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Abstract

Developing a robust and performant data analysis workflow that integrates all necessary
components whilst still being able to scale over multiple compute nodes is a challenging task.
We introduce a generic method based on the microservice architecture, where software tools are
encapsulated as Docker containers that can be connected into scientific workflows and executed
in parallel using the Kubernetes container orchestrator. The access point is a virtual research
environment which can be launched on-demand on cloud resources and desktop computers.
IT-expertise requirements on the user side are kept to a minimum, and established workflows can
be re-used effortlessly by any novice user. We validate our method in the field of metabolomics
on two mass spectrometry studies, one nuclear magnetic resonance spectroscopy study and one
fluxomics study, showing that the method scales dynamically with increasing availability of
computational resources. We achieved a complete integration of the major software suites
resulting in the first turn-key workflow encompassing all steps for mass-spectrometry-based
metabolomics including preprocessing, multivariate statistics, and metabolite identification.
Microservices is a generic methodology that can serve any scientific discipline and opens up for

new types of large-scale integrative science.
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Introduction

Metabolomics studies measure the occurrence, concentrations and changes of small molecules
(metabolites) in organisms, organs, tissues, cells and cellular compartments. Metabolite
abundances are assayed in the context of environmental or dietary changes, disease or other
conditions'. Metabolomics experimental measurements are performed using a variety of
spectroscopic methods: the two most common ones are Mass Spectrometry (MS) and Nuclear
Magnetic Resonance (NMR). The use of metabolomics as a molecular phenotyping technique is
growing across all biomedical domains, due to its ability to reflect the influence of external
factors to which an organism is exposed, such as stress, nutrition and disease, subsumed under
the term ‘exposome’. Metabolomics data analysis has matured over the years, but is still largely
developed and performed at a laboratory level with the use of conventional computing solutions
and little standardisation for reproducible research. The PhenoMeNal (Phenome and

Metabolome aNalysis) project (http://phenomenal-h2020.eu/home/about) was conceived to

ameliorate this situation by bringing advancements in computing architecture and technology
into a modern and easily deployed e-infrastructure — i.e., a computing environment combining
hardware and software technology as well as required protocols and data resources — tailored

specifically for efficient processing and analysis of molecular phenotype data.

Metabolomics is, as most other omics technologies, characterized by the use of high-throughput
experiments that produce large amounts of data’. With increasing data size and number of

samples, the analysis process becomes intractable for desktop computers due to requirements on
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compute cores, memory, storage etc. As a result, large-scale computing infrastructures have
become important components in scientific projects®. Moreover, making use of such complex
computing resources in an analysis workflow presents its own challenges, including achieving
efficient job parallelism and scheduling as well as error handling®. In addition, configuring the
necessary software tools and chaining them together into a complete re-runnable analysis
workflow commonly requires substantial IT-expertise, while creating portable and fault-tolerant

workflows with a robust audit trail is even more difficult.

Currently, the most common large-scale computational infrastructures in science are shared
High-Performance Computing (HPC) systems. Such systems are usually designed primarily to
support computationally intensive batch jobs — e.g., for the simulation of physical processes —
and are managed by specialized system administrators. This model leads to rigid constraints on
the way these resources can be used. For instance, the installation of software must undergo
approval and may be restricted, which contrasts with the needs in omics analysis where a
multitude of software components of various versions — and their dependencies — are needed, and

where these need to be continuously updated.

Cloud computing offers a compelling alternative to shared HPC systems, with the possibility to
instantiate and configure on-demand resources such as virtual computers, networks, and storage,
together with operating systems and software tools. Users only pay for the time the virtual
resources are used, and when they are no longer needed they can be released and incur no further

costs for usage or ownership. A few examples of cloud-based systems for metabolomics include
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XCMS ONLINE®, Chorus (chorusproject.org) and The Metabolomics Workbench
(www.metabolomicsworkbench.org), all of which provide virtual environments that scale with
computational demands. However, these applications provide limited flexibility in terms of

incorporating and maintaining tools as well as constructing and using customizable workflows.

