 1
. (11)

Now, we can study some limit cases of mpc to approximate the number of

outbreaks and understand the effect of the spillover transmission.

When mpc is small, then the probability to have an excursion reaching the230

epidemiological threshold c is small and the number of outbreaks will be small.

m small corresponds to a small number of spillovers from the reservoir. Accord-

ing to Figure 7a, when a small effect of spillover transmission (τ < 10−6) and a

small infection reproductive ratio (R0 < 0.8) are considered then the number of

outbreaks is small. In the case of a slightly higher direct transmission (R0 = 0.8)235

then each spillover has a non negligible probability to become an outbreak that

is why the number of outbreaks for a small spillover transmission rate is higher

compared to smaller direct transmission.

When mpc is large, then the probability that the excursion is not an out-

break, (1−pc)m, is small leading to a large outbreak consuming a large number240

of susceptible individuals. Then few outbreaks will emerge. In Figure 7a, when

τ is large (τ > 10−2), that is to say when a large number of spillover trans-

missions (m) arise, only one outbreak is observed because the large number of

spillovers prevents the outbreak from dying out.

When mpc is close to one, each excursion has a non negligible probability

to be an outbreak but the number of susceptible individuals consumed is small

enough to allow further outbreaks making possible the appearance of multiple
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outbreaks. We get an approximation of τ for which multiple outbreaks are

possible by solving mpc = 1:

τ =
β∣∣∣ ln(1− βN/γ)

∣∣∣
[

(c− 2) ln

(
γ

βN

)
+ ln

(
1−

(
βN

γ

)c)
− ln

(
1−

(
βN

γ

)2
)]

.

(12)
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(a) Number of outbreaks obtained in simulations.
The rectangle represents the results enlarged in the
figure b.
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(b) Maximal number of outbreaks
enlarged. The dots represent the
approximation of the value of the
spillover transmission, τ , for each
basic reproductive ratio.

Figure 7: Number of outbreaks as a function of the basic reproductive ratio (0.2 < R0 < 0.8)
and the recurrent emergence rate of a pathogen (Log10[10−10] < τ < Log10[10−1]) obtained
in simulations (lines) and approximations (dots).

Figure 7b presents the values of τ maximising the number of outbreaks245

and their estimations (dots) obtained by the branching process approximations.

First we notice that the branching process approximation gives good results, as

the ratio between the real values and their approximations varies between 0.6

and 1.5 for the tested parameter values. Depending on the basic reproductive

ratio R0 we either underestimate (R0 > 0.6) or overestimate (R0 6 0.4) the250

value of τ for which the number of outbreaks is maximal due to the choice

of approximating process we have done. Theses errors may come from two

approximations made which have variable impacts depending on the value of

the direct transmission rate R0:

• In our approximating process, we have considered that during an excur-255

sion the number of susceptible individuals is constant, whereas in reality it is

decreasing with time. As a consequence, to get the same number of outbreaks
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in the real process than in the approximation we have done, we need to choose

a higher parameter τ .

• We have considered, in our approximating branching process, that when260

a new individual is infected by the reservoir during an excursion then only one

individual is still infected. In reality, there is at least one infected individual

but there may be more. As a consequence, the spillover rate may be lower in

the real process than in the approximation.

3.4. What is the effect of the reservoir on the size of the largest outbreak?265

During the epidemic, a large outbreak can occur depending on the value

of the direct transmission (R0) and the spillover transmission (τ) and corre-

sponds to the largest number of infected individuals. To analyse the effect of

the recurrent emergence of the pathogen on the size of the largest outbreak, we

approximate the stochastic model by a SIR deterministic model with a spillover

transmission: 
Ṡ = −βSI − τS

İ = βSI + τS − γI

Ṙ = γI.

(13)

Since no explicit expression of the size of the outbreak can be obtained with

the deterministic model, we estimated it using numerical analyses.

Figure 8 shows that the number of infected individuals during the largest

outbreak increases with the direct transmission (R0) and the spillover transmis-

sion (τ). Furthermore, a large outbreak can even be observed for a pathogen270

barely contagious (R0 < 1) when the recurrent emergence of the pathogen is

high (τ > 10−3).