Along with infrastructure provisioning, software provisioning — i.e., installing and configuring
software for users — has also advanced. Consider, for instance, containerization’, which allows
entire applications with their dependencies to be packaged, shipped and run on a computer but
isolated from one another in a way analogous to virtual machines, yet much more efficiently.
Containers are more compact, and since they share the same operating system kernel, they are
fast to start and stop and incur little overhead in execution. These traits make them an ideal
solution to implement light-weight microservices, a software engineering methodology in which
complex applications are divided into a collection of smaller, loosely coupled components that
communicate over a network®. Microservices share many properties with traditional always-on
web services found on the Internet, but microservices are generally smaller, portable and can be
started on-demand within a separate computing environment. Another important feature of
microservices is that they have a technology-agnostic communication protocol, and hence can
serve as building blocks that can be combined and reused in multiple ways’.

Microservices are highly suitable to run in elastic cloud environments that can dynamically grow
or shrink on demand, enabling applications to be scaled-up by simply starting multiple parallel

instances of the same service. However, to achieve effective scalability a system needs to be
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appropriately sectioned into microservice components and the data to be exchanged between the

microservices needs to be defined for maximum efficiency— both being challenging tasks.

In this manuscript, we present a method which uses components for metabolomics data analysis
encapsulated as microservices and connected into computational workflows to provide complete,
ready-to-run, reproducible data analysis solutions that can be easily deployed on desktop
computers as well as public and private clouds. Our approach requires virtually no involvement
in the setup of computational infrastructure and no special IT skills from the user. We validate
the method on four metabolomics studies and show that it enables scalable and interoperable data

analysis.

Results

Microservices
In order to construct a microservice architecture for metabolomics we used Docker'

(https://www.docker.com/) containers to encapsulate a large suite of software tools (See Table

S1). To automate the instantiation of this cloud-portable microservice-based system and its
components for metabolomics analysis, we developed a Virtual Research Environment (VRE)

which uses Kubernetes (https://kubernetes.io/) to orchestrate containers over multiple compute

nodes. Scientists can interact with the microservices programmatically via an Application
Programming Interface (API) or via a web-based graphical user interface (GUI), as illustrated in
Figure 1. To connect microservices into computational workflows, the two frameworks Galaxy"'

and Luigi (https://github.com/spotify/luigi) were adapted to execute jobs on Kubernetes. Galaxy
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is a web-based interface for individual tools and allows users to share workflows and analysis
histories. Luigi on the other hand focuses on scheduled execution, monitoring, visualization and
the implicit dependency resolution of tasks'?. These basic infrastructure services, together with
the Jupyter notebook' interactive programming environment, are deployed as long-running
services in the VRE, whereas the other analysis tools are deployed as transient compute jobs to
be used on-demand. System and client applications were developed for launching the VRE on
desktop computers, public and private cloud providers, automating all steps required to
instantiate the virtual infrastructures. The PhenoMeNal consortium maintains a web portal

(https://portal.phenomenal-h2020.eu) providing a GUI for launching VREs on a selection of the

largest public cloud providers, including Amazon Web Services, Microsoft Azure and Google
Cloud Platform, or on private OpenStack-based installations. The containers provisioned by
PhenoMeNal comprise tools built as open source software that are available in a public
repository such as GitHub, and are subject to continuous integration testing. The containers that
satisfy testing criteria are pushed to a public container repository, and containers that are

included in stable VRE releases are also pushed to Biocontainers’.

Demonstrator 1: Scalability of microservices in a cloud environment in the analysis of a
human renal proximal tubule cells dataset
The objective of this analysis was to demonstrate the scalability of an existing workflow on a

large dataset (MetaboLights' ID: MTBLS233,

http://www.ebi.ac.uk/metabolights/ MTBLS233").  The experiment includes 528 mass

spectrometry samples from whole cell lysates of human renal proximal tubule cells that were
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pre-processed through a five-step workflow (consisting of peak picking, feature finding, linking,
file filtering and exporting) using the OpenMS software'® as illustrated in Figure 2. This
preprocessing workflow was reimplemented using Docker containers and run using the Luigi
workflow engine. Scalability of concurrent running tools (on 40 Luigi workers, each worker
receives tasks from the scheduler and executes them) was measured using weak scaling
efficiency (WSE), where the workload assigned to each worker stays constant and additional
workers are used to solve a larger total problem. The WSE was computed to reach 88% with an
execution time of approximately four hours (online methods, Figure S2), compared with the
ideal case of 100% where linear scaling is achieved if the run time stays constant while the
workload is increased. In addition, the final result of the workflow (online methods, Figure S3)
was identical to that presented by the original MTBLS233 study (Ranninger et al.'”) in negative
ionization mode. However, in the positive ionization mode, one m/z feature was found in a
different group (m/z range 400-1000) than it was originally reported by Ranninger et al. (m/z

range 200-400).