4. Discussion

Zoonotic pathogens constitute one of the most pressing concerns with re-

gards to future emerging diseases, but studies investigating the importance275

of the role of animal reservoirs for the epidemiological dynamics of infectious
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Figure 8: The number of infected individuals during the largest outbreak (Imax) is numeri-
cally found with the deterministic model (line) and the numerical simulations of the stochastic
model (dashed line). The situation is indicated for a reproductive ratio (R0) varying from 0
to 10 and with the recurrent emergence rate of the pathogen (τ) varying from 10−6 to 10−1.

diseases are lacking. Indeed, most theoretical works only consider pathogen

transmission between conspecifics for predicting disease epidemiology. Here, we

build a stochastic SIR model to consider the statistical process underlying a

spillover transmission. We draw on the model to predict the number and the280

size of outbreaks as a function of both the spillover transmission and the direct

transmission. The model shows that spillover transmission influences the epi-

demiological dynamics as much as the transmission by direct contact between

individuals. Three different dynamics are observed, ranging from the absence

of oubreaks to a single large outbreak; The findings have implications for (1)285

modelling the dynamics of EIDs, (2) understanding the occurrence of outbreaks

in the case of pathogens that are barely contagious and (3) control strategies.

The limitations of our approach are discussed.

In our results, the appearance of outbreaks depends on both the transmis-

sion from the reservoir and the direct transmission between individuals. Gen-290

erally, the occurrence of epidemics in humans is attributed to the ability of the

pathogen to propagate between individuals. In the case of a single-host process,

the notion of the basic reproductive ratio R0 seems sufficient to evaluate the

spread of the pathogen in a population entirely composed of susceptible indi-
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viduals. In EIDs, R0 is also used to gauge the risk of pandemics. In this way,295

Lloyd-Smith et al. (2009) delineate the three stages identified for a zoonotic

pathogen [13] by using the ability of the pathogen to spread between individu-

als. Each stage corresponds to a specific epidemiological dynamics ranging from

a non-contagious pathogen making an outbreak impossible (Stage II, R0 = 0)

to a barely contagious pathogen with few outbreaks and stuttering chains of300

transmission (Stage III, R0 < 1) to a contagious pathogen making a large out-

break possible (Stage IV, R0 > 1). The aim of the Wolfe’s classification is to

establish each stage in which a zoonotic pathogen may evolve to be adapted

to human transmission only, in order to point out pathogens at potential risk

of pandemics. However, by taking into account the recurrent emergence of305

the pathogen from the reservoir, the three dynamics that define the three stages

will depend on both the spillover transmission and the direct transmission of the

pathogen between individuals. The results suggest that in the case of pathogen

spilling recurrently over an incidental host, the direct transmission should not

be the only parameter to consider.310

The presence of a reservoir and its associated recurrent spillovers dramati-

cally impact the epidemiological dynamics of infectious diseases in the inciden-

tal host. Without transmission from the reservoir, the probability to have an

outbreak when the pathogen is barely contagious only depends on the direct

transmission between individuals, and the outbreak rapidly goes extinct. By315

contrast, the results show that the recurrent emergence of the pathogen from a

reservoir increases the probability to observe an outbreak. Spillover transmission

enhances the probability to both observe longer chains of transmission and reach

the epidemiological threshold (i.e. threshold from which an outbreak is consid-

ered) even for a pathogen barely contagious. Moreover, this coupling model320

(reservoir-human transmission) allows the appearance of multiple outbreaks de-

pending on both the ability of the pathogen to propagate in the population

and the transmission from the reservoir. Zoonotic pathogens such as MERS,

Ebola or Nipah are poorly transmitted between individuals [21, 17, 22, 6] yet

outbreaks of dozens/hundreds/thousands of infected individuals are observed.325
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We argue that, as suggested by our model, the human epidemic caused by EIDs

could be due to recurrent spillover from an animal reservoir.

In the case of zoonotic pathogens, it is of primary importance to distin-

guish between primary cases (i.e. individuals infected from the reservoir) and

secondary cases (i.e. individuals infected from another infected individual) to330

specify the control strategies to be implemented, in order to optimize the uti-

lization of the public health resources. According to the stochastic SIR model

coupled with a reservoir analysed here, the same dynamics can be observed de-

pending on the relative contribution of the transmission from the reservoir and

the direct transmission by contact with an infected individual (see Figure 4).335

For example, a large outbreak is observed either for a high spillover trans-

mission or for a high direct transmission. Empirically, it is generally difficult

to distinguish between these two pathways of transmission. Only in the case of

non-communicable diseases it is easily possible to measure the importance of the

recurrent transmission from the reservoir. Indeed, in this context, all infected340

individuals originate from a contact with the reservoir. It is the case for the

H7N9 virus where most human cases are due to a contact with infected poultry

and for which approximately 132 spillovers have been listed during the epidemic

of 2013 [23]. For pathogens that are able to propagate from one individual to

another, it is difficult to know the origin of the infection, which can be estab-345

lished according to patterns of contacts during the incubation period [6, 17].

Most often, if an infected individual has been in contact with another infected

individual in his recent past, direct transmission is considered as the likeliest

origin of the infection. However, both individuals might have shared the same

environment and thus might have been independently infected by the reservoir.350

This leads to overestimating the proportion of cases that result from person-to-

person transmission. Moreover, when the pathogen infects an individual and

the latter does not produce secondary cases then the detection of emergence is

unlikely. The proposed stochastic model makes it possible to understand the

effects of the infection from the reservoir or from direct transmission on the355

epidemiological dynamics in an incidental host when empirically this distinc-
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tion is difficult. Thereafter, the role of control strategies implemented could be

evaluated in order to determine the better strategies.

We have considered that the reservoir is a unique population in which the

pathogen can persist. The pathogen is then endemic in the reservoir and the360

reservoir has a constant force of infection on the incidental host. The reser-

voir can be seen as an ecological system comprising several species or popula-

tions in order to maintain the pathogen indefinitely [10]. For example, bat and

dromedary camel (Camelus Dromedarius) populations are involved in the per-

sistence of MERS-CoV and in the transmission to human populations [24]. In365

these cases, the assumptions of a constant force of infection can be valid because

the pathogen is endemic. However, the zoonotic pathogens can spill over multi-

ple incidental hosts and they can infect each other. In the case of the ebola virus,

which infects multiple incidental hosts such as apes, gorillas and monkeys [25],

the principal mode of contamination of the human population is non-human pri-370

mate populations. Moreover, the contact patterns between animals and humans

is one of the most important risk factors in the emergence of avian influenza

outbreaks [26]. These different epidemiological dynamics with transmission ei-

ther from the reservoir or from other incidental hosts can largely impact the

dynamics of infection observed in the human population, and the investigations375

of those effects can enhance our understanding of zoonotic pathogens dynamics.

In this paper, we have argued that the conventional way for modelling the

epidemiological dynamics of endemic pathogens in an incidental host should

be enhanced to account for spillover transmission in addition to conspecifics

transmission. We have shown that our stochastic SIR model with a reservoir380

produce similar dynamics that those found empirically (see the classification

scheme for pathogens from [13]). This model can be used to better understand

how the ways in which EIDs transmit impact disease dynamics.
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Appendices

In this appendix, we derive results on the branching process approximation385

stated in Section 3. The main idea of this approximation is the following: when

the epidemiological process is subcritical (R0 < 1), an excursion will modifiy

the state of a small number of individuals with respect to the total population

size. During the i-th excursions, the direct transmission rate βSI will stay close

to βSiI where Si denotes the number of susceptibles at the beginning of the390

i-th excursion. Hence, if we are interested in the infected population, the rate

βSiI can be seen as a constant individual birth rate βSi. Similarly, γI, which

is the rate at which an individual in the population recovers, can be interpreted

as a constant individual death rate γ in the population of infected individuals.

A. Number of outbreaks in the subcritical case (R0 < 1)395

In this section, we focus on the number of outbreaks when R0 < 1 and when

the rate of introduction of the infection by the reservoir is small (τ � 1). That

is to say, we consider that each introduction of the infection by the reservoir oc-

curs after the end of the previous excursion created by the previous introduction

of the infection by the reservoir. According to Equation (C.1), this approxima-

tion is valid as long as the ratio τ/β is small. We first approximate the mean

number of susceptible individuals consumed by an excursion. Let us consider a

subcritical branching process with individual birth rate βS and individual death

rate γ. As this process is subcritical, we know that the excursion will die out in

a finite time and produce a finite number of individuals. Then from [27], if we

denote by K[S, β, γ] the total number of individuals born during the lifetime of

this branching process (counting the initial individual), we know that:

P(K(S, β, γ) = k) =
(2k − 2)!

k!(k − 1)!