Demonstrator 2: Start-to-end LC-MS-analysis workflow on Multiple Sclerosis data

The objective of this analysis was to demonstrate interoperability as well as to present a
real-world scenario in which patients’ data are processed using a microservices-based platform.
We used a dataset consisting of 37 clinical cerebrospinal fluid (CSF) samples including thirteen
relapsing-remitting multiple sclerosis (RRMS) patients and 14 secondary progressive multiple
sclerosis (SPMS) patients as well as ten non-multiple sclerosis controls. Twenty-six quality

controls (19 blank and 7 dilution series samples) were also added to the experiment. In addition,
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8 pooled CSF samples containing MS/MS data were included in the experiment for improving

identification (MetaboLights ID: MTBLS558, http://www.ebi.ac.uk/metabolights/ MTBLS558).

The samples were processed and analysed on the Galaxy platform' applying the Liquid
Chromatography-MS (LC-MS) workflow illustrated in Figure 3, running in a PhenoMeNal VRE
behind the Uppsala University Hospital firewall to be compliant with local ELSI (Ethics, Legal,
Social implications) regulations. The result of multivariate analysis showed a clear difference
(Figure 4A) in the metabolic constitution between the three disease groups of RRMS, SPMS and
non-multiple sclerosis controls. In addition, the univariate analysis resulted in a total of three
metabolites being significantly altered (p<0.05) between multiple sclerosis subtypes and control
samples, namely alanyltryptophan and indoleacetic acid with higher and linoleoyl ethanolamide

with lower abundance in both RRMS and SPMS compared to controls (Figure 4B).

Demonstrator 3: 1D NMR-analysis workflow on human type 2 diabetes mellitus data
This NMR-based metabolomics study was originally performed by Salek et al.'” on urine of type
2 diabetes mellitus (T2DM) patients and controls (MetaboLights ID: MTBLSI,

http://www.ebi.ac.uk/metabolights/ MTBLS1). In total, 132 samples (48 T2DM and 84 controls)

were processed using the workflow shown in Figure 5. A total of 726 metabolites were
quantified and used to perform Orthogonal Projections to Latent Structures Discriminant
Analysis (OPLS-DA) which resulted in a clear separation between T2DM and controls (Figure

5), reproducing previous findings'’.

Demonstrator 4: Start-to-end fluxomics workflow on HUVEC cells under hypoxia
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The purpose of this demonstrator was to show the integrated use of separately developed tools
covering subsequent steps of the study of metabolic fluxes based on **C stable isotope-resolved
metabolomics (SIRM)'®'?°. Here we implemented the analysis of flux distributions in HUVEC

cells under hypoxia (MetaboLights ID: MTBLS412,

http://www.ebi.ac.uk/metabolights/ MTBLS412), from raw mass spectra contained in netCDF
files, using the workflow illustrated in Figure 6. The result was a detailed description of the
magnitudes of the fluxes through the reactions accounting for glycolysis and pentose phosphate

pathway.

Discussion

Implementing the different tools and processing steps of a data analysis workflow as separate
services that are made available over a network was in the spotlight in the early 2000°s*' as
service-oriented architectures (SOA) in science. At that time, web services were commonly
deployed on physical hardware and exposed and consumed publicly over the internet. However,
it soon became evident that this architecture did not fulfill its promises as it did not scale well
from a computational perspective. In addition, the web services were not portable and mirroring
them was complicated (if at all possible). Furthermore, API changes and frequent services outage
made it frustrating to connect them into functioning computational workflows. Ultimately, the
ability to replicate an analysis on local and remote hardware (such as a computer cluster) was

very difficult due to heterogeneity in the computing environments.
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At first sight microservices might seem similar to abovementioned SOA web services, but
microservices are generally executed in virtual environments (abstracting over OS and hardware
architectures) in such a way that they are only instantiated and executed on-demand, and then
terminated when they are no longer needed. This makes such virtual environments inherently
portable and they can be launched on demand on different platforms (e.g., a laptop, a powerful
physical server or an elastic cloud environment). A key aspect is that workflows are still
executed identically, agnostic of the underlying hardware platform. Container-based
microservices provide a wide flexibility in terms of versioning, allowing the execution of newer
and older versions of each container as needed for reproducibility. Since all software
dependencies are encompassed within the container, which is versioned, the risk of workflow
failure due to API changes is minimized. An orchestration framework such as Kubernetes further
allows for managing errors in execution and transparently handles the restarting of services.
Hence, technology has caught up with service-oriented science, and microservices have taken the
methodology to the next level, alleviating many of the previous problems related to scalability,
portability and interoperability of software tools. This is advantageous in the context of omics
analysis, which produces multidimensional data sets reaching beyond gigabytes, on into

terabytes, leading to ever-increasing demand on processing performance®*.