(
βS

γ + βS

)k (
γ

γ + βS

)k−1
,
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where P denotes a probability, and hence

E[K(S, β, γ)] =
βS

γ + βS

∞∑
k=0

(2k)!

(k!)2

(
γβS

(γ + βS)2

)k
,

where E is the expectation. By definition, an excursion is considered as an

outbreak only if the maximal number of individuals infected at the same time

during this excursion is larger than an epidemiological treshold that we have

denoted by c. Hence in order to approximate the number of outbreaks we still

have to compute the probability for an excursion to be an outbreak. This is a

classical result in branching process theory, and can be found in [28] for instance.

P (S, β, γ) := P(more than c individuals infected at the same time) =
γ/βS − 1

(γ/βS)c − 1
.

With these results in hands, the method to approximate the mean number of

outbreaks is the following. First the probability that the first excursion is an

outbreak is
γ/βN − 1

(γ/βN)c − 1
.

The number of susceptibles at the beginning of the second excursion is approx-

imated by

S2 = N − E[K(N, β, γ)].

The second excursion has a probability

γ/βS2 − 1

(γ/βS2)c − 1

to be an outbreak. The number of susceptibles at the beginning of the third

excursion is approximated by

S3 = S2 − E[K(S2, β, γ)],
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and the third excursion has a probability

γ/βS3 − 1

(γ/βS3)c − 1

to be an outbreak. And we iterate the procedure as long as there is still a

positive number of susceptible individuals. This gives eq. (4).

B. Number of outbreaks in the supercritical case (R0 > 1)

We now focus on the case R0 = βN/γ > 1. In this case the approximating

branching process will be supercritical and will go to infinity with a positive

probability. In the case when the epidemic process describes small excursions,

the branching process approximation is still valid, but in the case when it de-

scribes a large excursion, then a large fraction of susceptible individuals will be

consumed and the branching approximation will not be valid anymore. How-

ever, as all the quantities (susceptible, infected and recovered individuals) will

be large, a mean field approximation will be a good approximation of the pro-

cess. Here the mean field approximation will be the deterministic SIR process,

whose dynamics is given by:


Ṡ = −βSI

İ = βSI − γI

Ṙ = γI.

(B.1)

Let us first focus on the small excursions occurring before the large one.

As they are small, they can be approximated by a branching process. Here,

unlike in the previous section, the approximating branching process Z is super-

critical, as βN > γ. We can compute its probability to drift to infinity:

pG := P (Z∞ =∞) =
βN − γ
βN

.

As we will see, a supercritical branching process with individual birth rate βN

and individual death rate γ conditionned to get extinct has the same law as a
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subcritical branching process with individual birth rate γ and individual death

rate βN . Indeed, if we denote by Zn the successive values of this branching

process, we get for every couple of natural numbers (n, k):

P(Zn+1 = k + 1|Zn = k, Z∞ = 0) =
P(Zn+1 = k + 1, Zn = k, Z∞ = 0)

P(Zn = k, Z∞ = 0)

=
P(Z∞ = 0|Zn+1 = k + 1, Zn = k)P(Zn+1 = k + 1|Zn = k)

P(Z∞ = 0|Zn = k)

=
P(Z∞ = 0|Zn+1 = k + 1)

P(Z∞ = 0|Zn = k)

βN

βN + γ
=

(
γ

βN

)k+1(
γ

βN

)−k
βN

βN + γ
=

γ

βN + γ
.

We used again in this series of equalities classical results on branching processes

that can be found in [28]. As a consequence, if we denote by G[N, β, γ] the

number of susceptible individuals consumed by the excursion of a supercritical

branching process with individual birth rate βN and individual death rate γ

conditionned to get extinct, we get:

E[G(N, β, γ)] =
γ

γ + βN

∞∑
k=0

(2k)!

(k!)2

(
γβN

(γ + βN)2

)k
.

And the probability for this excursion to have a size bigger than the epidemio-

logical treshold c is
βN/γ − 1

(βN/γ)c − 1
.

As the number of susceptible individuals stays large until the large excursion400

occurs, we may keep N as the initial number of susceptibles at the beginning of

the excursions instead of replacing it by their mean value, as we have done in

the previous section.

The different quantities we have just computed allow us to approximate the

number of small excursions before the large excursion: in expectation, we have

∞∑
k=1

(k − 1)pG(1− pG)k−1 =
1− pG
pG

=
γ

βN − γ
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small excursions, which consume

γ2

(βN)2 − γ2
∞∑
k=0

(2k)!

(k!)2

(
γβN

(γ + βN)2

)k

susceptibles and produce

γ

βN − γ
βN/γ − 1

(βN/γ)5 − 1
=

1

(βN/γ)5 − 1

outbreaks.

Now we focus on the large excursion. We will use Equation (B.1) to approx-

imate its dynamics. This equation is well known, and it is easy to obtain the

equation satisfied by the final number of susceptible individuals: from (B.1)

Ṡ

S
= −βI = −β

γ
Ṙ.

Hence

ln(S(t))− ln(S(0)) = −β
γ

(R(t)−R(0)) = −β
γ

(N − I(t)− S(t)).

In particular, if we are interested in the time Tf when there is no more infected

individual and we suppose that at time 0 there is only one infected individual

we get

ln(S(Tf ))− ln(S(0)) =
β

γ
(S(Tf )− S(0)).

That is to say, S(Tf ) and S(0) are related by the equation

S(Tf )− γ

β
ln(S(Tf )) = S(0)− γ

β
ln(S(0)).

Rigorously, the value of S(0) depends on the number of susceptible individuals

consumed by the small excursions before the large excursion. But we have

seen that this number is small compared to the population size N . Hence the

number of susceptible individuals remaining after the large excursion can be
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approximated by the smallest solution of:

S(Tf )− γ

β
ln(S(Tf )) = N − γ

β
ln(N). (B.2)

(as the largest solution is S(Tf ) = N).405

Notice that it is easy to have an idea of the error done for a small variation

of the initial state. Indeed, if we denote by Sf the smallest solution of (B.2)

and by Sf − l(k) the solution when S(0) = N − k for a k small with respect to

N , we get:

(Sf−
γ

β
ln(Sf ))−(Sf−l(k)−γ

β
ln(Sf−l(k))) = (N−γ

β
ln(N))−(N−k−γ

β
ln(N−k)),

or in other terms

l(k) +
γ

β
ln(1− l(k)/Sf ) = k +

γ

β
ln(1− k/N).

As k and l(k) are small with respect to N , this can be approximated by

l(k) ∼ k
(

1− γ

βN

)
−
(

1− γ

βSf

)
.

Finally, notice that in (B.1), S is a decreasing quantity, and I is a non-

negative quantity, which varies continuously. Hence İ = I(βS − γ) has to be

negative before I hits 0. As a consequence,

βSf
γ

< 1.

This ensures that the epidemic is subcritical after the large outbreak.

C. Effect of the reservoir on the number of outbreaks

In this section, we focus on the effect of the reservoir transmission rate (τ)

on the number of outbreaks when the infection is subcritical (R0 < 1). The idea

is the following: first, as the excursions of a subcritical branching process are410

small, we can make the approximation that, at the beginning, the infection rate
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by the reservoir is constant equal to τN , and that the direct transmission rate is

equal to βNI. Making this approximation allows us to treat the two processes

of infection (by contact and by the reservoir) independently. Second, using

a result of Singh and Myers (2014), we get the mean number of independent415

infections by the reservoir during an outbreak under our approximation [19]. As

the infections by the reservoir during an outbreak describe a Poisson process,

we know that their times are uniformly distributed during the outbreak. As

a consequence, we make the approximation that the successive local maxima

of the number of infected individuals during the outbreak corresponds to the420

successive maxima of the outbreaks generated by the independent infections by

the reservoir. However, we have to take into account the fact that there is at

least one infected individual remaining in the population when a new individual

is infected by the reservoir (otherwise the new infected individual would generate