In Demonstrator 1, we showed that microservices enable highly efficient and scalable data
analyses by executing individual modules in parallel, and that they effectively harmonize with
on-demand elasticity of the cloud computing paradigm. The reached scaling efficiency of ~88%

indicates remarkable performance achieved on generic cloud providers. Furthermore, although
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our results in positive ionization model was slightly different to that of Ranninger et al."”, the
results of our analysis were reproducible regardless of the platform used to perform the
computations, indicating a level of replicability of study results and reusability of workflows in
the analysis that - to the best of our knowledge - has never been reported before in metabolomics

data analysis.

In addition to the fundamental demand for high performance, the increased throughput and
complexity of omics experiments has led to a large number of sophisticated computational
tools?*, which in turn necessitates integrative workflow engines®. In order to integrate new tools
in such workflow engines, compatibility of the target environment, tools and APIs needs to be
considered®”. Containerization facilitates this by providing a platform-independent virtual
environment for developing and running the individual tools. However, the problem of
compatibility between tools/APIs and data formats remains and needs to be tackled by
international consortia similarly to what PhenoMeNal addresses in metabolomics by promoting
and strictly adhering to FAIR Data Principles®. PhenoMeNal also overcomes the currently
non-trivial task of instantiating the complete microservice environments through a web portal
that allows for convenient deployment of the VRE on public cloud providers. Moreover, using
the PhenoMeNal web portal, microservices and VREs can be deployed on a trusted private cloud
instance or a local physical server on an internal network, such as within a hospital network,
allowing for levels of isolation and avoiding transfer of data across untrusted networks which
often are requirements in the analysis of sensitive data. This was highlighted in Demonstrator 2,

where a complete start-to-end workflow was run on the Galaxy platform on a secure server at
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Uppsala University Hospital, Sweden, leading to the identification of novel disease fingerprints
in the CSF metabolome of RRMS and SPMS patients. It is worth mentioning that the selected
metabolites were part of tryptophan metabolism (alanyltryptophan and indoleacetic acid) and
endocannabinoids (linoleoyl ethanolamide), both of which have been previously implicated in
multiple sclerosis?” 2. However, since the cross-validated predictive performance (Q2Y = 0.286)
is not much higher than some of the models generated after random permutation of the response
(Figure 4A), the quality of the model needs to be confirmed in a future study on an independent

cohort of larger size.

In Demonstrator 3, we highlighted the fact that the microservice architecture is indeed
domain-agnostic and is not limited to a particular assay technology, i.e. mass spectrometry.
Using a fully automated 1D NMR workflow, we showed that the pattern of the metabolite
expression is different between type 2 diabetic and healthy controls, and that a large number of
metabolites contribute to such separation. The preprocessing of NMR-based experiments can be
performed with minimal effort on other studies (i.e. simply by providing a MetaboLights
accession number), leading to the capability to re-analyze data and compare the results with the
original publication findings. Furthermore, it demonstrates the value of standardised dataset
descriptions using nmrML* and ISA format*** for representing NMR based studies, as well as

the potential of the PhenoMenNal VRE to foster reproducibility.