a new outbreak). Hence we will make the approximation than the event ’the425

excursion does not hit the treshold c’ and the event ’no excursion generated

by an infection by the reservoir and with initially two infected individuals, hits

the treshold c’ are equivalent. Notice that by doing that we underestimate

the probability of an excursion to reach any threshold we may explain why we

overestimate the spillover transmission τ maximizing the number of outbreaks.430

Let us denote by m the mean number of infections by the reservoir during

an excursion (including the first infection) in our approximation (rate τN of

infection by the reservoir, and rate βNI of direct infections). Then, according

to Equation (8) in [19],

m =

(
1− βN

γ

)−τ/β
. (C.1)

Next, recall that the probability for an excursion of the subcritical branching

process with individual birth rate βN and individual death rate γ and initial

state 2 to hit the size c is

pc =
(γ/βN)2 − 1

(γ/βN)c − 1
.
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Hence we make the approximation that

P(excursion is not an outbreak) ∼ (1− pc)m.

As the approximating branching process is subcritical, the probability pc is

small. Hence, we pursue the approximation by saying

(1− pc)m ∼ 1−mpc.

This approximation is valid only if mp2c is small, as

(1− pc)m = exp(m ln(1− pc)) = exp

(
−m

(
pc +

p2c
2

+O(p3c)

))
.

As a consequence, we get

P(excursion is an outbreak) ∼ mpc =

(
1− βN

γ

)−τ/β
(γ/βN)2 − 1

(γ/βN)c − 1

when mp2c is small. Hence, if mpc is small, few outbreaks will hit the treshold,

and the number of outbreaks will be small. If mpc is large, (1−pc)m is small and

the outbreaks will be big, consuming a large number of susceptible individuals.

As a consequence, there will be few outbreaks. The case mpc of order one is

the more favorable for outbreaks, as in this case every excursion will have a

non negligible probability to be an outbreak, but will be small enough not to

consume to many susceptible individuals, allowing other outbreaks to occur.

Hence we get an approximation of the optimal τ by solving mpc = 1, which

yields:

τ =
β∣∣∣ ln(1− βN/γ)

∣∣∣
[

(c− 2) ln

(
γ

βN

)
+ ln

(
1−

(
βN

γ

)c)
− ln

(
1−

(
βN

γ

)2
)]

.

29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/213579doi: bioRxiv preprint 

https://doi.org/10.1101/213579
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] K. E. Jones, N. G. Patel, M. A. Levy, A. Storeydard, D. Balk, J. L. Gittle-

man, P. Daszak, Global trends in emerging infectious diseases, Nature 451

(2008) 990–994. doi:10.1038/nature06536.

[2] L. H. Taylor, S. M. Latham, M. E. J. Woolhouse, Risk factors for human435

disease emergence, Philosophical Transactions of the Royal Society of Lon-

don 356 (2001) 983–989. doi:10.1098/rstb.2001.0888.

[3] D. M. Morens, A. S. Fauci, Emerging infectious diseases: Threats to human

health and global stability, PloS Pathogens 9 (7) (2013) e1003467. doi:

10.1371/journal.ppat.1003467.440

[4] K. A. Murray, P. Daszak, Human ecology in pathogenic landscapes: two

hypotheses on how land use change drives viral emergence, Current Opinion

in Virology 3 (2013) 79–83.

URL http://dx.doi.org/10.1016/j.coviro.2013.01.006

[5] F. Keesing, L. K. Belden, P. Daszak, A. Dobson, D. Harvell, R. D. Holt,445

P. Hudson, A. Jolles, K. E. Jones, C. E. Mitchell, S. S. Myers, B. T,

R. S. Ostfeld, Impacts of biodiversity on the emergence and transmission

of infectious diseases, Nature 468 (647) (2010) 647–652. doi:10.1038/

nature09575.

[6] S. P. Luby, M. J. Hossain, E. S. Gurley, A. Be-N, S. Banu, S. U. Khan,450

N. Homaira, P. A. Rota, P. E. Rollin, J. A. Comer, E. Kenah, T. G. Ksiazek,

M. Rahman, Recurrent zoonotic transmission of nipah virus into humans,

bangladesh, 20012007, Emerging Infectious Diseases 15 (8) (2009) 1229–

1235. doi:10.3201/eid1508.081237.

[7] M.-A. de La Vega, D. Stein, G. P. Kobinger, Ebolavirus evolution: Past455

and present, Plos Pathogens 11 (11).

[8] Z. Jesek, M. Y. Szczeniowski, J. J. Muyembe Tamfum, J. B. McCormick,

D. L. Heymann, Ebola, The Journal of Infectious Diseases 179.

30

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/213579doi: bioRxiv preprint 

http://dx.doi.org/10.1038/nature06536
http://dx.doi.org/10.1098/rstb.2001.0888
http://dx.doi.org/10.1371/journal.ppat.1003467
http://dx.doi.org/10.1371/journal.ppat.1003467
http://dx.doi.org/10.1371/journal.ppat.1003467
http://dx.doi.org/10.1016/j.coviro.2013.01.006
http://dx.doi.org/10.1016/j.coviro.2013.01.006
http://dx.doi.org/10.1016/j.coviro.2013.01.006
http://dx.doi.org/10.1016/j.coviro.2013.01.006
http://dx.doi.org/10.1038/nature09575
http://dx.doi.org/10.1038/nature09575
http://dx.doi.org/10.1038/nature09575
http://dx.doi.org/10.3201/eid1508.081237
https://doi.org/10.1101/213579
http://creativecommons.org/licenses/by-nc-nd/4.0/


[9] Center for disease control and prevention.

URL https://www.cdc.gov/hantavirus/resources/glossary.html460

[10] D. T. Haydon, S. Cleaveland, L. H. Taylor, Laurenson, Identifying reser-

voirs of infection: A conceptual and practical challenge, Emerging Infec-

tious Diseases 8 (12) (2002) 1468–1473.

[11] R. W. Ashford, What it takes to be a reservoir, The Belgian Journal of

Zoology 127 (1997) 85–90.465

[12] R. W. Ashford, When is a reservoir not a reservoir?, Emerging Infectious

Diseases 9 (11) (2003) 1495–1496.

[13] N. D. Wolfe, C. P. Dunavan, J. Diamond, Origins of major human infectious

diseases, Nature 447 (2007) 279–283. doi:10.1038/nature05775.

[14] J. O. Lloyd-Smith, D. George, K. M. Pepin, V. E. Pitzer, J. R. C. Pul-470

liam, A. P. Dobson, P. J. Hudson, B. T. Grenfell, Epidemic dynam-

ics at the human-animal interface, Science 326 (2009) 1362–1367. doi:

10.1126/science.1177345.

[15] S. Singh, D. J. Schneider, C. R. Myers, The structure of infectious disease

outbreaks across the animal-human interface, arXiv:1307.4628.475

[16] A. Fenton, A. B. Pedersen, Community epidemiology framework for clas-

sifying disease threats, Emerging Infectious Diseases 11 (12) (2005) 1815–

1821.

[17] G. Chowell, S. Blumberg, L. Simonsen, M. A. Miller, C. Viboud, Synthe-

sizing data and models for the spread of mers-cov, 2013: Key role of index480

cases and hospital transmission, Epidemics 9 (2014) 40–51.

URL http://dx.doi.org/10.1016/j.epidem.2014.09.011

[18] G. T. Nieddu, L. Billings, J. H. Kaufman, R. Forgoston, S. Bianco, Ex-

tinction pathways and outbreak vulnerability in a stochastic ebola model,

31

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/213579doi: bioRxiv preprint 

https://www.cdc.gov/hantavirus/resources/glossary.html
https://www.cdc.gov/hantavirus/resources/glossary.html
http://dx.doi.org/10.1038/nature05775
http://dx.doi.org/10.1126/science.1177345
http://dx.doi.org/10.1126/science.1177345
http://dx.doi.org/10.1126/science.1177345
http://dx.doi.org/10.1016/j.epidem.2014.09.011
http://dx.doi.org/10.1016/j.epidem.2014.09.011
http://dx.doi.org/10.1016/j.epidem.2014.09.011
http://dx.doi.org/10.1016/j.epidem.2014.09.011
http://dx.doi.org/10.1016/j.epidem.2014.09.011
http://dx.doi.org/10.1016/j.epidem.2014.09.011
http://dx.doi.org/10.1098/rsif.2016.0847
http://dx.doi.org/10.1098/rsif.2016.0847
http://dx.doi.org/10.1098/rsif.2016.0847
https://doi.org/10.1101/213579
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of the Royal Society Interface 14 (2017) 20160847.485