A complete understanding of metabolic function implies a complete metabolic profile, but also

knowledge of the associated distribution of metabolic fluxes in the metabolic network. In
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Demonstrator 4, the microservices architecture is applied to deal with flux distributions derived
from the application of stable isotope resolved metabolomics. Here we showed high rate of
glycolysis in cell cultured in hypoxia which is consistent with the one expected for endothelial
cells* and also further confirmation on how these cells maintain energy in low oxygen

environments and without oxidative phosphorylation®’,

While microservices are not confined to metabolomics and generally applicable to a large variety
of applications, there are some important implications and limitations of the method. Firstly,
tools need to be containerized in order to operate in the environment. This is however not
particularly complex, and an increasing number of developers provide containerized versions of
their tools on public container repositories such as Dockerhub or Biocontainers’. Secondly,
uploading data to a cloud-based system can take a considerable amount of time, and having to
re-do this every time a VRE is instantiated can be time-consuming. This can be alleviated by
using persistent storage on a cloud resource, but the availability of such storage varies between
different cloud providers. Further, the storage system can become a bottleneck when many
services try to access a shared storage. We observe that using a distributed storage system with
multiple storage nodes can drastically increase performance, and the PhenoMeNal VRE comes
with a distributed storage system by default. When using a workflow system to orchestrate the
microservices, stability and scalability are inherently dependent on the workflow system’s job
runner. We observed that in the Galaxy workflow engine, executing a large number of jobs
resulted in the VRE becoming unresponsive whereas the Luigi engine did not have these

shortcomings. Although this problem can be resolved by defining the required resources in the
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Galaxy job runner for each tool, the issue of knowing how much computational resources a
specific tool needs remains. This can be partially addressed by tool/workflow developers to
estimate the required resources for their tools and workflows. With cloud and microservices
maturing, workflow systems will need to evolve and further embrace the new possibilities of
these infrastructures. Also, not all research can be easily pipelined, for example exploratory
research might be better carried out in an ad-hoc manner than with workflows and the overhead
this implies. A Jupyter Notebook as used in in Demonstrator 1 or embedded in Galaxy®

constitute promising ways to make use of microservices for interactive analysis.

In summary, we showed that microservices allow for efficiently scaling up analyses on multiple
computational nodes, enabling the processing of large data sets. By applying a number of data
(mzML* , nmrML) and metadata standards (ISA serialisations for study descriptions®**®), we
also demonstrated a level of interoperability which has never been achieved in the context of
metabolomics, by providing completely automated start-to-end analysis workflows for mass
spectrometry and NMR data. The PhenoMeNal VRE realizes the notion of “bringing compute to
the data” by enabling the instantiation of complete virtual infrastructures close to large datasets
that could not be uploaded over the internet, and can also be launched close to ELSI sensitive
data that is not allowed to leave a secure computing environment. While the current
PhenoMeNal VRE implementation uses Docker for software containers and Kubernetes for
container orchestration, the microservice methodology is general and not restricted to these

frameworks. In addition, we emphasise that the presented methodology goes beyond
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metabolomics and can be applied to virtually any field, lowering the barriers for taking

advantage of cloud infrastructures and opening up for large-scale integrative science.
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Main figures

User

Tool

Workflow

Figure 1: Overview of the components in a microservices-based framework. Complex applications are

divided into smaller, focused and well-defined (micro-) services. These services are independently
deployable and can communicate with each other, which allows to couple them into data processing
workflows. The user can interact with the framework programmatically via an Application Program
Interface (API) or via a graphical user interface (GUI) to construct or run workflows of different services,
which are executed independently. Multiple instances of services can be launched to execute tasks in

parallel, which effectively can be used to scale analysis over multiple compute nodes. When run in an
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elastic cloud environment, virtual resources can be added or removed depending on the computational

requirements.
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Figure 2. Diagram of scalability-testing on the metabolomics dataset (MetaboLights ID: MTBLS233) in

Demonstrator 1 to illustrate the scalability of a microservice approach. The preprocessing workflow is
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composed of 5 OpenMS tasks that were run in parallel over the 12 groups in the dataset using the Luigi
workflow system. The first two tasks, peak picking (528 tasks) and feature finding (528 tasks), are
trivially parallelizable, hence they were run concurrently for each sample. The subsequent feature linking
task needs to process all of the samples in a group at the same time, therefore 12 of these tasks were run in
parallel. In order to maximize the parallelism, each feature linker container (microservice) was run on 2
CPUs. Feature linking produces a single file for each group, that can be processed independently by the
last two tasks: file filter (12 tasks) and text exporter (12 tasks), resulting in total of 1092 tasks. The
downstream analysis consisted of 6 tasks that were carried out in a Jupyter Notebook. Briefly, the output
of preprocessing steps was imported into R and the unstable signals were filtered out. The missing values

were imputed and the resulting number of features were plotted.
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Figure 3. Overview of the workflow used to process multiple-sclerosis samples in Demonstrator 2,
where a workflow was composed of the microservices using the Galaxy system. The data was centroided
and limited to a specific mass over charge (m/z) range using OpenMS tools. The mass traces
quantification and retention time correction was done via XCMS*'. Unstable signals were filtered out

based on the blank and dilution series samples using an in-house function (implemented in R). Annotation
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of the peaks was performed using CAMERA®*. To perform the metabolite identification, the tandem
spectra from the MS/MS samples in mzML format were extracted using MSnbase and passed to MetFrag.
The MetFrag scores were converted to g-values using Passatutto software. The result of identification and
quantification were used in “Multivariate” and “Univariate” containers from Workflow4Metabolomics*

to perform Partial Least Squares Discriminant Analysis (PLS-DA)*.
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Figure 4. The results from analysis of multiple sclerosis data in Demonstrator 2, presenting new
scientifically useful biomedical knowledge. A) The PLS-DA results suggest that the metabolite
distribution in the RRMS and SPMS samples are different to controls. B) Three metabolites were
identified as differentially regulated between multiple sclerosis subtypes and control samples,
namely alanyltryptophan and indoleacetic acid with higher and Linoleoyl ethanolamide with
lower abundance in both RRMS and SPMS compared to controls. Abbr.,, RRMS:

relapsing-remitting multiple sclerosis, SPMS: secondary progressive multiple sclerosis.
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Figure 5. Overview of the NMR workflow in Demonstrator 3. The raw NMR data was
automatically import from Metabolights (ISA-Tab) database and converted to open source
nmrML format. The preprocessing was performed using the rnmrld package part of
nmrprocflow® tools. All study factors were imported from MetaboLights and were fed to the

multivariate node to perform an OPLS-DA.

29


https://paperpile.com/c/etvBGl/3tCgL
https://doi.org/10.1101/213603

bioRxiv preprint doi: https://doi.org/10.1101/213603; this version posted November 24, 2017. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

151.06068

152.06404

A

162 06489

152.06885

e .

RAW DATA

B exchange_file x

output

zip_netCDF x

output

Dtracing model %

output

[ SBML input b 3

output

[ constraints x
output
[ Escher map with X%
layout

output

PARAMETERS

EXTRACT CORRECT

#° ramid x # midcor b 3

inputExchange

inputl

outputl (csv)

extract peaks from raw data,
evaluate mass isotopomer distribution
and isotopologue abundances, apply
13C Metabolic Flux Analysis using the
(SBML) contraint-based model and
present the results using an
interactive visualisation

Lactate

Glycogen ’g.\ Ribose

5c=2
He=2

Lactate secretion fixed to 1, RlacEx = 1

RglcEx 0.439

SO

]
S Rhex1 0.439
o

RglycEx 0.00000850

coa C Gicop_a

%; Rglcép._pdif 0.439
RoxPPP 0.0877

coa

Gicop b

Fuisp

r o Arpi0.0292
MODEL .o Rrpe 0.0584 o
) Risy
# iso2flux x () s
tracing_data

& Rikt1 0.0292
tracing_mode!

sbml_model

parameters OSN?P
constraints

best_fit_fluxes (csv) ®

best_fit_label (csv) VISUALISE
constrained_sbml_model (xml) U eceneinibioniies .

fluxes_confidence (csv; :
= (esv) Best fit fluxes or equivalent

layout_map_file
lﬁbo"om— best_fit_fluxes_json (JSON) &

O,,Ep html_file (html)

Rpyk 0.849
RextraPyr 0.1.

a0 OPyr

Ridh_I'1.00
RlacEx 1.00

w— @

Figure 6: Overview of the workflow for fluxomics, with Ramid, Midcor, Iso2Flux and

Escher-fluxomics tools supporting subsequent steps of the analysis. The example refers to

HUVEC cells incubated in the presence of [1,2-°C,]glucose and label (*C) propagation to

glycogen, RNA ribose and lactate measured by mass spectrometry. Ramid reads the raw netCDF

files, corrects baseline and extracts the peak intensities. The resulting peak intensities are

corrected (natural abundance, overlapping peaks) by Midcor, which provides isotopologue

abundances. Isotopologue abundances, together with a model description (SBML model, tracing

data, constraints), are used by Iso2Flux to provide flux distributions through glycolysis and
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pentose-phosphate pathways, which are shown as numerical values associated to a metabolic

scheme of the model by the Escher-fluxomics tool.
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