URL http://dx.doi.org/10.1098/rsif.2016.0847

[19] S. Singh, C. R. Myers, Outbreak statistics and scaling laws for exter-

nally driven epidemics, Physical Review 89 (2014) 042108. doi:10.1103/

PhysRevE.89.042108.

[20] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical490

theory of epidemics, Proceedings of the Royal Society of London 115 (772)

(1927) 700–721.

[21] A. Zumla, D. S. Hui, S. Perlman, Middle east respiratory syndrome, Lancet

386 (2015) 995–1007. doi:http://dx.doi.org/10.1016/S0140-6736(15)

60454-8.495

[22] C. L. Althaus, Estimating the reproduction number of ebola virus (ebov)

during the 2014 outbreak in west africa, PLOS Currents Outbreaks 6. doi:

10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288.

[23] J. Zhou, D. Wang, R. Gao, B. Zhao, J. Song, X. Qi, Y. Zhang, Y. Shi,

L. Yang, W. Zhu, T. Bai, K. Qin, Y. Lan, S. Zou, J. Guo, J. Dong, L. Dong,500

Y. Zhang, H. Wei, W. Li, J. Lu, L. Liu, X. Zhao, X. Li, W. Huang, Bio-

logical features of novel avian influenza a (h7n9) virus, Nature 499 (2013)

500–503.

[24] J. S. M. Sabir, T. T. Y. Lam, M. M. M. Ahmed, L. Li, Y. Shen, S. E. M.

Abo-Aba, M. I. Qureshi, M. Abu-Zeid, Y. Zhang, M. A. Khiyami, N. S.505

Alharbi, N. H. Hajrah, M. J. Sabir, M. H. Z. Mutwakil, S. A. Kabli, F. A. S.

Alsulaimany, A. Y. Obaid, B. Zhou, D. K. Smith, E. C. Holmes, H. Zhu,

Y. Guan, Co-circulation of three camel coronavirus species and recom-

bination of mers-covs in saudi arabia, Science 351 (6268) (2016) 81–84.

doi:10.1126/science.aac8608.510

[25] H. Ghazanfar, F. Orooj, M. A. Abdullah, A. Ghazanfar, Ebola, the

32

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2017. ; https://doi.org/10.1101/213579doi: bioRxiv preprint 

http://dx.doi.org/10.1098/rsif.2016.0847
http://dx.doi.org/10.1103/PhysRevE.89.042108
http://dx.doi.org/10.1103/PhysRevE.89.042108
http://dx.doi.org/10.1103/PhysRevE.89.042108
http://dx.doi.org/http://dx.doi.org/10.1016/S0140-6736(15)60454-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0140-6736(15)60454-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0140-6736(15)60454-8
http://dx.doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
http://dx.doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
http://dx.doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
http://dx.doi.org/10.1126/science.aac8608
https://doi.org/10.1101/213579
http://creativecommons.org/licenses/by-nc-nd/4.0/


killer virus, Infectious Diseases of Poverty 4 (15). doi:DOI10.1186/

s40249-015-0048-y.

[26] A. Meyer, T. X. Dinh, T. V. Nhu, L. T. Pham, S. Newman, T. T. T.

Nguyen, D. U. Pfeiffer, T. Vergne, Movement and contact patterns of long-515

distance free-grazing ducks and avian influenza persistence in vietnam, PloS

Onedoi:https://doi.org/10.1371/journal.pone.0178241.

[27] T. Britton, E. Pardoux, Stochastic epidemics in a homogeneous community,

in preparation.

[28] K. B. Athreya, P. E. Ney, Branching processes, Springer, Berlin, Heidel-520

berg, 1972.

Acknowledgments

The authors have been supported by the “Chair Modélisation Mathématique
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